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UNIT I CMOS TECHNOLOGY 

INTRODUCTION 

An MOS (Metal-Oxide-Silicon) structure is created by superimposing several layers of 

conducting, insulating, and transistor forming materials. After a series of processing steps, a typical 

structure might consists of levels called diffusion, polysilicon, and metal that are separated by 

insulating layers. CMOS technology provides two types of transistors, an n-type transistor (n MOS) 

and a p-type transistor (p MOS). These are fabricated in silicon by using either negatively doped 

silicon that is rich in electrons (negatively charged) or positively doped silicon that is rich in holes 

(the dual of electrons and positively charged). For the n-transistor, the structure consists of a section 

of p-type silicon separating two diffused areas of n-type silicon. The area separating the n regions is 

capped with a sandwich consisting of an insulator and a conducting electrode called the GATE. 

Similarly, for the p-transistor the structure consists of a section of n-type silicon separating two p-type 

diffused areas. The p-transistor also has a gate electrode. The gate is a control input and it affects the 

flow of electrical current between the drain and source. The drain and source may be viewed as two 

switched terminals. 

An MOS transistor is termed a majority-carrier device, in which the current in a conducting 

channel between the source and drain is modulated by a voltage applied to the gate. In an n-type MOS 

transistor (i.e.,nMOS), the majority carriers are electrons. A positive voltage applied on the gate with 

respect to the substrate enhances the number of electrons in the channel (region immediately under the 

gate) and hence increases the conductivity of the channel. The operation of a p-type transistor is 

analogous to the nMOS transistor, with the exception that the majority carriers are holes and the 

voltages are negative with respect to the substrate. The switching behavior of an MOS device is 

characterized by threshold voltage, Vt. This is defined as the voltage at which an MOS device begins 

to conduct. For gate voltage less than a threshold value, the channel is cut-off, thus causing a very low 

drain- to-source current. Those devices that are normally cut-off (i.e., non-conducting) with zero gate 

bias are further classed as enhancement mode devices, whereas those devices that conduct with zero 

gate bias are called depletion mode devices. 
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CV Characteristics: 
 
 

The measured MOS capacitance (called gate capacitance) varies with the applied gate voltage 

– A very powerful diagnostic tool for identifying any deviations from the ideal in both 

oxide and semiconductor 

– Routinely monitored during MMOS device fabrication 

Measurement of C-V characteristics 

– Apply any dc bias, and superimpose a small (15 mV) ac signal 

– Generally measured at 1 MHz (high frequency) or at variable frequencies between 

1KHz to 1 MHz 

– The dc bias VG is slowly varied to get quasi-continuous C-V characteristics 
 

 

 

 

 

 
DC Characteristics of CMOS inverter 

 

 

 

The general arrangement and characteristics are illustrated in Fig. 2.3. The current/voltage 

relationships for the MOS transistor may be written as, 
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Ids = K W (Vds – Vt)Vds – Vds 
2 

L 2 

 

 
Figure 2.3 CMOS inverter 

In the resistive region, or 

 

 
Ids = K W (Vgs – Vt)

2 

L 2 

In the saturation region. In both cases the factor K is a technology- dependent parameter such that 

K = εins εo µ   

D 

The factor W/L is contributed by the geometry and it is common practice to write 

β = K W 

L 

Such that, 

Ids = β (Vgs – Vt)
2 

2 

In saturation, and where β may be applied to both nMOS and pMOS transistors as follows, 

βn = εins εo µn Wn   

D Ln 

 

βp = εins εo µp Wp  

D Lp 

Where Wn and Ln, Wp and Lp are the n- and p- transistor dimensions respectively. The CMOS inverter 

has five regions of operation is shown in Fig. 2.4 and in Fig. 2.5. 
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Figure 2.4 Transfer characteristics 

 
Considering the static condition first, in region 1 for which Vin = logic 0, the p-transistor fully 

turned on while the n-transistor is fully turned off. Thus no current flows through the inverter and the 

output is directly connected to VDD through the p-transistor. 

In region 5 Vin = logic 1, the n-transistor is fully on while the p-transistor is fully off. Again, 

no current flows and a good logic 0 appears at the output. 

In region 2 the input voltage has increased to a level which just exceeds the threshold voltage 

of the n-transistor. The n-transistor conducts and has a large voltage between source and drain. The p- 

transistor also conducting but with only a small voltage across it, it operates in the unsaturated 

resistive region. 

 

 
Figure 2.5 CMOS inverter current versus Vin 
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In region 4 is similar to region 2 but with the roles of the p- and n- transistors reversed. The 

current magnitudes in region 2 and 4 are small and most of the energy consumed in switching from 

one state to the other is due to the large current which flows in region 3. 

In region 3 is the region in which the inverter exhibits gain and in which both transistors are 

in saturation. 

 

The currents in each device must be the same since the transistors are in series. So we may 

write 
 

I dsp = - Idsn 

 

Where 
 

 

 

 
And 

Idsp= βn (Vin – VDD - Vtp )
2 

2 

 
Idsn = βn (Vin – Vtn )

2
 

2 

Vin in terms of the β ratio and the other circuit voltages and currents 

Vin = VDD + Vtp +Vtn (βn + βp)
1/2

 

 

1+ (βn + βp)
1/2 

Since both transistors are in saturation, they act as current sources so that the equivalent circuit in this 

region is two current sources so that the equivalent circuit in this region is two current sources in 

series between VDD and VSS with the output voltage coming from their common point. The region is 

inherently unstable in consequence and the change over from one logic level to the other is rapid. 

If βn= βp and if Vin = -Vtp, then 

Vin = 0.5 VDD 

Since only at this point will the two β factors be equal. But for βn= βp the device geometries must be 

such that 

µp Wp/Lp = µn Wn/Ln 

The mobilities are inherently unequal and thus it is necessary for the width to length ratio of the p- 

device to be three times that of the n-device, namely 

Wp/Lp = 2.5 Wn/Ln 

The mobility µ is affected by the transverse electric field in the channel and is thus independent on 

Vgs. It has been shown empirically that the actual mobility is 

µ = µz (1 – Ø (Vgs – Vt)
-1 

Ø is a constant approximately equal to 0.05 Vt includes anybody effect, and µz is the mobility with 

zero transverse field. 
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CMOS Technologies 
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CMOS TECHNOLOGIES 

 
CMOS provides an inherently low power static circuit technology that has the capability of providing 

a lower-delay product than comparable design-rule nMOS or pMOS technologies. The four dominant 

CMOS technologies are: 

 P-well process 

 n-well process 

 twin-tub process 

 Silicon on chip process 

 

 

The p-well process 

 
A common approach to p-well CMOS fabrication is to start with moderately doped n-type 

substrate (wafer), create the p-type well for the n-channel devices, and build the p-channel transistor 

in the native n-substrate. The processing steps are, 

1. The first mask defines the p-well (p-tub) n-channel transistors (Fig. 1.5a)   will be fabricated 

in this well. Field oxide (FOX) is etched away to allow a deep diffusion. 

2. The next mask is called the “thin oxide” or “thinox” mask (Fig. 1.5b), as it defines where 

areas of thin oxide are needed to implement transistor gates and allow implantation to form p- 

or n- type diffusions for transistor source/drain regions. The field oxide areas are etched to 

the silicon surface and then the thin oxide areas is grown on these areas. O ther terms for this 

mask include active area, island, and mesa. 

3. Polysilicon gate definition is then completed. This involves covering the surface with 

polysilicon (Fig 1.5c) and then etching the required pattern (in this case an inverted “U”).  

“Poly” gate regions lead to “self-aligned” source-drain regions. 

 
4. A p-plus (p+) mask is then used to indicate those thin-oxide areas (and polysilicon) that are to 

be implanted p+. Hence a thin-oxide area exposed by the p-plus mask (Fig. 1.5d) will become 

a p+ diffusion area. If the p-plus area is in the n-substrate, then a p-channel transistor or p- 

type wire may be constructed. If the p-plus area is in the p-well, then an ohmic contact to the 

p-well may be constructed. 

 
5. The next step usually uses the complement of the p-plus mask, although an extra mask is 

normally not needed. The “absence” of a p-plus region over a thin-oxide area indicates that 

the area will be an n+ diffusion or n-thinox. n-thinox in the p-well defines possible n- 
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transistors and wires. An n+ diffusion (Fig. 1.5e) in the n-substrate allows an ohmic contact to 

be made. Following this step, the surface of the chip is covered with a layer of Sio2. 

 
6. Contacts cuts are then defined. This involves etching any Sio2 down to the contacted surface, 

these allow metal (Fig. 1.5f) to contact diffusion regions or polysilicon regions. 

 
7. Metallization (Fig. 1.5g) is then applied to the surface and selectively etched. 

 
 

8. As a final step, the wafer is passivated and openings to the bond pads are etched to allow for 

wire bonding. Passivation protects the silicon surface against the ingress of contaminants. 

 

(a) 
 

(b) 
 

(c) 
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(d) 

 

(e) 
 

(f) 
 

 

(g) 

Figure 1.5 Typical p-well CMOS process steps with corresponding masks required 
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Basically the structure consists of an n-type substrate in which p-devices may be formed by 

suitable masking and diffusion and, in order to accommodate n-type devices, a deep p-well is diffused 

into the n-type substrate. This diffusion must be carried out with special care since the p-well doping 

concentration and depth will affect the threshold voltages as well as the breakdown voltages of the n- 

transistors. To achieve low threshold voltage (0.6 to 1.0 V), deep well diffusion or high well 

resistivity is needed. However, deep wells require larger spacing between the n- and p-type transistors 

and wires because of lateral diffusion resulting in larger chip areas. 

High resistivity can accentuate latch-up problems. In order to achieve narrow threshold voltage 

tolerances in a typical p-well process, the well concentration is made about one order of magnitude 

higher than the substrate doping density, thereby causing the body effect for n-channel devices to be 

higher than for p-channel transistors. In addition, due to this higher concentration, n-transistors suffer 

from excessive source/drain to p-well capacitance will tends to be slower in performance. The well 

must be grounded in such a way as to minimize any voltage drop due to injected current in substrate 

that is collected by the p-well. 

The p-well act as substrate for then-devices within the parent n-substrate, and, provided polarity 

restrictions are observed, the two areas are electrically isolated such that there are in affect two 

substrate, two substrate connections (VDD and VSS) are required. 

The n-well process: 

 
The p-well processes have been one of the most commonly available forms of CMOS. However, an 

advantage of the n-well process is that it can be fabricated on the same process line as conventional n 

MOS. n –well CMOS circuits are also superior to p-well because of the lower substrate bias effects on 

transistor threshold voltage and inherently lower parasitic capacitances associated with source and 

drain regions. 

Typically n-well fabrication steps are similar to a p-well process, except that an n-well is used 

which is illustrated in Fig. 1.6. The first masking step defines the n-well regions. This followed by a 

low phosphorus implant driven in by a high temperature diffusion step to form the n-wells. The well 

depth is optimized to ensure against p-substrate to p+ diffusion breakdown without compromising the 

n-well to n+ mask separation. The next steps are to define the devices and diffusion paths, grow field 

oxide, deposit and pattern the polysilicon, carry out the diffusions, make contact cuts and 

metallization. An n-well mask is used to define n-well regions, as opposed to a p-well mask in a p- 

well process. An n-plus (n+) mask may be used to define the n-channel transistors and VDD contacts. 

Alternatively, we could use a p-plus mask to define the p-channel transistors, as the masks usually are 

the complement of each other. 
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Figure 1.6 Main steps in a typical n-well process 

 
Due to differences in mobility of charge carriers the n-well process creates non-optimum p- 

channel characteristics, such as high junction capacitance and high body effect. The n-well technology 

has a distinct advantage of providing optimum device characteristics. Thus n-channel devices may be 

used to form logic elements to provide speed and density, while p-transistors could primarily serve as 

pull-up devices. 

The twin-tub process: 

 
Twin-tub CMOS technology provides the basis for separate optimization of the p-type and n-type 

transistors, thus making it possible for threshold voltage, body effect, and the gain associated with n- 

and p-devices to be independently optimized. Generally the starting material is either an n+ or p+ 

substrate with a lightly doped epitaxial or epi layer, which is used for protection against latch-up. The 

aim of epitaxy is to grow high purity silicon layers of controlled thickness with accurately determined 

dopant concentrations distributed homogeneously throughout the layer. The electrical properties for 

this layer are determined by the dopant and its concentration in the silicon. 

The process sequence, which is similar to the p-well process apart from the tub formation 

where both p-well and n-well are utilized as in Fig. 1.7, entails the following steps: 

 Tub formation 



Einstein College of Engineering 
 

 

 Thin oxide etching 

 Source and drain implantations 

 Contact cut definition 

 Metallization. 
 

 

Figure 1.7 Flow diagram of twin-tub process 
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Since this process provides separately optimized wells, better performance n-transistors 

(lower capacitance, less body effect) may be constructed when compared with a conventional p-well 

process. Similarly the p-transistors may be optimized. The use of threshold adjust steps is included in 

this process. 

Silicon on insulator process: 

 
Silicon on insulator (SOI) CMOS processes has several potential advantages such as higher density, 

no latch-up problems, and lower parasitic capacitances. In the SOI process a thin layer of single 

crystal silicon film is epitaxial grown on an insulator such as sapphire or magnesium aluminate spinel. 

The steps involves are: 

1) A thin film (7-8 µm) of very lightly doped n-type Si is grown over an insulator (Fig. 1.8a). 

Sapphire is a commonly used insulator. 

2) An anisotropic etch is used to etch away the Si (Fig. 1.8b) except where a diffusion area will 

be needed. 

3) The p-islands are formed next by masking the n-islands with a photoresist. A p-type dopant 

(boron) is then implanted. It is masked by the photoresist and at the unmasked islands. The p- 

islands (Fig. 1.8c) will become the n-channel devices. 

4) The p-islands are then covered with a photoresist and an n-type dopant, phosphorus, is 

implanted to form the n-islands (Fig. 1.8d). The n-islands will become the p-channel devices. 

5) A thin gate oxide (500-600Å) is grown over all of the Si structures (Fig. 1.8e). This is 

normally done by thermal oxidation. 

6) A polysilicon film is deposited over the oxide. 

 
7) The polysilicon is then patterned by photomasking and is etched. This defines the polysilicon 

layer in the structure as in Fig. 1.8f. 

8) The next step is to form the n-doped source and drain of the n-channel devices in the p- 

islands. The n-island is covered with a photoresist and an n-type dopant (phosphorus) is 

implanted (Fig. 1.8g). 

9) The p-channel devices are formed next by masking the p-islands and implanting a p-type 

dopant. The polysilicon over the gate of the n-islands will block the dopant from the gate, 

thus forming the p-channel devices is shown in Fig. 1.8h. 
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10)  A layer of phosphorus glass is deposited over the entire structure. The glass is etched at 

contact cut locations. The metallization layer is formed. A final passivation layer of a 

phosphorus glass is deposited and etched over bonding pad locations. 

 

 
(a) 

 
 

 
(b) 

 

 

(c) 
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( d ) 

 

 

(e) 
 
 

 

 

 

(f) 
 
 

 

(g) 
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(h) 
 

Figure 1.8 SOI fabrication steps 

 
The advantages of SOI technology are: 

 
 Due to the absence of wells, denser structures than bulk silicon can be obtained. 

 
 Low capacitances provide the basis of very fast circuits. 

 
 No field-inversion problems exist. 

 
 No latch-up due to isolation of n- and p- transistors by insulating substrate. 

 
 As there is no conducting substrate, there are no body effect problems 

 
 Enhanced radiation tolerance. 

 
But the drawback is due to absence of substrate diodes, the inputs are difficult to protect. As device 

gains are lower, I/O structures have to be larger. Single crystal sapphires are more expensive than 

silicon and processing techniques tend to be less developed than bulk silicon techniques. 

BiCMOS TECHNOLOGY FABRICATION 

 
The MOS technology lies in the limited load driving capabilities of MOS transistors. This is due to 

the limited current sourcing and current sinking abilities associated with both p- and n- transistors. 

Bipolar transistors provide higher gain and have generally better noise and high frequency 

characteristics than MOS transistors and have effective way of speeding up VLSI circuits. When 

considering CMOS technology, there is difficulty in extending the fabrication processes to include 

bipolar as well as MOS transistors. Indeed, a problem of p-well and n-well CMOS processing is that 

parasitic bipolar transistors are formed as part of the outcome of fabrication. 
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The production of npn bipolar transistors with good performance characteristics can be 

achieved by extending the standard n-well CMOS processing to include further masks to add two 

additional layers such as the n+ subcollector and p+ base layers. The npn transistors is formed in an n- 

well and the additional p+ base region is located in the well to form the p-base region of the transistor. 

The second additional layer, the buried n+ subcollector (BCCD), is added to reduce the n-well 

(collector) resistance and thus improve the quality of the bipolar transistor. The arrangement of 

BiCMOS npn transistor is shown in Fig. 1.9. 

 

 

 
 

 
Figure 1.9 Arrangement of BiCMOS npn transistor 

 
There are several advantages if the properties of CMOS and bipolar technologies 

could be combined. This is achieved to a significant extent in the BiCMOS technology. A further 

advantage which arises from BiCMOS technology is that analog amplifier design is facilitated and 

improved. High impedance CMOS transistors may be used for the input circuitry while the remaining 

stages and output drivers are realized using bipolar transistors. Since extra design and processing steps 

are involved as in Fig. 1.10, there is an increase in cost and some loss of packing density. 
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Figure 1.10 n-well BiCMOS fabrication steps 
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UNIT II CIRCUIT CHARACTERIZATION AND SIMULATION 

Delay estimation: 

 
Estimation of the delay of a Boolean function from its functional description is an important step 

towards design exploration at the register transfer level (RTL). This paper addresses the problem of 

estimating the delay of certain optimal multi-level implementations of combinational circuits, given 

only their functional description. The proposed delay model uses a new complexity measure called the 

delay measure to estimate the delay. It has an advantage that it can be used to predict both, the 

minimum delay (associated with an optimum delay implementation) and the maximum delay 

(associated with an optimum area implementation) of a Boolean function without actually resorting to 

logic synthesis. The model is empirical and results demonstrating its feasibility and utility are 

presented. 

tpdr: rising propagation delay 

From input to rising output crossing VDD/2 

tpdf: falling propagation delay 

From input to falling output crossing VDD/2 

tpd: average propagation delay 

tpd = (tpdr + tpdf)/2 

tr: rise time 

From output crossing 20% to 80% VDD 

tf: fall time 

From output crossing 80% to 20% VDD 

tcd: average contamination delay 

tcd = (tcdr + tcdf)/2 

tcdr: rising contamination delay: Min from input to rising output crossing VDD/2 

tcdf: falling contamination delay: Min from input to falling output crossinVDD/2 

 
Solving differential equations by hand is hard. SPICE like simulators used for accurate analysis. But 

simulations are expensive. We need to be able to estimate delay although not as accurately as 

simulator. 

Use RC delay models to estimate delay 

C = total capacitance on the output node 

Use Effective resistance R 

Therefore tpd = RC 

Transistors are characterized by finding their effective R. 
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Transistor sizing: 

 Not all gates need to have the same delay. 

 Not all inputs to a gate need to have the same delay. 

 Adjust transistor sizes to achieve desired delay. 

 

Example: Adder carry chain 
 

 

 

 

 

Inter-stage effects in transistor sizing 

□ Increasing a gate’s drive also increases the load to the previous stage 

 
 

Logical effort 

Logical effort is a gate delay model that takes transistor sizes into account. Allows us to optimize 

transistor sizes over combinational networks. Isn’t as accurate for circuits with reconvergent fanout. 

 
Logical effort gate delay model 

□ Express delays in process-independent unit 

□ Gate delay is measured in units of minimum-size 

inverter delay τ.  

□ Gate delay formula: 
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d = f + p. 

□ Effort delay f is related to gate’s load.  Parasitic delay p depends on gate’s structure. Represents 

delay of gate driving no load Set by internal parasitic capacitance 

Effort delay 

□ Effort delay has two components: f = gh. 

□ Electrical effort h is determined by gate’s load: h = Cout/Cin Sometimes called fanout 

□ Logical effort g is determined by gate’s structure. Measures relative ability of gate to deliver 

current g ≡ 1 for inverter 

Delay plots: 
 

Computing Logical Effort 

□ Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter 

delivering the same output current. Measure from delay vs. fanout plots Or estimate by counting 

transistor widths 
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Power Estimation: 

 
 

The past the major concerns of the VLSI designer were area performance cost and reliability 

power considerations were mostly of only secondary importance. In recent years however this has 

begun to change and increasingly power is being given comparable weight to area and speed. Several 

factors have contributed to this trend Perhaps the primary driving factor has been the remarkable 

success and growth of the class of personal computing devices portable desktops audio and 

videobased multimedia products_ and wireless communications systems _personal digital assistants 

and personal communicators_ which demand high_speed computation and complex functionality with 

In the past_ the major concerns of the VLSI designer were area_ performance cost and reliability_ 

power considerations were mostly of only secondary importance_ In recent years_ however_ this has 

begun to change and_ increasingly_ power is being given comparable weight to area and speed_ 

Several factors have contributed to this trend Perhaps the primary driving factor has been the 

remarkable success and growth of the class of personal computing devices _portable desktops_ audio_ 

and video_based multimedia products and wireless communications systems _personal digital 

assistants and personal communicators which demand high_speed computation and complex 

functionality with low power consumption_ There also exists a strong pressure for producers of 

high_end products to reduce their power consumption. 

Software_Level Power Estimation 

The first task in the estimation of power consumption of a digital system is to identify the 

typical application programs that will be executed on the system. A non_trivial application program 

consumes millions of machine cycles_ making it nearly impossible to perform power estimation using 

the complete program at_ say_ the RT_level_ Most of the reported results are based on power 

macro_modeling_ an estimation approach which is extensively used for behavioral and RTL level 

estimation see Sections and In the power cost of a CPU module is characterized by estimating the 

average capacitance that would switch when the given CPU module is activated_In the switching 

activities on _address_ instruction_ and data_ buses are used to estimate the power consumption of 

the microprocessor, based on actual current measurements of some processors_ Tiwari et al_ present 

the following instruction_level power model 

where Energyp is the total energy dissipation of the program which is divided into three parts The first 

part is the summation of the base energy cost of each instruction, BCi is the base energy cost and Ni is 

the number of times instruction i is executed. The second part accounts for the circuit state SCi_j is 

the energy cost when instruction i is followed by j during the program execution Finally_ the third 

part accounts for energy contribution OCk of other instruction effects such as stalls and cache misses 

during the program execution_ In Hsieh et al_ present a new approach_ called profile driven program 
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synthesis_ to perform RT_level power estimation for high performance CPUs_ Instead of using a 

macro_modeling equation to model the energy dissipation of a microprocessor_ the authors use a 

synthesized program to exercise the microprocessor in such a way that the resulting instruction trace 

behaves _in terms of performance and power dissipation_ much the same as the original trace_ The 

new instruction trace is however much shorter than the original one_ and can hence be simulated on a 

RT_level description of the target microprocessor to provide the power dissipation results quickly_ 

Specifically_ this approach consists of the following steps_ 

 Perform architectural simulation of the target microprocessor under the instruction trace of 

typical application programs_ 

 Extract a characteristic pro_le_ including parameters such as the instruction mix_ Instruction 

data cache miss rates_ branch prediction miss rate_ pipeline stalls_ etc_ for the 

microprocessor. 

 Use mixed integer linear programming and heuristic rules to gradually transform a generic 

program template into a fully functional program_ 

 Perform RT_level simulation of the target microprocessor under the instruction trace of the 

new synthesized program _ 

Notice that the performance of the architectural simulator in gate vectors second is roughly to orders 

of magnitude higher than that of a RT_level simulator. This approach has been applied to the Intel 

Pentium processor _which is a super_ scalar pipelined CPU with _KB _way set_associative data_ 

instruction and data caches_ branch prediction and dual instruction pipeline_ demonstrating _ to _ 

orders of magnitude reduction in the RT_level simulation time with negligible estimation error. 

Behavioral_Level Power Estimation 

Conversely from some of the RT_level methods that will be discussed in Section estimation 

techniques at the behavioral_level cannot rely on information about the gatelevel structure of the 

design components_ and hence_ must resort to abstract notions of physical capacitance and switching 

activity to predict power dissipation in the design_ 

Information_Theoretic Models 

Information theoretic approaches for high_level power estimation depend on information 

theoretic measures of activity .for example_ entropy_ to obtain quick power estimates Entropy 

characterizes the randomness or uncertainty of a sequence of applied vectors and thus is intuitively 

related to switching activity_ that is_ if the signal switching is high_ it is likely that the bit sequence is 

random_ resulting in high entropy_ Suppose the sequence contains t distinct vectors and let pi denote 

the occurrence probability of any vector v in the sequence_ Obviously_ 

The entropy of the sequence is given 
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where log x denotes the base logarithm of x_ The entropy achieves its maximum value of log t when 

pi log pi For an n_bit vector(t,n)his makes the computation of the exact entropy very expensive. 

Assuming that the individual bits in the vector are independent_ then we can write 
 

 

where qi denotes the signal probability of bit i in the vector sequence. Note that this equation is only 

an upperbound on the exact entropy, since the bits may be dependent. This upperbound expression is_ 

however_ the one that is used for power estimation purposes. Furthermore in it has been shown that_ 

under the temporal independence assumption_ the average switching activity of a bit is 

upper_bounded by one half of its entropy 

The power dissipation in the circuit can be approximated as 
 

 
Where Ctot is the total capacitance of the logic module including gate and interconnect capacitances_ 

and Eavg is the average activity of each line in the circuit which is inturn approximated by one half of 

its average entropy havg. The average line entropy is computed by abstracting information obtained 

from a gate_level implementation. In it is assumed that the word_level entropy per logic level reduces 

quadratically from circuit inputs to circuit outputs_ whereas in it is assumed that the bit_level entropy 

from one logic level to next decreases in an exponential manner. Based on these assumptions two 

different computational models are obtained 

In   Marculescu et al_ derive a closed_form expression for the average line entropy for the 

case of a linear gate distribution(i.e.,)when the number of nodes scales linearly between the number of 

circuit inputs n and circuit outputs m. The expression for havg is given by 

 

where hin and hout denote the average bit_level entropies of circuit inputs and outputs_respectively_ 

hin is extracted from the given input sequence_ whereas hout is calculated from a quick functional 

simulation of the circuit under the given input sequence or by empirical entropy propagation 

techniques for pre_characterized library modules. In Nemani and Najm propose the following 

expression for havg 

 
 

where Hin and Hout denote the average sectional _word_level_ entropies of circuit inputs and 

outputs_ respectively_ The sectional entropy measures Hin and Hout may be obtained by monitoring 

the input and output signal values during a high_level simulation of the circuit_ In practice_ however_ 
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they are approximated as the summation of individual bit_level entropies_ hin and hout. If the circuit 

structure is given_ the total module capacitance is calculated by traversing the circuit netlist and 

summing up the gate loadings_ Wire capacitances are estimated using statistical wire load models_ 

Otherwise_ Ctot is estimated by quick mapping for example_ mapping to    input universal gates_ or 

by information theoretic models that relate the gate complexity of a design to the di_erence of its 

input and output entropies. One such model proposed by Cheng and Agrawal in for example estimates 

 
 

This estimate tends to be too pessimistic when n is large hence in Ferrandi et al_ present a 

new total capacitance estimate based on the number N of nodes i.e.,to multiplexors in the Ordered 

Binary Decision Diagrams OBDD representation of the logic circuit as follows 

 

The coefficients of the model are obtained empirically by doing linear regression analysis on 

the total capacitance values for a large number of synthesized circuits. Entropic models for the 

controller circuitry are proposed by Tyagi in where three entropic lower bounds on the average 

Hamming distance _bit changes_ with state set S and with T states_ are provided. The tightest lower 

bound derived in this paper for a sparse _nite state machine FSM i.e., tT log T where t is the total 

number of transitions with nonzero steady_state probability_ is the following 

where pi,j is the steady state transition probability from si to sj H(si,sj) is the Hamming distance 

between the two states_ and h(pi,j) is the entropy of the probability distribution pi,j . Notice that the 

lower bound is valid regardless of the state encoding used. In using a Markov chain model for the 

behavior of the states of the FSM_ the authors derive theoretical lower and upper bounds for the 

average Hamming distance on the state lines which are valid irrespective of the state encoding used in 

the final implementation. Experimental results obtained for the mcnc benchmark suite show that these 

bounds are tighter than the bounds reported. 

Design Margin: 

As semiconductor technology scales to the nanometer regime, the variation of process 

parameters is a critical problem in VLSI design. Thus the need for variation-aware timing analysis 

for the performance yield is increasing. However, the traditional worst-case corner-based approach 

gives pessimistic results, and makes meeting given designs specifications difficult. As an 

alternative to this approach, statistical analysis is proposed as a new and promising variation-aware 

analysis technique. However, statistical design flow cannot be applied easily to existing design 

flow, and not enough tools for statistical design exist. To overcome these problems, new design 

methodology based on traditional static timing analysis (STA) using a relaxed corner proposed 
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nowadays. This paper investigates the effects of corner relaxation on overall circuit performance 

metrics (yield, power, area) at the gate/transistor levels. Experimental results indicate that if we 

design the circuit using relaxed corner, though the circuit yield is somewhat reduced, we can get 

some advantages in area and power aspects. 

 
Reliability: 

Yield and reliability are two of the cornerstones of a successful IC manufacturing technology 

along with product performance and cost. Many factors contribute to the achievement of high yield 

and reliability, and   many   of   these   also   interact   with   product   performance   and   cost. 

A fundamental understanding of failure mechanisms and yield limitations enables the up-front 

achievement of these technology goals through circuit and layout design, device design, materials 

choices, process optimization, and thermo-mechanical considerations. Failure isolation and analysis, 

defect analysis, low yield analysis, and materials analysis are critical methodologies for the 

improvement of yield and reliability. Coordination of people in many disciplines is needed in order to 

achieve high yield and reliability. Each needs to understand the impact of their choices and methods 

on the final product. Unfortunately, very little formal university training exists in these critical areas 

of IC reliability, yield, and failure analysis. 

 
Reliability Fundamentals and Scaling Principles 

 
 

 The Reliability Bathtub Curve, Its Origin and Implications 

 Key Reliability Functions and Their Use in Reliability Analysis 

 Defect Screening Techniques and Their Effectiveness 

 Accelerated Testing and Estimation of Useful Operating Life 

 Reliability Data Collection and Analysis in Integrated Circuits 

 Past Technology Scaling Trends 

 Forward Looking Projections with a Focus on Examining and Understanding of the Impact on 

VLSI Reliability 

 Power Density Trends: Operating temperature, activation energies for dominant vlsi failure 

mechanisms, and reliability impact 

 Reliability Strategies In Fabless Environments 

 

 

 

 

Reliability of the Interconnect System 

 Physics and Statistics of Failure Mechanisms Associated with Interconnect Systems 

 Electro-migration of Al and Cu Interconnects 
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 Mechanical Stress Driven Metal Voiding and Cracking 

 Low k Materials as Interlayer Dielectrics and Their Impact on Electro-migration 

 Thermo-mechanical Integrity of the Interconnect System 

 Key Technology Parameters: Materials choices, structural and geometric effects 

 Extreme Scaling Impact on Wear-out Time 

 Technology Solutions: Alloys, metal barriers, and engineering of interfaces 

 Improved Electro-migration Performance under Non-DC Currents and Short Lines 

 Interconnect Reliability Strategies in Fabless Environments 

 
 

Transistor Reliability: Dielectric Breakdown, Hot Carriers and Parametric Stability 

 
 

 Physics, Statistics, and Scaling Impact on Failure Mechanisms 

 Reliability Performance of Thin Conventional Oxides: Defects, wear-out failures 

 Hot Carrier Performance and Parametric Stability of P- and N-channel Devices under DC and 

AC 

 High k Gate Dielectrics and Novel Transistor Configurations 

 Key Failure Mechanisms for Bipolar Transistors 

 Transistor Reliability Strategies in Fabless Environments 

 
 

CMOS Latch-up and ESD 

 
 

 Physics, Scaling Impact, and Technology Dependence of CMOS Latch-up and Electrostatic 

Damage (ESD) 

 Technology and Design Based Solutions, Device Performance, and Manufacturability 

Constraints 

 Latch-up and ESD Assessment in Fabless Environments 

 
 

Soft Errors, and Other Failure Mechanisms 

 
 

 Physics, Scaling Impact, and Technology Dependence of Alpha Particle and Cosmic Ray 

Induced Soft Errors 

 Technology Solutions, Performance, and Manufacturability 

 
 

Scaling: 

 
 

In scaling there are really two issues 

• Devices 
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• Wires 

– Can we build smaller devices 

– What will their performance be 

 
 

– Try to avoid the wet noodle effect 

• There is concern about our ability to scale both of these Components 

 
 

Limitations 

Limitations to device scaling has been around since working in 3m nMOS, 22 years ago (actually 

bipolar) 

• Worries were 

– Short channel effect 

– Punchthrough 

• drain control of current rather than gate 

– Hot electrons 

– Parasitic resistances 

• Now worries are a little different 

– Oxide tunnel currents 

– Punchthrough 

– Parameter control 

– Parasitic resistances 

Transistor scaling: 

People are building very short channel devices 

– Shown are I-V curves for 15nm L pMOS 

– And a short channel nMOS 

• The structure is strange 

– FinFET 

– But you can make them work 
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Wire scaling: 

More uncertainty than transistor scaling 

– Many options with complex trade-offs 

• For each metal layer 

– Need to set H, TT, TB, e1, e2, conductivity of the metal 
 

 
SPICE Tutorial: 

 

1. Introduction 

 

Given below is a brief introduction to simulation using HSPICE and AWAVES/Cosmoscope 

in the UTD network. HSPICE is a device level circuit simulator from Synopsys. HSPICE takes a 

SPICE file as input and produces output describing the requested simulation of the circuit. The 

simulation output can be viewed with AWAVES (or) Cosmoscope from Synopsys. A short example is 

provided to illustrate the basic procedures involved in running HSPICE. 

 
2. Setting up your account to access HSPICE 

 

This section shows how to setup your environment for running HSPICE. 

 
For users who have a working CAD setup, you may just want to check that the 

LM_LICENSE_FILE has the   following values in the list of all the other licenses, 

/home/cad/flexlm/ti-license:/home/cad/flexlm/hspice.flx. If not, follow the procedures below: 

Instructions for both bash and tcsh/csh users is provided here: 

 
bash users: 

 
Add the following line to the .bash_profile 

LM_LICENSE_FILE=$LM_LICENSE_FILE:/home/cad/flexlm/hspice.flx ; export 

LM_LICENSE_FILE 
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tcsh/csh users: 

 
Add the following line to your .tcshrc 

setenv LM_LICENSE_FILE ${LM_LICENSE_FILE}:/home/cad/flexlm/hspice.flx 

 
To test if the above procedure has setup your environment successfully, invoke a new shell 

(this will ensure that the new environment variables are in place). Also you will need a HSPICE input 

file to test this (You can copy paste the HSPICE example given below to test this ). The input Spice 

file is typically named with extension *.sp. 

 
% hspice <your_input_file>.sp 

 
The following message indicates trouble with invocation: 

 
 

 

The above error may indicate that the license server maybe down, or the machine is not able 

to run HSPICE. 

 
On the other hand if the procedure was successful, you will simply see a message indicating 

successful completion of simulation or errors in simulation, both of which indicate HSPICE has run 

your file. 

 
3. Setting up the HSPICE input file 

 

Consider a self loaded min geometry inverter circuit. The objective of the HSPICE input file 

below is to measure the tpLH and tpHL both graphically and otherwise. The following HSPICE file is 

stored in "inv.sp". The HSPICE input file is commented adequately about the different options used in 

it. 

 
It will be beneficial to keep in mind the following differences between SPICE3 and HSPICE. 

If the error is "hspice: command not found" make sure that the HSPICE 

directory " /home/cad/synopsys/hspice/U-2003.09-SP1/sun58/" is included 

in the $PATH variable. 

 
Cannot execute /home/cad/synopsys/hspice/U-2003.09-SP1/sun58/hspice 

or 

lic: Using FLEXlm license file: 

lic: /home/cad/flexlm/hspice.flx 

lic: Unable to checkout hsptest 
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Property SPICE3 HSPICE 

Transistor 

dimensions 

Default Scale 

is 1u. Hence 

depending on

 model, 

with or 

without 

"u".Eg. l=20 

If units are not specified and no SCALE statement is present, the scale 

defaults to meters. Hence for HSPICE always specify units. Eg. l=20u 

Input bit 

Pattern 

PBIT or 

PWL 

Only PWL format is supported. Howevere to convert a PBIT(Bit stream 

format) to a PWL form, you can use the script and help at the following 

page: 

http://www.utdallas.edu/~poras/courses/ee6325/lab/hspice/pbit2pwl.html 

Output 

format 

Print and 

Punch files 

produced 

only  if 

requested as 

.punch/.print. 

SIMG reads 

the .pun file 

SIMG does not read HSPICE output, only AWAVES or Cosmoscope 

can read HSPICE output. Also  a graphical output produced only if 

.option post=1 is provided. The .print command is of no consequence to 

graphical output. 

Line 

continuation 

In order to 

specifying a 

continuing 

line '&' 

character is 

used at the 

end of the 

first line. 

Eg: Vin in 

gnd PWL& 

0ns pvdd 

1ns pvdd 

In order to specifying a continuing line '+' character is used at the start of 

the second line. 

Eg: Vin in gnd PWL 

+ 0ns pvdd 1ns pvdd 

 

 

http://www.utdallas.edu/~poras/courses/ee6325/lab/hspice/pbit2pwl.html


Einstein College of Engineering 
 

 

HSPICE Example File: 

 

* Self loaded min geometry inverter, sample HSPICE file 

 
 

* Include the model files 

 
 

* Include the hspice model files for 0.18u technology. 

.include /home/cad/vlsi/models/hspice/cmos0.18um.model 

********************************************************************* 

* The subcircuit for the inverter 

 
 

.subckt invert in out vdd gnd 

 
 

.param length=0.2u 

m01 out in vdd vdd pfet w='4*length' l='length' 

m02 out in gnd gnd nfet w='1.5*length' l='length' 

 
.ends 

********************************************************************* 

 
 

* The main inverter 

 
 

X1 in out vdd gnd invert 

 
 

* Four loads for the inverter 

 
 

X2 out out1 vdd gnd invert 

X3 out out2 vdd gnd invert 

X4 out out3 vdd gnd invert 

X5 out out4 vdd gnd invert 

 
* PWL pattern for the input, represents a bit stream 1100101 

* Slew=1ns, bit time=5ns 

Vin in gnd PWL 0ns pvdd 1ns pvdd 5ns pvdd 6ns pvdd 7ns 0 10ns 0 

+ 15ns 0 16ns pvdd 21ns pvdd 22ns 0 25ns 0 26ns pvdd 

 
 

* Parametric definitions 
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.param pvdd=2.0v 

 
 

* Power supplies 

vvdd vdd 0 pvdd 

vgnd gnd 0 0 

 
* Control statements 

.option post=1 

.TR 0.05ns 30ns 

 
 

.print TR V(in out) 

 
 

* Measure statements help in calculating TPLH, TPHL etc, without 

* opening the waveform viewer 

 
 

.measure tran tplh trig v(in) val='0.5*pvdd' fall=1 targ v(out) val='0.5*pvdd' rise=1 

.measure tran tphl trig v(in) val='0.5*pvdd' rise=1 targ v(out) val='0.5*pvdd' fall=1 

 
 

.END 
 

 

 

4. Running HSPICE simulations 

 

The following commands can be used to simulate the above HSPICE file stored in inv.sp and store all 

the simulation results with file prefix as "inv" 

 
% hspice inv.sp -o inv 

 
 

This results in the creation of the following output files: 

inv.ic -> Operating point node voltages (initial conditions) 

inv.lis -> Output listing 

inv.mt0 -> Transient analysis measurement results 

inv.pa0 -> Subcircuit cross-listing 

inv.st0 -> Output status 

inv.tr0 -> Transient analysis results 

 
5. Analyzing the outputs 
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In the above example, the output data can be analyzed both graphically as well as in text form. 

 
 

Text outputs: 

 
 

To view the results of the .measure computation, execute: 

 
% cat inv.mt0 

 
 

$DATA1 SOURCE='HSPICE' VERSION='2003.09-SP1' 

.TITLE ' ' 

tplh tphl temper alter# 

3.416e-10 1.002e-09   25.0000 1.0000 

 
As can be seen above, the values of propogation delay have been obtained even before the waveform 

analysis software has been opened. 

 
Graphical outputs: 

 
I. Synopsys Awaves: 

 

To invoke AWAVES run the following command: 

 
% awaves 

 
If you get the error "awaves: command not found" make sure that the AWAVES directory 

"/home/cad/synopsys/hspice/U-2003.09-SP1/sun58/" is included in the $PATH variable. 

 
Once    invoked,    open    the    design    using     the     pull     down     menu     options: Design-

>Open and select inv.sp and then highlight the tr0 (Transient response) item in the select box. You 

will also see the hierarchy of the netlist and the types of analysis and the individual signals in separate 

lists in the window. Select Hierarchy -> Top, Types -> Voltages and select the voltages you want to 

observe For eg. in and out by double clicking on the names. You will see the screen below for the 

stimulus provided in inv.sp. 
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II. Synopsys Cosmoscope: 

 

To invoke Cosmoscope run the following command: 

 
%cscope 

 
If you get the error "awaves: command not found" make sure that the AWAVES directory " 

/home/cad/synopsys/cosmo/ai_bin/" is included in the $PATH variable. 

 
Once     invoked,     open     the     design     using     the     pull     down     menu     options: 

File -> Open -> Plotfiles and select file inv.tr0 in the working directory. A Signal Manager window 

and signal window opens. Select the necessary signals to be plotted by double-clicking them.For 

example v(in) and v(out) by double clicking on the signal names in the signal window. You will see 

the screen below for the stimulus provide 



Einstein College of Engineering 
 

 
 

 

d in inv.sp. 

 
Device models: 

 
The motivation for this investigation stems from three main concerns: 

1. The usual parameterization of device models for device and circuit simulation causes 

problems due to the interdependence of the parameters. It is not physically realistic to change any one 

parameter without determining the change in the process technology that would produce such a 

change in the parameter. Then all the other parameters which also depend on this change in the 

technology must be adjusted accordingly. In addition, it is quite difficult to determine the effect of a 

specific change in a new technology since the available parameters each depend on a number of 

technology parameters. 

2. The predictive performance of present models is not good. It has usually been necessary to 

fabricate devices in any chosen technology, and extract parameters, and then fit the model to this 

specific technology by use of additional “adjustment” parameters. Of course, this procedure is 
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reasonable and useful once a technology has been chosen. However, it would be useful if the model 

could produce fairly accurate results if only the process specifications are used. Without such 

predictive accuracy it is difficult to make an initial choice of technology. 

3. Most models have been developed for digital applications where devices operate above 

threshold and therefore are not strongly temperature sensitive. This causes problems for modeling 

analog circuits which use subthreshold operation. In particular, the temperature dependence of 

subthreshold behavior has not been fully explored. In many models some parameters which are 

temperature dependent have been assumed to be constant. Device and circuit models are all based on 

the physical properties of semiconductor materials, the dimensions of the devices, and on theoretical 

and empirical equations which are intended to model electrical behavior. The distinction between 

theoretical and empirical equations is often unclear. Most of the equations are substantially empirical. 

Of all the equations, one of the most fundamental, and problematic, is the equation for ni, the intrinsic 

carrier concentration of a semiconductor. The definition of ni derives from the thermodynamic 

equilibrium of electron and hole formation, based on the fact that the energy gap is a Gibbs energy. 

The equilibrium equation is 

 

, 

 
where n is the electron concentration, p is the hole concentration, Nc is the density of effective states 

in the conduction band, Nv is the density of effective states in the valence band, Eg is the band gap, k 

is Boltzmann’s constant and T is the absolute temperature. The carrier concentration is then given by 

It would appear to be a simple matter to substitute Si values for Nc, Nv, Eg, and the value of the 

constant kT to obtain an accurate value of ni. However, the theoretical and experimental knowledge 

required for accurate values of Nc and Nv is even now incomplete. In the early 1960’s, when Si-based 

circuits were beginning to be designed and fabricated very little was known about Nc and Nv, but 

estimates were required for practical use. This led to approximations based on work. The key 

approximation was that chosen by Grove in . This approximation is the still widely used 

 
 

 

Determination of Intrinsic Carrier Concentration (ni) 

The empirical expressions for Eg from Bludau and for Nc and Nv from Sproul and Green 

provide the values needed for equation (2.1). Our derivation of the equation for ni follows Green. 

Therefore, the exciton binding energy term, using the value Exb = 14.7meV, is included in the band 

gap, Eg. In the past, this term has either been neglected, or in some cases a value of 10meV has been 
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used. Green [9] and Sproul and Green are by far the best references for the history, theory, and 

experimental measurements leading to reliable values for ni. Thus, the equations are: 

 

 
Circuit and device characterization: 

The modeling procedure is introduced in this chapter, taking into consideration the 

requirements for a good MOSFET analog model, discussed in the previous chapter. We note here two 

main aspects of our modeling approach; 

a. The model must describe accurately all the operating regions in order to be 

integrated in a circuit simulator. 

b. The current, conductance, and transconductance must be continuous in all regions 

of operation. 

Our main goal in this chapter is to determine the drain current for any combination of 

terminal voltages. The chapter is divided into two main parts. Throughout the first part, it is assumed 

that the channel is sufficiently long and wide, so that edge effects are confined to a negligible part of 

it. While in the second part we incorporate the short and narrow channel effects to the model. We also 

assume that the substrate is uniformly doped. The doping concentration will be assumed to be p-type 

and the modification to non uniform doping will be discussed later in this chapter. 

Gradual Channel approximation (GCA) 
 

Figure 2.1 The MOSFET structure. 
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Analytical or semi-analytical modeling of MOSFET characteristics is usually based on the so-called 

Gradual Channel Approximation (GCA). In this approximation, we assume that the gradient of the 

electric field in the y direction, ∂F/∂y is much smaller than the gradient of the electric field in the x 

direction ,∂F/∂x. Which enable us to determine the inversion and depletion 

charge densities under the gate in terms of a one-dimensional electrostatic problem for the direction 

perpendicular to the channel. By applying of the two dimensional Poisson's equation for the 

semiconductor, refer to Fig. 2.1 region (2), 

 

 

(2.2.1) 

if we assume that the GCA is valid  equation 2.2.1 may be approximated to the following  one 

dimensional differential equation 

 

 

(2.2.2) 

we approach the source and drain junctions, the GCA becomes invalid (Fig. 2.1 regions (1) and (3)) 

because of the increasing longitudinal field due to the pn junctions which make ∂F/∂y comparable or  

even larger than ∂F/∂x . However, for the long channel MOSFET's these transition regions can be 

neglected with respect to the total length of the device. In order to account for the effect of these 

regions, it is necessary to use two dimensional analysis requiring a numerical solution of 2.2.1. 

Validity of the GCA 

The validity of GCA can be checked by making rough estimates of the variation in the 

longitudinal and vertical field components. We will establish expressions that allow the GCA to be 

checked under strong inversion. 

 

 

(2.2.3) 

For a MOSFET at 300K with L = 1.0μm, tox = 30 nm, VGS-VT = 0.5, and VDS = 0.5 V, the left 

hand side of inequality 2.2.3 is ∼ 2300, indicating that the the GCA is a very good approximation for 

such a MOSFET. This also implies that the GCA can be valid even in submicron MOSFETs, provided 

that VGSVT is not too small. 

2.3 The long channel current model 

The derivation of the dc drain current relationship recognizes that, in general, the current in 

the channel of a MOSFET can be caused by both drift and diffusion current. In an NMOSFET we 

may assume the following resonable approximation : 

i- The drain current is mainly carried by electrons . 

ii- The current flows almost in the y direction. 
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iii- No sources or sinks in the channel. 

Note that in weak inversion the surface potential along the channel in long channel MOSFETs is 

almost constant. Thus ∂Fy/∂y is very small, implying that ∂Fy/∂y<<∂Fx/∂x. Thus in long channel 

MOSFET the GCA is valid both in strong and weak inversion regions . Which enable us to reach to 

the following general relationship of drain current. 

General Drift-Diffusion current equation in MOSFET: 

This is the drift-diffusion drain current of the form 

 

 

 

(2.3.1) 

where μn is the electron surface mobility in the channel, W is the channel width, Qi is the inversion 

charge density per unit area, φc is the quasi Fermi potential (the difference between Efn at the surface 

of the semiconductor a d Efp in the bulk of the semiconductor), ψs is the surface potential referenced 

to the bulk potential, and φt is the thermal voltage (=kT/q). The first term is the drift current 

component, while the second term is the diffusion current component. In both components, μn is the 

electrons' surface mobility being less than the mobility in the bulk due to surface scattering. 

Voltage-Charge equation from the Transverse electric field: 

In order to eliminate the electron charge density Qi term in the current charge equation, a 

second relationship is required that relates the electron charge density to the applied potentials. Using 

the relationship between voltage and charge appearing across the MOS capacitor we have 

Cox (VG -φ ms -ψ s )= -(Qi+QB+Qox+Qit ) (2.3.2) 

where VG is the gate voltage referenced to the bulk potential, φms is the metal semiconductor work 

function difference, QB is the depletion (bulk impurity) charge density per unit area, Qox is the sum 

of the effective net oxide charge per unit area at the Si-SiO2 interface, and Qit is the interface trapped 

charge density per unit area. Different approximations have been introduced in order to express the 

different MOS charges (QB, Qox, Qit) in terms of the applied voltages, then 

using eq. (2.3.2) to compute the inversion charge density Qi. The resulting charge is then used in eq. 

(2.3.1) to determine the drain current; Four main approaches then follow, after them we shall discuss 

the proposed approach recently developed in ICL1 and modified by this work. 

 
Interconnect simulation models: 

 
 

The classical long-channel Pao and Sah model 

The Pao-Sah model [11,14], published in 1966, was the first advanced long channel MOSFET 

model to be developed. While it retained the GCA, it didn’t invoke the depletion approximation and 

permitted carrier transport in the channel by both drift and diffusion current. The formulation of the 
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drain current equation is therfore general, but as a result requires numerical integration in two 

dimensions, which limits its application in CAD tools. 

Approximations: 

i . Gradual Channel Approximation is used. 

ii . Constant mobility is assumed. 

iii . Uniform substrate doping is considered. 

Advantages: 

i . It is physically based. 

ii . It gives a continuous representation of the device characteristics from weak to strong 

inversion even to the saturation mode of operation. 

Disadvantages: 

i. It requires excessive computational requriments since it requires numerical integration in 

two dimension, rendering it unsuitable to be used for circuit CAD. 

 

 

The charge-sheet based models 

The limited practical utility of the Pao-Sah model motivated a search for an approximate 

advanced analytical model, that is still accurate over a wide range of operating conditions. The charge 

sheet model, introduced separately by Bacarani and Brews in 1978, has become the most widely 

adopted long channel MOSFET model that is accurate over the entire range of inversion. In this 

model the inversion layer is supposed to be a charge sheet of infinitesimal thickness [11,15,16] 

(charge sheet approximation). The inversion charge density Qi can then be calculated in terms of the 

surface potential ψs. The drain current (2.3.1) is then expressed in terms of the surface potential at the 

source and drain boundaries of the channel. 

Approximations: 

i . Gradual Channel Approximation is used. 

ii . The mobility is assumed to be proportional to the electric field and is constant with 

position along the channel. 

iii . Uniform substrate doping is considered. 

Advantages: 

i . It is physically based. 

ii . It gives a continuous representation of the device characteristics from weak to strong 

inversion even to the saturation mode of operation. 

ii . The charge sheet approximation introduces negligibly small error, and it is more 

computationally efficient than the classical model. 

Disadvantages: 
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i . The boundary surface potentials cannot be expressed explicitly in terms of the bias voltages 

applied to the device, but must be found by a numerical process. 

ii . The model is not valid in depletion or accumulation. 

Different approaches have been introduced to circumvent this disadvantage. In it is shown that 

accurate numerical solutions for these surface potentials can be obtained with negligible computation 

time penalty. In the surface potentials are computed using cubic splines functions. In the implicit 

equation including the surface potential is replaced by an approximate function. Although all of these 

approaches have given good results, they have neglected the effect of the interface trap charge which 

is important in determining the subthreshold characteristics of the device, namely the subthreshold 

swing (the gate voltage swing needed to reduce the current by one decade). 

Bulk Charge Model 

The Bulk Charge model also known as variable depletion charge model, was developed in 

1964, describes the MOSFET drain current only in strong inversion but of course has less 

computational requirements. 

Approximations : 

i . Drift current component only is considered 

ii . Constant surface potential is assumed 

iii . Id considered zero below threshold 

Advantages : 

i . Less computational time than the charge sheet model 

Disadvantages : 

i . The subthreshold region not defined 

 

 

 
Square law model 

This model has great popularity, when a first estimate to device operation, or simulating a 

circuit with a large number of devices is required. This model is obtained from the bulk charge model, 

on the assumption that VDS << 2φf+VBS . 

i . Drift current component only is considered 

ii . Constant surface potential is assumed 

iii . Id considered zero below threshold 

iv . VDS << 2φf+VBS 

Advantages : 

i . Very small computational time than any other model 

ii . Suitable for hand calculations 

Disadvantages : 

i . The subthreshold region is not defined 
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ii . Overestimates the drain current in saturation region 

Approximate models 

There exists a large number of introduced approximate models. All of these models originate 

from Brews' charge sheet model, where approximations to the surface potentials in various operating 

regions of the device have been used. This leads to different current equations each valid only in a 

specific region. The resulting equations are then empirically joined using different mathematical 

conditions of continuity. 

Advantages: 

i . They have good accuracy in the desired region of operation. 

ii . They are very efficient from the point of view of computational time. 

Disadvantages: 

i . The error increases in the transition regions between different modes of operations. 

ii . They include many non-physical fitting parameters. 

 
Modified charge sheet model 

The last discussed MOSFET models, have a common illness, no interface charges are 

included which play a great role in subthreshold region. So a modified model to the charge sheet 

model, which include the effect of interface charges is carried out in ICL, and will be presented now. 

The derivation begins by rewriting equation (2.3.1) in the following form : 

I D = I D1+ I D2 (2.3.6.1) 

where ID1 is due to the presence of drift: 

 

 

 
2.3.6.2) 

and ID2 is due to the presence of diffusion: 
 

(2.3.6.3) 

after mathematical manipulation and following the same approximations as charge sheet model we 

reach the following drain current equations: 

 

 

 

 

 
(2.3.6.4) 
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(2.3.6.5) 

where ψs0 is the surface potential at the source end of the channel, ψsL is the surface potential at the 

drain end of the channel, both are referred to the bulk. And their values are computed from the 

following two implicit equations. 

 

 

 

 

 
(2.3.6.6) 

 

(2.3.6.7) 
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UNIT III COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN 
 
 

Circuit families and its comparison: 

The method of logical effort does not apply to arbitrary transistor networks, but only to logic 

gates. A logic gate has one or more inputs and one output, subject to the following restrictions: 

_ The gate of each transistor is connected to an input, a power supply, or the output; and _ Inputs are 

connected only to transistor gates. The first condition rules out multiple logic gates masquerading as 

one, and the second keeps inputs from being connected to transistor sources or drains, as in 

transmission gates without explicit drivers. 

 
 

Pseudo-NMOS circuits 

Static CMOS gates are slowed because an input must drive both NMOS and PMOS 

transistors. In any transition, either the pullup or pulldown network is activated, meaning the input 

capacitance of the inactive network loads the input. Moreover, PMOS transistors have poor mobility 

and must be sized larger to achieve comparable rising and falling delays, further increasing input 

capacitance. Pseudo-NMOS and dynamic gates offer improved speed by removing the PMOS 

transistors from loading the input. This section analyzes pseudo-NMOS gates, while section 10.2 

explores dynamic logic. Pseudo-NMOS gates resemble static gates, but replace the slow PMOS 

pullup stack with a single grounded PMOS transistor which acts as a pullup resistor. The effective 

pullup resistance should be large enough that the NMOS transistors can pull the output to near 

ground, yet low enough to rapidly pull the output high. Figure 10.1 shows several pseudo-NMOS 

gates ratioed such that the pulldown transistors are about four times as strong as the pullup. The 

analysis presented in Section 9.1 applies to pseudo-NMOS designs. The logical effort follows from 

considering the output current and input capacitance compared to the reference inverter from Figure 

Sized as shown, the PMOS transistors produce 1/3 of the current of the reference inverter and the 

NMOS transistor stacks produce 4/3 of the current of the reference inverter. For falling transitions, the 

output current is the pulldown current minus the pullup current which is fighting the pulldown,For 

rising transitions, the output current 
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PSEUDO-NMOS CIRCUITS 
 

 

is just the pullup current, 1/3. The inverter and NOR gate have an input capacitance of 4/3. The falling 

logical effort is the input capacitance divided by that of an inverter with the same output current, or 

The rising logical effort is three times greater, because the current produced on a rising transition is 

only one third that of a falling transition. The average logical effort is g = (4=9+4=3)=2 = 8. This is 

independent of the number of inputs, explaining why pseudo-NMOS is a 

way to build fast wide NOR gates. Table 10.1 shows the rising, falling, and average logical efforts of 

other pseudo-NMOS gates, assuming _ = 2 and a 4:1 pulldown to pullup strength ratio. Comparing 

this with Table 4.1 shows that pseudo-NMOS multiplexers are slightly better than CMOS 

multiplexers and that pseudo-NMOS NAND gates are worse than CMOS NAND gates. Since pseudo- 

NMOS logic consumes power even when not switching, it is best used for critical NOR functions 

where it shows greatest advantage. Similar analysis can be used to compute the logical effort of other 

logic technologies, such as classic NMOS and bipolar and GaAs. The logical efforts should be 

normalized so that an inverter in the particular technology has an average logical effort of 1. 

10.1.1 Symmetric NOR gates 

Johnson [4] proposed a novel structure for a 2-input NOR, shown in Figure 10.2. The gate 

consists of two inverters with shorted outputs, ratioed such that an inverter pulling down can 

overpower an inverter pulling up. This ratio is exactly the same as is used for pseudo-NMOS gates. 

The difference is that when the output should rise, both inverters pull up in parallel, providing more 

current than is available from a regular pseudo-NMOS pullup. The input capacitance of each input is 

2. The worst-case pulldown current is 
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equal to that of a unit inverter, as we had found in the analysis of pseudo-NMOS NOR gates. The 

pullup current comes from two PMOS transistors in parallel and is thus 2=3 that of a unit inverter. 

Therefore, the logical effort is 2=3 for a falling output and 1 for a rising output. The average effort is 

g = 5=6, which is better than that of a pseudo-NMOS NOR and far superior to that of a static CMOS 

NOR! and even for NAND gates. Exercises 10-3 and 10-4 examine the design and logical effort of 

such structures. 

Domino circuits 

Pseudo-NMOS gates eliminate the bulky PMOS transistors loading the inputs, but pay the 

price of quiescent power dissipation and contention between the pullup and pulldown transistors. 

Dynamic gates offer even better logical effort and lower power consumption by using a clocked 

precharge transistor instead of a pullup that is always conducting. The dynamic gate is precharged 

HIGH then may evaluate LOW through an NMOS stack. Unfortunately, if one dynamic inverter 

directly drives another, a race can corrupt the result. When the clock rises, both outputs have been 

precharged HIGH. 

 

 

The HIGH input to the first gate causes its output to fall, but the second gate’s output also 

falls in response to its initial HIGH input. The circuit therefore produces an incorrect result because 

the second output will never rise during evaluation, as shown in Figure 10.3. Domino circuits solve 

this problem by using inverting static gates between dynamic gates so that the input to each dynamic 

gate is initially LOW. The falling dynamic output and rising static output ripple through a chain of 

gates like a chain of toppling dominos. In summary, domino logic runs 1:5 to 2 times faster than static 

CMOS logic [2] because dynamic gates present a much lower input capacitance for the same output 

current and have a lower switching threshold, and because the inverting static gate can be skewed to 

favor the critical monotonically rising evaluation edges. Figure shows some domino gates. Each 

domino gate consists of a dynamic gate followed by an inverting static gate1. The static gate is often 

but not always an inverter. Since the dynamic gate’s output falls monotonically during evaluation, the 

static gate should be skewed high to favor its monotonically rising output. We have calculated the 

logical effort of high-skew gates in Table 9.2 and will compute the logical effort of dynamic gates in 
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the next section. The logical effort of a domino gate is then the product of the logical effort of the 

dynamic gate and of the high-skew gate. Remember that a domino gate counts as two stages when 

choosing the best number of stages. A dynamic gate may be designed with or without a clocked 

evaluation transistor; the extra transistor slows the gate but eliminates any path between power and 

ground during precharge when the inputs are still high. Some dynamic gates include weak PMOS 

transistors called keepers so that the dynamic output will remain driven if the clock stops high. 

Domino designers face a number of questions when selecting a circuit topology. How many stages 

should be used? Should the static gates be inverters, or should they perform logic? How should 

precharge transistors and keepers be sized? What is the benefit of removing the clocked evaluation 

transistors? We will show that domino logic should be designed with a stage effort of 2–2:75, rather 

than 4 that we found for static logic. Therefore, paths tend to use more stages and it is rarely 

beneficial to perform logic with the inverting static gates. 

 
Logic power logic design: 

Is to Reduce dynamic power and static power in a circuit 

– a: 

– C: 

– VDD: 

– f: 

Reduce static power,Reduce dynamic power 

– a: clock gating, sleep mode 

– C: small transistors (esp. on clock), short wires 

– VDD: 

– f: 

Reduce static power, Reduce dynamic power 

– a: clock gating, sleep mode 

– C: small transistors (esp. on clock), short wires 

– VDD: lowest suitable voltage 

– f: lowest suitable frequency 

Reduce static power 

– Selectively use ratioed circuits 

– Selectively use low Vt devices 

– Leakage reduction: stacked devices, body bias, low temperature. 

 
 

Circuit design of latches and flip flops: 

Another class of logic circuits are sequential circuits. These circuits are two-valued networks 

in 
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which the outputs at any instant are dependent not only upon the inputs present at that instant but also 

upon the past history (sequence) of inputs. 

Sequential circuits are classified into: 

The block diagram of a sequential circuit is shown below: 

 Synchronous sequential circuits – Their behaviour is determined by the values of the signals 

at only discrete instants of time. 

 Asynchronous sequential circuits – Their behaviour is immediately affected by the input 

signal changes. 

The basic logic element that provides memory in many sequential circuits is the flip-flop. 

 

1. Latches 

Latches form one class of flip-flops. This class is characterized by the fact that the timing of the 

output changes is not controlled. Although latches are useful for storing binary information and for 

the design of asynchronous sequential circuits, they are not practical for use in synchronous sequential 

circuits. 

 The SR Latch 

It is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates. The one with 

NOR gates is shown below: 

The condition that is undefined is when both inputs are equal to 0 at the same time. 

Comparing the NAND with the NOR latch note that the input signals for the NAND require the 

complement of those values used for the NOR latch. Because the NAND latch requires a 0 signal to 

change its state, it is sometimes referred to as an S′-R′ latch. The operation of the SR latch can be 

modified to provide an additional control input that determines when the state of the latch can be 
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changed. An SR latch with control input is shown below: The control input C acts as an enable signal 

form the other two inputs. An indeterminate condition occurs when all three inputs are equal to 1. 

This condition makes the circuit difficult to manage and is seldom used in practice. Nevertheless, it is 

an important circuit because other latches and flip-flops are realized from it. 

The Gated D Latch 

One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to 

ensure that inputs S and R are never equal to 1 at the same time. This is done by the D latch: 

Flip-Flops 

When latches are used for the memory elements in sequential circuits, a serious difficulty 

arises. Recall that latches have the property of immediate output responses (i.e., transparency). 

Because of this the output of a latch cannot be applied directly (or through logic) to the input of the 

same or another latch when all the latches are triggered by a common clock source. Flip-flops are 

used to overcome this difficulty. 
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Edge-Triggered D Flip-Flop 

A D flip-flop may be realized with two D latches connected in a master-slave configuration: 

The circuit samples the D input and changes its Q output only at the negative-edge of the controlling 

clock signal (CLK). It is also possible to design the circuit so that the flip-flop output changes on the 

positive edge of the clock (transition from 0 to 1). This happens in a flipflop that has an additional 

inverter between the CLK terminal and the junction between the other inverter and input C on the 

master latch. An efficient realization of a positive edge-triggered D flip-flop uses three SR latches: 

 

The graphic symbol for the edge-triggered D flipflop is: 

 

Other Flip-Flops 

The most economical and efficient flip-flop in terms of transistor count and silicon area is the 

D flip-flop. Other types of flip-flops can be realized by using the D flip-flop and external logic. Two 

flipflops widely used in the design of digital systems are the JK and the T flip-flops. There are three 

operations that can be performed with a flip-flop: set it to 1, reset it to 0, complement its output. The 

JK flip-flop performs all three: 
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Characteristic Tables 

A characteristic table defines the logical properties of a flip-flop by describing its operation in 

tabular form. The flip-flops characteristic tables are: 

 

 

Q(t) refers to the present state prior to the application of a clock edge. 

Q(t + 1) is the next state one clock period later. The clock edge input is not included in the 

characteristic tables, but is implied to occur between time t and t + 1. 

Characteristic Equations 

The logical properties of a flip-flop as described in its characteristic table can be expressed 

also algebraically with a characteristic equation. For the D flip-flop the characteristic equation is: 

Q(t +1) = D 

It states that the next state of the output will be equal to the value of input D in the present 

state. 

The characteristic equation for the JK flip-flop is: 
 

 

where Q is the value of the flip-flop output prior to the application of a clock edge. Finally, the 

characteristic equation for the T flipflop is: 

Static sequencing element methodology: 

 
 

Power has become critical metric and key differentiator in sub-65nm SOC designs, due to 

growing power density driven by technology scaling and chip integration. This tutorial provides 

overview of the low-power design methodologies and techniques in production SOC design 

perspective, emphasizing on the real design considerations and impact on chip success. We shall 

discuss pros and cons of the methods and techniques considering impacts on chip design schedule, 

yield, and overall power-performance target. We shall also provide design guidance and 
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recommendations in various design steps and decision making points, based on our years of 

successful experience in production low-power SOC designs. 

This tutorial is organized in two parts. In the first part, we shall overview power related 

challenges in sub-60nm SOC design and state-of-the-art techniques to reduce chip power. We shall 

give a holistic view from chip level to system and application levels. Practical industrial examples 

will be used to show how power savings can be achieved in modern SoC, processors and computer 

systems. In the second part, we shall describe production low-power design methodology and 

techniques particularly the power-gating and the voltage/frequency scaling which are the two 

advanced power reduction methods used effectively in sub-65nm production low-power designs. We 

shall explain when, where and how these methods and techniques are applied to a chip according to 

the design goals and time-to-market requirement. We shall also cover production low-power design 

methodology and flow with UPF power intent and unified design environment. 

 
Sequencing dynamic circuits: 

 
Simulation-based techniques for dynamic compaction of test sequences are proposed. The 

first technique uses a fault simulator to remove test vectors from the partially-specified test sequence 

generated by a deterministic test generator if the vectors are not needed to detect the target fault, 

considering that the circuit state may be known. The second technique uses genetic algorithms to fill 

the unspecified bits in the partially-specified test sequence in order to increase the number of faults 

detected by the sequence. Significant reductions in test set sizes were observed for all benchmark 

circuits studied. Fault coverages improved for many of the circuits, and execution times often dropped 

as well, since fewer faults had to be targeted by the computation-intensive deterministic test 

generator. 1 Introduction Deterministic test generators for single stuck-at faults in sequential circuits 

typically target individual faults, and once a test is generated, the test is fault simulated. CMOS 

inverters (Complementary NOSFET Inverters) are some of the most widely used and adaptable 

MOSFET inverters used in chip design. They operate with very little power loss and at relatively high 

speed. Furthermore, the CMOS inverter has good logic buffer characteristics, in that, its noise margins 

in both low and high states are large. 

 
This short description of CMOS inverters gives a basic understanding of the how a CMOS 

inverter works. It will cover input/output characteristics, MOSFET states at different input voltages, 

and power losses due to electrical current. A CMOS inverter contains a PMOS and a NMOS transistor 

connected at the drain and gate terminals, a supply voltage VDD at the PMOS source terminal, and a 

ground connected at the NMOS source terminal, were VIN is connected to the gate terminals and 

VOUT is connected to the drain terminals.(See diagram). It is important to notice that the CMOS does 

not contain any resistors, which makes it  more power efficient that a regular resistor-MOSFET 
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inverter.As the voltage at the input of the CMOS device varies between 0 and 5 volts, the state of the 

NMOS and PMOS varies accordingly. If we model each transistor as a simple switch activated by 

VIN, the inverter’s operations can be seen very easily. 

 

 

 

 

 
 

UNIT IV CMOS TESTING 

Need for testing: 

 

Iddq testing is a method for testing CMOS integrated circuits for the presence of manufacturing faults. 

It relies on measuring the supply current (Idd) in the quiescent state (when the circuit is not switching 

and inputs are held at static values). The current consumed in the state is commonly called Iddq for 

Idd (quiescent) and hence the name. Iddq testing uses the principle that in a correctly operating 

quiescent CMOS digital circuit, there is no static current path between the power supply and ground, 

except for a small amount of leakage. Many common semiconductor manufacturing faults will cause 

the current to increase by orders of magnitude, which can be easily detected. This has the advantage 

of checking the chip for many possible faults with one measurement. Another advantage is that it may 

catch faults that are not found by conventional stuck-at fault test vectors. Iddq testing is somewhat 

more complex than just measuring the supply current. If a line is shorted to Vdd, for example, it will 

still draw no extra current if the gate driving the signal is attempting to set it to '1'. However, a 

different vector set that attempts to set the signal to 0 will show a large increase in quiescent current, 

signalling a bad part. Typical Iddq test vector sets may have 20 or so vectors. Note that Iddq test  

vectors require only controllability, and not observability. This is because the observability is through 

the shared power supply connection. Iddq testing has many advantages: 

 
 It is a simple and direct test that can identify physical defects. 

 The area and design time overhead are very low. 

 Test generation is fast. 

 Test application time is fast since the vector sets are small. 

 It catches some defects that other tests, particularly stuck-at logic tests, do not. 

 
Drawback: Compared to scan testing, Iddq testing is time consuming, and then more expensive, since 

is achieved by current measurements that take much more time than reading digital pins in mass 

production. 

http://en.wikipedia.org/wiki/Integrated_circuits
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/Semiconductor_manufacturing
http://en.wikipedia.org/wiki/Stuck-at_fault
http://en.wikipedia.org/wiki/Controllability
http://en.wikipedia.org/wiki/Observability
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Testers and test programs: 

 
As processes shrink (see Moore's law), the leakage current becomes much higher and less predictable. 

This makes it difficult to tell a low leakage part with a defect from a naturally high leakage part. Also, 

increasing circuit size means a single fault will have a lower percentage effect, making it harder for 

the test to detect. However, Iddq is so useful that designers are taking steps to keep it working. One 

particular technique that helps is power gating, where the entire power supply to each block can be 

switched off using a low leakage switch. This allows each block to be tested individually or in 

combination, which makes the tests much easier when compared to testing the whole chip. 

 
Text fixtures: 

 
 

In generic xUnit, a test fixture is all the things that must be in place in order to run a test and expect a 

particular outcome. Frequently fixtures are created by handling setUp() and tearDown() events of the 

unit testing framework. In setUp() one would create the expected state for the test, and in tearDown() 

it would clean up what had been set up. 

 
Four phases of a test: 

 
1. Set up -- Setting up the test fixture. 

2. Exercise -- Interact with the system under test. 

3. Verify -- Determine whether the expected outcome has been obtained. 

4. Tear down -- Tear down the test fixture to return to the original state. 

 
Use of fixtures 

 
Some advantages of fixtures include separation of the test initialization (and destruction) from the 

testing, reusing a known state for more than one test, and special assumption by the testing framework 

that the fixture set up works. 

 
Design for testability: 

VLSI designers have a wide variety of CAD tools to choose from, each with their own 

strengths and weaknesses. The leading Electronic Design Automation (EDA) companies include 

Cadence, Synopsys, Magma, and Mentor Graphics. Tanner also offers commercial VLSI design tools. 

The leading free tools include Electric, Magic, and LASI. This set of laboratories uses the Cadence 

and Synopsys tools because they have the largest market share in industry, are capable of handling 

everything from simple class projects to state-of-the-art integrated circuits. The full set of tools is 

extremely expensive but the companies  offer academic programs to make the tools available to 

http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Power_gating
http://en.wikipedia.org/wiki/XUnit
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
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universities at a much lower cost. The tools run on Linux and other flavors of Unix. Setting up and 

maintaining the tools involves a substantial effort. Once they are setup correctly, the basic tools are 

easy to use, as this tutorial demonstrates. Some companies use the Tanner tools because their list price 

is much lower and they are easy to use. However, their academic pricing is comparable with Cadence 

and Synopsys, giving little incentive for universities to adopt Tanner. The Electric VLSI Design 

System is an open-source chip design program developed by Electric presently does not read the 

design rules for state-of-the-art nanometer processes and poorly integrates with synthesis and place & 

route. Magic is a free Linux-based layout editor with a powerful but awkward interface that was once 

widely used in universities. The Layout System for Individuals, LASI, developed by David Boyce, is 

freely available and runs on Windows. It was last updated in 1999. There are two general strategies 

for chip design. Custom design involves specifying how every transistor is connected and physically 

arranged on the chip. Synthesized design involves describing the function of a digital chip in a 

hardware description language such as Verilog or VHDL, then using a computer-aided design tool to 

automatically generate a set of gates that perform this function, place the gates on the chip, and route 

the wires to connect the connect the gates. The majority of commercial designs are synthesized today 

because synthesis takes less engineering time. However, custom design gives more insight into how 

chips are built and into what to do when things go wrong. Custom design also offers higher 

performance, lower power, and smaller chip size. The first two labs emphasize the fundamentals of 

custom design, while the next two use logic synthesis and automatic placement to save time. 

II. Tool Setup 

These labs assume that you have the Cadence and Synopsys tools installed. 

The tools generate a bunch of random files. It’s best to keep them in one place. In your 

home directory, create some directories by typing: 

mkdir IC_CAD 

mkdir IC_CAD/cadence 

III. Getting Started 

Before you start the Cadence tools, change into the cadence directory: 

cd ~/IC_CAD/cadence 

 
 

Each of our tools has a startup script that sets the appropriate paths to the tools and invokes them. 

Start Cadence with the NCSU extensions by running cad-ncsu & A window labeled icfb will open up. 

This is the Integrated Circuit Front and Back End (e.g. schematic and layout) software, part of 

Cadence’s Design Framework interface. A “What’s New” and a Library Manager window may open 

up too. Scroll through the icfb window and look at the messages displayed as the tool loads up. Get in 

the habit of watching for the messages and recognizing any that are out of the ordinary. This is very 

helpful when you encounter problems. 
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All of your designs are stored in a library. If the Library Browser doesn’t open, choose Tools 

• Library Manager. You’ll use the Library Manager to manipulate your libraries. Don’t try to move 

libraries around or rename them directly in Linux; there is some funny behavior and you are likely to 

break them. Familiarize yourself with the Library Manager. Your cds.lib file includes many libraries 

from the NCUS CDK supporting the different MOSIS processes. It also includes libraries from the 

University of Utah. The File menu allows you to create new libraries and cells within a library, while 

the Edit menu allows you to copy, rename, delete, and change the access permissions. 

Create a library by invoking File • New • Library… in the Library Manager. Name the library 

lab1_xx, where xx are your initials. Leave the path blank and it will be put in your current working 

directory (~/IC_CAD/cadence). Choose the “Attach to existing tech library” and accept the default, 

UofU AMI 0.60u C5N (3M, 2P, high-res). This is a technology file for the American Microsystesm 

(now Orbit Semiconductor) 0.6 μm process, containing design rules for layout. 

IV. Schematic Entry 

Our first step is to create a schematic for a 2-input NAND gate. Each gate or larger 

component is called a cell. Cells have multiple views. The schematic view for a cell built with CMOS 

transistors will be called cmos_sch. Later, you will build a view called layout specifying how the cell 

is physically manufactured. In the Library Manager, choose File • New • Cell View… In your lab1_xx 

library, enter a cell name of nand2 and a view name of cmos_sch. The tool should be Composer- 

Schematic. You may get a window asking you to confirm that cmos_sch should be associated with 

this tool. The schematic editor window will open. Your goal is to draw a gate like the one shown in 

Figure 1. We are working in a 0.6 μm process with λ = 0.3 μm. Unfortunately, the University of Utah 

technology file is configured on a half-lambda grid, so grid units are 0.15 μm. Take care that 

everything you do is an integer multiple of λ so you don’t come to grief later on. Our NAND gate will 

use 12 λ (3.6 μm) nMOS and pMOS transistors. 

Choose Add • Instance to open a Component Browser window. (The menu lists the keyboard 

shortcut for each command, such as i for add instance. You’ll want to learn the shortcuts you use most 

often.) Choose UofU_Analog_Parts for the library, then select nmos. The Add Instance dialog will 

open. Set the Width to 3.6u (u indicates microns). Click in the schematic editor window to drop the 

transistor. You can click a second time to place another transistor. Return to the Component Browser 

window and choose pmos. Drop two pMOS transistors. Then return to the browser and get a gnd and 

a vdd symbol. When you are in a mode in the editor, you can press ctrl-c or Esc to get out of it. Other 

extremely useful commands include Edit • Move, Edit • Copy, Edit • Undo, and Edit • Delete. Edit • 

Properties • Object… is also useful to change things like transistor sizes or wire names. Move the 

elements around until they are in attractive locations. I like to keep series transistors onew grid unit 

apart and place pMOS transistors two grid units above the nMOS. Look at the bottom of the 

schematic editor window to see what mode you are in. Next, use Add • Pin… to create some pins. In 

the Add Pin dialog, enter a and b. Make sure the direction is “input.” The tools are case-sensitive, so 
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use lower case everywhere. Place the pins, being sure that a is the bottom one. Although pin order 

doesn’t matter logically, it does matter physically and electrically, so you will get errors if you reverse 

the order. Then place an output pin y. Now, wire the elements together. Choose Add • Wire (narrow). 

Click on each component and draw a wire to where it should connect. It is a good idea to make sure 

every net (wire) in a design has a name. Otherwise, you’ll have a tough time tracking down a problem 

later on one of the unnamed nets. Every net in your schematic is connected to a named pin or to power 

or ground except the net between the two series nMOS transistors. Choose Add • Wire name… Enter 

mid or something like that as the name, and click on the wire to name it. Choose Design • Check and 

Save to save your schematic. You’ll probably get one warning about a “solder dot on crossover” at the 

4-way junction on the output node. This is annoying because such 4-way junctions are normal and 

common. Choose Check • Rules Setup… and click on the Physical tab in the dialog. Change Solder 

On CrossOver from “warning” to “ignored” and close the dialog. Then Check and Save again and the 

warning should be gone. If you have any other warnings, fix them. A common mistake is wires that 

look like they might touch but don’t actually connect. Delete the wire and redraw it. Poke around the 

menus and familiarize yourself with the other capabilities of the schematic editor. 

V. Logic Verification 

Cells are commonly described at three levels of abstraction. The register-transfer level (RTL) 

description is a Verilog or VHDL file specifying the behavior of the cell in terms of registers and 

combinational logic. It often serves as the specification of what the chip 

should do. The schematic illustrates how the cell is composed from transistors or other cells. The 

layout shows how the transistors or cells are physically arranged. Logic verification involves proving 

that the cells perform the correct function. One way to do this is to simulate the cell and apply a set of 

1’s and 0’s called test vectors to the inputs, then check that the outputs match expectation. Typically, 

logic verification is done first on the RTL to check that the specification is correct. A testbench 

written in Verilog or VHDL automates the process of applying and checking all of the vectors. The 

same test vectors are then applied to the schematic to check that the schematic matches the RTL. 

Later, we will use a layout-versus schematic (LVS) tool to check that the layout matches the 

schematic (and, by inference, the RTL). You will begin by simulating an RTL description of the 

NAND gate to become familiar with reading RTL and understanding a testbench. In this tutorial, the 

RTL and testbench are written in System Verilog, which is a 2005 update to the popular Verilog 

hardware description language. 

There are many Verilog simulators on the market, including NC-Verilog from Cadence, VCS 

from Synopsys, and ModelSim from Mentor Graphics. This tutorial describes how to use NC Verilog 

because it integrates gracefully with the other Cadence tools. NCVerilog compiles your Verilog into 

an executable program and runs it directly, making it much faster than the older interpreted 

simulators. Make a new directory for simulation (e.g. nand2sim). Copy nand2.sv, nand2.tv, 

and testfixture.verilog from the course directory into your new directory. 
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mkdir nand2sim 

cd nand2sim 

cp /courses/e158/10/nand2.sv . 

cp /courses/e158/10/nand2.tv . 

cp /courses/e158/10/nand2.testfixture testfixture.verilog 

nand2.sv is the SystemVerilog RTL file, which includes a behavioral description of a nand2 module 

and a simple self-checking testbench that includes 

testfixture.verilog. testfixture.verilog reads in testvectors from 

nand2.tv and applies them to pins of the nand2 module. After each cycle it compares the output of the 

nand2 module to the expected output, and prints an error if they do not match. Look over each of 

these files and understand how they work. First, you will simulate the nand2 RTL to practice the 

process and ensure that the testbench works. Later, you will replace the behavioral nand2 module with 

one generated from your Electric schematic and will resimulate to check that your schematic performs 

the correct function. At the command line, type sim-nc nand2.sv to invoke the simulator. You should 

see some messages ending with 

ncsim> run 

Completed 4 tests with 0 errors. 

Simulation stopped via $stop(1) at time 81 NS + 0 

You’ll be left at the ncsim command prompt. Type quit to finish the simulation. If the simulation 

hadn’t run correctly, it would be helpful to be able to view the results. NC-Verilog has a graphical 

user interface called SimVision. The GUI takes a few seconds to load, so you may prefer to run it only 

when you need to debug. To rerun the simulation with the GUI, type sim-ncg nand2.sv A Console and 

Design Browser window will pop up. In the browser, click on the + symbol beside the testbench to 

expand, then click on dut. The three signals, a, b, and y, 

will appear in the pane to the right. Select all three, then right-click and choose Send to Waveform 

Window. In the Waveform Window, choose Simulation • Run. You’ll see the waveforms of your 

simulation; inspect them to ensure they are correct. The 0 errors message should also appear in the 

console. If you needed to change something in your code or testbench or test vectors, or wanted to add 

other signals, do so and then Simulation • Reinvoke Simulator to recompile everything and bring you 

back to the start. Then choose Run again. Make a habit of looking at the messages in the console 

window and learning what is normal. Warnings and errors should be taken seriously; they usually 

indicate real problems that will catch you later if you don’t fix them. 

VI. Schematic Simulation 

Next, you will verify your schematic by generating a Verilog deck and pasting it into the RTL 

Verilog file. While viewing your schematic, click on Tools • Simulation • NCVerilog to open a 

window for the Verilog environment. Note the run directory (e.g. nand2_run1), and press the button in 

the upper left to initialize the design. Then press the next button to generate a netlist. Look in the icfb 



Einstein College of Engineering 
 

 

window for errors and correct them if necessary. You should see that the pmos, nmos, and nand2 cells 

were all netlisted. In your Linux terminal window, cd into the directory that was created. You’ll find 

quite a few files. The most important are verilog.inpfiles, 

testfixture.template, and testfixture.verilog. Each cell is netlisted into a different directory under ihnl. 

verilog.inpfiles states where they are. Take a look at the netlist and other files. testfixture.template is 

the top level module that instantiates the device under test and invokes the testfixture.verilog. Copy 

your from your nand2sim directory to your nand2_run1 directory using a command such as 

cp ../nand2sim/testfixture.verilog . 

cp ../nand2sim/nand2.tv . 

Back in the Virtuoso Verilog Environment window, you may wish to choose Setup • Record 

Signals. Click on the “All” button to record signals at all levels of the hierarchy. (This isn’t important 

for the nand with only one level of hierarchy, but will be helpful later.) Then choose Setup • 

Simulation. Change the Simulation Log File to indicate simout.tmp –sv. This will print the results in 

simout.tmp. The –sv flag indicates that the simulator should accept SystemVerilog syntax used in the 

testfixture.verilog. Set the Simulator mode to “Batch” and click on the Simulate button. You should 

get a message that the batch simulation succeeded. This doesn’t mean that it is correct, merely that it 

run. In the terminal window, view the simout.tmp file. It will give some statistics about the 

compilation, then should indicate that the 4 tests were completed with 0 errors. If the simulation fails, 

the simout.tmp file will have clues about the problems. Change the simulator mode to Interactive to 

rerun with the GUI. Be patient; the GUI takes several seconds to start and gives no sign of life until 

then. Add the waveforms again and run the simulation. You may need to zoom to fit all the waves. 

For some reason, SimVision doesn’t print the $display message about the simulation succeeding with 

no errors. You will have to read the simout.tmp file at the command line to verify that the test vectors 

passed. If you find any logic errors, correct the schematic and resimulate. 

 

 
Silicon Debug 

 
The rapid pace of innovation has created powerful SOC solutions at consumer prices. This 

has created a highly competitive market place where billions of dollars can be won by the right design 

delivered at the right time. These new designs are produced on processes that challenge the 

fundamental    laws    of    physics    and     are     highly     sensitive     to     equipment     variation. 

The industry now produces new designs in a complex world where process and design interaction 

have created new complex failures that stand in the way of billion-dollar opportunities. These 

interactions lead to new types of defects such as blocked chains, which create noise in the 

debug/diagnosis process. They also lead to new types of design issues such as delay defects in 

combinational and sequential logic. 
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The challenge is made even greater by the growing complexity in device structure and design 

techniques. Multiple design organizations use multiple IP blocks and multiple libraries that need to 

work     together     throughout     the     process     window,     often     across     multiple      fabs. 

These new challenges come at a time when product lifetimes are shrinking, leading to pressure to 

reduce time for debug and characterization activities. These problems are seen for the first time at first 

silicon. Test the first chips back from fabrication If you are lucky, they work the first time If not . . . 

Logic bugs vs. electrical failures Most chip failures are logic bugs from inadequate simulation or 

verification Some are electrical failures Crosstalk Dynamic nodes: leakage, charge sharing Ratio 

failures A few are tool or methodology failures (e.g. DRC) Fix the bugs and fabricate a corrected chip 

Silicon debug (or “bringup”) is primarily a Non-Recurring Engineering (NRE) cost (like design) 

Contrast this with manufacturing test which has to be applied to every part shipped. 

 

Manufacturing test: 

 
A speck of dust on a wafer is sufficient to kill chip Yield of any chip is < 100% Must test 

chips after manufacturing before delivery to customers to only ship good parts Manufacturing testers 

are very expensive Minimize time on tester Careful selection of test vectors. A test for a defect will 

produce an output response which is different from the output when there is no defect Test quality is 

high if the set of tests will detect a very high fraction of possible defects Defect level is the percentage 

of bad parts shipped to customers Yield is the percentage of defect-free chips manufactured 

Fault Models 

 
 

Fault models: 

Numerous possible physical failures (what we are testing for) Can reduce the number of 

failure types by considering the effects of physical failures on the logic functional blocks: called a 

Assume that defects will cause the circuit to behave as if lines were “stuck” at logic 0 or 1 Most 

commercial tools for test are based on the “stuck-at” model Other fault models “Stuck open” model 

for charge retained on a CMOS node Recent use of the “transition” fault model in an attempt to deal 

with delays “Path delay” fault model would be better for small delay defects, but the large number of 

possible paths is an impediment to the use of this fault model. 

 
Test for faults in a circuit: 

Approach to generating tests for defects is to map defects to (higher level) faults: develop 

fault model, then generate tests for the faults Typical: gate-level “stuck-at” fault model As technology 

shrinks, other faults: bridging faults, delay faults, crosstalk faults, etc. An interesting point: what is 

important is how well the tests generated (based on the fault model) will detect realistic defects The 

accuracy of the fault model is secondary 
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Observability and controllability: 

 
 

Observability: ease of observing a value on a node by monitoring external output pins of the chip 

Controllability: ease of forcing a node to 0 or 1 by driving input pins of the chip Combinational logic 

is usually easier to observe and control Still, NP-complete problem Finite state machines can be very 

difficult, requiring many cycles to enter desired state Especially if state transition diagram is not 

known to the test engineer, or is too large 

 
Fault simulation: 

Identify faults detected by a sequence of tests Provide a numerical value of coverage (ratio of 

detected faults to total faults) Correlation between high fault coverage and low defect level 

Faults considered Generally, gate level “stuck-at” faults Can also evaluate coverage of switch level 

faults Can include timing and dynamic effects of failures Although fault simulation takes polynomial 

time in the number of gates, it can still be prohibitive for large designs. Static timing analysis 

(Primetime, for example) only finds structural long paths 

False Path problem: 

In order to allow a signal to go through the path, Required Side Inputs: C = 1, A = 1, E = 1 Conflict 

due to C = 1 and E = 1 Can use modified test generation algorithms to identify longest true paths in a 

circuit CRITIC from UT Primetime+Tetramax from Synopsys. 

 
Boundary scan: 

 
Boundary scan is a method for testing interconnects (wire lines) on printed circuit boards or 

sub-blocks inside an integrated circuit. Boundary scan is also widely used as a debugging method to 

watch integrated circuit pin states, measure voltage, or analyze sub-blocks inside an integrated circuit. 

 
Testing 

 
The boundary scan architecture provides a means to test interconnects and clusters of logic, 

memories etc. without using physical test probes. It adds one or more so called 'test cells' connected to 

each pin of the device that can selectively override the functionality of that pin. These cells can be 

programmed via the JTAG scan chain to drive a signal onto a pin and across an individual trace on the 

board. The cell at the destination of the board trace can then be programmed to read the value at the 

pin, verifying the board trace properly connects the two pins. If the trace is shorted to another signal 

or if the trace has been cut, the correct signal value will not show up at the destination pin, and the 

board will be observed to have a fault. 

http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Test_probe
http://en.wikipedia.org/wiki/Signal_trace
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On-Chip Infrastructure 

 
To provide the boundary scan capability, IC vendors add additional logic to each of their 

devices, including scan cells for each of the external traces. These cells are then connected together to 

form the external boundary scan shift register (BSR), and combined with JTAG TAP (Test Access 

Port) controller support comprising four (or sometimes more) additional pins plus control circuitry. 

 
Some TAP controllers support scan chains between on-chip logical design blocks, with JTAG 

instructions which operate on those internal scan chains instead of the BSR. This can allow those 

integrated components to be tested as if they were separate chips on a board. On-chip debugging 

solutions are heavy users of such internal scan chains. 

 
These designs are part of most Verilog or VHDL libraries. Overhead for this additional logic 

is minimal, and generally is well worth the price to enable efficient testing at the board level. 

 
For normal operation, the added boundary scan latch cells are set so that they have no effect 

on the circuit, and are therefore effectively invisible. However, when the circuit is set into a test mode, 

the latches enable a data stream to be shifted from one latch into the next. Once a complete data word 

has been shifted into the circuit under test, it can be latched into place so it drives external signals.  

Shifting the word also generally returns the input values from the signals configured as inputs. 

 
Test Mechanism 

 
As the cells can be used to force data into the board, they can set up test conditions. The 

relevant states can then be fed back into the test system by clocking the data word back so that it can 

be analyzed. 

 
By adopting this technique, it is possible for a test system to gain test access to a board. As 

most of today’s boards are very densely populated with components and tracks, it is very difficult for 

test systems to physically access the relevant areas of the board to enable them to test the board. 

Boundary scan makes access possible without always needing physical probes. 

 
In modern chip and board design, Design For Test is a significant issue, and one common 

design artifact is a set of boundary scan test vectors, possibly delivered in Serial Vector Format (SVF) 

or a similar interchange format. 

 
JTAG Test Operations 

http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Design_For_Test
http://en.wikipedia.org/wiki/Serial_Vector_Format
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Devices communicate to the world via a set of input and output pins. By themselves, these 

pins provide limited visibility into the workings of the device. However, devices that support 

boundary scan contain a shift-register cell for each signal pin of the device. These registers are 

connected in a dedicated path around the device's boundary (hence the name). The path creates a 

virtual access capability that circumvents the normal inputs and provides direct control of the device 

and detailed visibility at its outputs.[3] The contents of the boundary scan are usually described by the 

manufacturer using a part-specific BSDL file. 

 
Among other things, a BSDL file will describe each digital signal exposed through pin or ball 

(depending on the chip packaging) exposed in the boundary scan, as part of its definition of the 

Boundary Scan Register (BSR). A description for two balls might look like this: 

 
"541 (bc_1, *, control, 1)," & 

"542 (bc_1, GPIO51_ATACS1, output3, X, 541, 1, Z)," & 

"543 (bc_1, GPIO51_ATACS1, input, X)," & 

"544 (bc_1, *, control, 1)," & 

"545 (bc_1, GPIO50_ATACS0, output3, X, 544, 1, Z)," & 

"546 (bc_1, GPIO50_ATACS0, input, X)," & 

 
That shows two balls on a mid-size chip (the boundary scan includes about 620 such lines, in 

a 361-ball BGA package), each of which has three components in the BSR: a control configuring the 

ball (as input, output, what drive level, pullups, pulldowns, and so on); one type of output signal; and 

one type of input signal. 

 
There are JTAG instructions to SAMPLE the data in that boundary scan register, or 

PRELOAD it with values. 

 
During testing, I/O signals enter and leave the chip through the boundary-scan cells. Testing 

involves a number of test vectors, each of which drives some signals and then verifies that the 

responses are as expected. The boundary-scan cells can be configured to support external testing for 

interconnection between chips (EXTEST instruction) or internal testing for logic within the chip 

(INTEST instruction). 

 
Board Test Infrastructure 

 
Typically high-end commercial JTAG testing systems allow the import of design 'netlists' from 

CAD/EDA systems plus the BSDL models of boundary scan/JTAG complaint devices to 

automatically generate test applications. Common types of test include 

http://en.wikipedia.org/wiki/Boundary_scan#cite_note-oshana-2
http://en.wikipedia.org/wiki/Boundary_scan_description_language
http://en.wikipedia.org/wiki/Ball_grid_array
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 Scan-path 'infrastructure' or integrity 

 Boundary-scan device pin to boundary-scan device pin 'interconnect' 

 Boundary-scan pin to memory device or device cluster (SRAM, DRAM, DDR etc) 

 Arbitrary logic cluster testing 

 
When used during manufacturing, such systems also support non-test but affiliated applications 

such as in-system programming of various types of flash memory: NOR, NAND, and serial (I2C or 

SPI). 

 
Such commercial systems are used by board test professionals and will often cost several 

thousand dollars for a fully-fledged system. They can include diagnostic options to accurately pin- 

point faults such as open circuits and shorts and may also offer schematic or layout viewers to depict 

the fault in a graphical manner. Tests developed with such tools are frequently combined with other 

test systems such as in-circuit testers (ICTs) or functional board test systems. 
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UNIT V SPECIFICATION USING VERILOG HDL 

 

Basic concepts 

 

Verilog HDL: 

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware 

description Language is a language used to describe a digital system, for example, a 

microprocessor or a memory or simple flip-flop. This just means that by using a HDL one can 

describe any hardware (digital) at any level. 

 
White space: 

White space characters, such as SPACE and TAB and blank lines are ignored by 

verilog compiler. Multiple statements are written on a single line such as, 

f = a0; if (s == 0) f = a1; 

Placing each statement on a separate line and using indentation within blocks of code, 

such as an if-else statement are good ways to increase the readability of code. 

 
Documentation in verilog code: 

Documentation can be included in verilog code by writing a comment. A short 

comment begins with double slash, //, and continues to the end of the line. A long comment 

can span multiple lines and is contained inside the delimiters /* and */. 

//this is a short comment 

/* this is a long comment 

That spans two lines */ 

Operators: 

Verilog has operators of three types. They are unary operators which precede the 

operand, binary operators which appear between two operands and ternary operators that 

have two separate operators that separate three operands. 

Example: 

x = + y; //+ is unary operator, y is the operand 

x = y && z; // && is a binary operator, y and z are operands 

x = a ? b : c; // ? : is a ternary operator, a, b, c are operands 

 

 

 

 
Signal values, Numbers: 
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Verilog supports scalar nets and variables that can be represent individual signals and 

vectors that correspond to multiple signals. Each individual signal can have four possible 

values: 

0 = logic value 0; 

1 = logic value 1; 

z = high impedance; 

x = unknown value; 

The value of a vector variable is specified by giving a constant of the form 

[size][ ’radix]constant 

where size is the number of bits in the constant and resix is the number base. 

Radices are: 

d = decimal; 

b = binary; 

h = hexadecimal; 

o = octal; 

when no radix is specified the default is decimal. 

Constants are: 

 

 

 

 

 

 

 

 

 

 
Parameters: 

0 number 0; 

10 decimal number 10; 

’b10 binary number 10 = (2)10; 

’h10 hex number 10 = (16)10; 

4’b100 binary number 0100 = (4)10; 

4’bx unknown 4 bit value xxxx; 

8’hfx equivalent to 8’b1111_xxxx; 

A parameter in verilog associates an identifier name with a constant. 

Declaration: 

parameter n = 4; 

parameter s0 = 2’b00, s1 = 2’b 01; s2 =2’b11; s3 = 2’b 10; 

Nets: 

A net represents a node in a circuit. There are two different types of nets are used in 

verilog. They are wire and tri. 

Wire type net can be employed to connect an output of one logic element in a 

circuit to an input of another logic element. Examples of scalar wire declarations: 

wire a; 

wire a, b; 

Example of vector wire declaration: 
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wire [2:0] s; 

wire [1:3] x; 

The square brackets are the syntax for specifying a vector’s range. The range [Ra:Rb] 

can be either increasing or decreasing. The indices Ra and Rb can be either positive or negative 

integers. 

The net s can be used as a three bit quantity or each bit can be referred to individually 

as s[2], s[1] and s[0]. If a value assigned to s such as s = 3’b010, the result is   s[2] = 0, 

s[2] = 1 and s[0] = 0. 

The tri type denotes circuit nodes that are connected in a tri state fashion. 

Example: 

tri x; 

tri [7:0] out; 

These nets are treated in the same manner as the wire type and they are used only to 

enhance the readability of code includes tri state gates. 

Variables: 

A variable can be assigned a value in one verilog statement and it retains this value 

until it is overwritten in a subsequent assignment statement. There are two types of variables, 

reg and integer. 

reg [2:0] out; 

The above declarations show that out has three bits. The keyword reg does not denote 

a storage element or register. In verilog code reg variables can be used to model either 

combinational or sequential parts of a circuit. 

integer x; 

Integer variables are useful for describing the behaviour of a module, but they do not 

directly correspond to nodes in a circuit. 

Memories: 

Memory is a two dimensional array of bits. Verilog allows such a structure to be 

declared as a variable (reg or integer) that is an array of vectors, such as 

reg[3:0] x [1:0] 

This statement defines x as two four-bit variables named x[1] and x[0]. Memories 

cannot be net types and they cannot be used as ports on a module. 

 

Identifiers 
 

Identifiers are the names of variables and other elements in verilog code. 

Rules: 

a) Any letter or digit may be used 
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b) The _underscore and $ characters are used 

c) Identifiers must not begin with a digit and it should not be a verilog keyword 

Example: legal identifiers are a, x1, a_b and byte. 

Illegal identifiers are 1a, +b, a*b and 258. 

Verilog is case sensitive, hence k is not the same as K and BYTE is not the same as Byte. 

Verilog allows a second form of identifier called an escaped identifier. These 

identifiers are begin with (\) backslash character, which can then be followed by any printable 

ASCII characters except white spaces. 

Example: \234, \sig-name, \x+y 

Escaped identifiers should not be used in normal verilog code, they are intended for 

use in code produced automatically when other languages are translated into verilog. 

 
Structural level modeling: 

In gate level modeling or structural level modeling, the circuit is described in terms of 

logic gates. Example: and, or, nand, nor, etc... The logic gates have one scalar output and multiple 

scalar inputs. The first terminal in the list of gate terminals is an output and the other terminals are 

inputs. 

a. Gate Primitives 

Verilog defines some basic logic gates as part of the language. Gate 

primitives used in verilog codes are NOT, AND, OR, NAND, NOR, XOR, XNOR gate. Verilog 

includes predefined modules that implement basic logic gates. These gates allow a circuit’s structure 

to be described using gate instantiation statements of the form: 

 

 

Here gate_name specifies the gate type and instance_name is an identifier, also it is optional. 

Each gate may have different number of ports, the output port listed first, followed by 

a variable number of input ports. 

 

Example: 

 
 

 

gate_name [instance_name] (output_port, input_port {, input_port}); 

and And1 (output, a, b); 
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or Or1 (output, a, b); 

nor Nor1 (output, a, b); 

xnor Xnor1 (output, a, b); 

xor Xor1 (output, a, b); 
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Structural specification of a full adder: 
 

 

 

not Not1 (output, input); 

nand Nand (output, a, b); 

 

module fulladd (a,b,cin, sum,carry) ; 

input a, b, cin; 

output sum, carry; 

wire p, q, r; 

and And1 (p, a, b); 

and And2 (q, a, cin); 

and And3 (r, b, cin); 

or Or1 (carry, p, q, r); 

xor Xor1 (sum, a, b, cin); 

endmodule 
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Simplified version of full adder: 
 

 

Gate delays 

 
A delay, as used in Verilog, is a number of time units it takes to receive a response of 

a circuit. In a simple forward combinational circuit this is a time it takes to obtain a change on 

an output when an input is altered. Let's say a synchronous circuit is triggered by a positive 

clock transition; `the delay' is then the time it takes for the circuit to change its outputs from 

the time the clock line is set high rather then a time it takes to change the outputs since data 

lines altered. 

 
Types of delays 

 
There are three basic types of delay which can be used: 

 
 the time it takes to set an output high (trise); this applies to a transition which may start from 

any (`0', `1', `X' or `Z') state 

 the time it takes to set an output low (tfall); similarly, applies to transitions which begin in any 

state. 

 and finaly, the time it takes to cut-off a buffer (toff). 

 
Syntax gate with delay: 

 

module fulladd (a,b,cin, sum,carry) ; 

input a, b, cin; 

output sum, carry; 

wire p, q, r; 

and (p, a, b); 
 

and (q, a, cin); 
 

and (r, b, cin); 
 

or (carry, p, q, r); 
 

xor (sum, a, b, cin); 

endmodule 



Einstein College of Engineering 
 

 
 

 
 

For example: 

 
and #(1, 3) g1 (o1, i1, i2); 

 
nor #(2) g2 (o2, i3, i4); 

 
The above parameters are specified in sequence and if a cut-off time is to be specified the fall time 

cannot be omitted. One more interesting transition is a move of an input from a defined logic state i.e. 

either `0' or `1' to an `X' (don't care). In such case, the shortest of the two times tfall, trise is used. For an 

inverse case (`X'->`0'|`1') the longer delay is used. 

 

 

 

 

 
 

Example: Single bit full-adder 

 
The design below is for a full adder, written using gate-level modelling techniques. 

A gate-level model of a 1-bit full-adder: 

 

gate_type #(t_rise, t_fall, t_off) instance_name (output_port,input_port1, input_port2,...); 

module full_adder(sum, c_out, a, b, c_in); 

output c_out, sum; 

input a, b, c_in; 

wire p, q, r; 

xor #(3,2) x0 (p, a, b); 

xor #(3,2) x1 (sum, p, c_in); 

and #(2,4) a0 (q, a, b); 

and #(2,4) a1 (r, p, c_in); 

or #(3) o0 (c_out, q, r); 

endmodule 
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Full Adder: Output - no delays 

 

 
Full Adder: Output - delays as specified 

 
Operators 

Verilog has large number of operators. 

 
Binary Arithmetic Operators 

 
Binary arithmetic operators operate on two operands. Register and net (wire) 

operands are treated as unsigned. However, real and integer operands may be signed. If any 

bit is unknown ('x') then result is unknown. 

 
Operator Name 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 

% Modulus 

 

 

Relational Operators 
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Relational operators compare two operands and return a logical value, i. e., TRUE(1) 

or FALSE(0). If any bit is unknown, the relation is ambiguous and the result is unknown. 

 
Operator Name  

> 
 

Greater than 

>= 
 

Greater than or equal 

< 
 

Less than 

<= 
 

Less than or equal 

== 
 

Logical equality 

!= 
 

Logical inequality 
 

 

 

 

 
 

Logical Operators 

 
Logical operators operate on logical operands and return a logical value, i. e., TRUE(1) or 

FALSE(0). Used typically in if and while statements. Do not confuse logical operators with the 

bitwise Boolean operators. For example , ! is a logical NOT and ~ is a bitwise NOT. The first negates, 

e. g., !(5 == 6) is TRUE. The second complements the bits, e. g., ~{1,0,1,1} is 0100. 
 
 

Operator Name  

!  Logical negation 

&& 

|| 

Bitwise Operators 

 Logical AND 

Logical OR 

 

Bitwise operators operate on the bits of the operand or operands. For example, the result of A 

& B is the AND of each corresponding bit of A with B. Operating on an unknown (x) bit results in the 

expected value. For example, the AND of an x with a FALSE is an x. The OR of an x with a TRUE is 

a TRUE. 

 
Operator Name 

~ Bitwise negation 

& Bitwise AND 

| Bitwise OR 
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^ Bitwise XOR 

~& Bitwise NAND 

~| Bitwise NOR 

~^ or ^~ Bitwise NOT XOR 

 

 

 

 

 

 

 

 

 

 

 
Unary Reduction Operators 

 
Unary reduction operators produce a single bit result from applying the operator to all of the 

bits of the operand. For example, &A will AND all the bits of A. 

 
Operator 

& 

Name  
AND reduction 

| 

^ 

 OR reduction 

XOR reduction 

~& 

~| 

~^ 

 NAND reduction 

NOR reduction 

XNOR reduction 

Unary Arithmetic Operators 

Operator Name Comments 

- Unary Minus Changes sign of its operand. 

 
 

Timing controls 

 
A timing control is either a delay control or an event control. 

 

Delay control: 
 

A delay control delays an assignment by a specified amount of time. A timescale 

compiler directive is used to specify the units of time followed by the precision used to 

calculate time expressions, 

`timescale 1ns/10ps // Units of time are ns. Round times to 10 ps. 
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Time units may only be s , ns , ps , or fs and the multiplier must be 1, 10, or 100. We can 

delay an assignment in two different ways: 

 
 Sample the RHS immediately and then delay the assignment to the LHS. 

 Wait for a specified time and then assign the value of the LHS to the RHS. 

 
Here is an example of the first alternative (an intra-assignment delay): 

a = #1 b; // intra-assignment delay 

The second alternative is delayed assignment: 

#1 a = b; // delayed assignment 

These two alternatives are not the same. The intra-assignment delay is equivalent to the 

following code: 

begin // Equivalent to intra-assignment delay. 

hold = b; // Sample and hold y immediately. 

#1; // Delay. 

a = hold; // Assignment to a. Overall same as a = #1 b. 

end 

In contrast, the delayed assignment is equivalent to a delay followed by an assignment as follows: 

begin // Equivalent to delayed assignment. 

#1; // Delay. 

a = b; // Assign y to x. Overall same as #1 a = b. 

end 

Event control: 
 

An event control,  delays an assignment until a specified event occurs. Here is the formal 

definition: 

event_control ::= @ event_identifier | @ (event_expression) 

event_expression ::= expression | event_identifier 

| posedge expression | negedge expression 

| event_expression or event_expression 
 

A positive edge (denoted by the keyword posedge ) is a transition from '0' to '1' or 'x' , or a 

transition from 'x' to '1 '. A negative edge ( negedge ) is a transition from '1' to '0' or 'x' , or a 

transition from 'x' to '0'. Transitions to or from 'z' do not count. Here are examples of event controls: 

module delay_controls; reg X, Y, Clk, Dummy; 

always #1 Dummy=!Dummy; // Dummy clock, just for graphics. 

// Examples of delay controls: 
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always begin #25 X=1;#10 X=0;#5; end 

// An event control: 

always @(posedge Clk) Y=X; // Wait for +ve clock edge. 

always #10 Clk = !Clk; // The real clock. 

initial begin Clk = 0; 

$display("T Clk X Y"); 

$monitor("%2g",$time,,,Clk,,,,X,,Y); 

$dumpvars;#100 $finish; end 

endmodule 

T Clk X Y 

0 0 x x 

10 1 x x 

20 0 x x 

25 0 1 x 

30 1 1 1 

35 1 0 1 

40 0 0 1 

50 1 0 0 

60 0 0 0 

65 0 1 0 

70 1 1 1 

75 1 0 1 

80 0 0 1 

90 1 0 0 

The dummy clock in delay_controls helps in the graphical waveform display of the results (it 

provides a one-time-tick timing grid when we zoom in, for example). Figure shows the graphical 

output (white is used to represent the initial unknown values). The assignment statements to 'X' in 

the always statement repeat (every 25 + 10 + 5 = 40 time ticks). 

 
FIGURE: Output 

delay_controls . 

 
from 

 
the 

 
module 

 

 

Events can be declared (as named events), triggered, and detected as follows: 

module show_event; 

reg clock; 

event event_1, event_2; // Declare two named events. 
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always @(posedge clock) -> event_1; // Trigger event_1. 

always @ event_1 

begin $display("Strike 1!!"); -> event_2; end // Trigger event_2. 

always @ event_2 begin $display("Strike 2!!"); 

$finish; end // Stop on detection of event_2. 

always #10 clock = ~ clock; // We need a clock. 

initial clock = 0; 

endmodule 

 

 

Procedural assignments conditional statements 

Verilog provides procedural statements. Procedural statements are executed in which 

order they appear in the code. Verilog syntax requires that procedural statements be contained 

inside an always block. 

Always blocks: 

An always block is a construct that contains one or more procedural statements. It has 

the form: 

 

 

Verilog includes several types of procedural statements. When multiple statements 

are included in an always block, the begin and end keywords are used, otherwise it can be 

omitted. 

The sensitivity_list is a list of signals that directly affect the output results generated 

by the always block. 

 
Example for always block: 

 
always @ (sensitivity_list) 

[begin] 

[procedural assignment statements] 

[if-else statements] 

[case statements] 

[while, repeat, and for loops] 

[task and function calls] 

[end] 
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Since the output variables sum and carry depend on a and b, these signals are 

included in the sensitivity list, separated by a keyword or. If the value of a signal in the 

sensitivity list changes, then the statements inside the always block are evaluated in the order 

presented. 

 
Procedural assignment statements: 

Any signal assigned a value inside an always block has to be a variable of type reg or 

integer. A value is assigned to a variable with a procedural assignment statement. There are 

two types of assignments: 

a) blocking assignments 

b) non-blocking assignments 

Blocking assignments are denoted by the symbol (=). 

The term blocking means that the assignment statement completes and updates 

its left – hand side before the subsequent statement is evaluated. 

Example: 

sum = a + b; 

x = sum [0]; 

The first statement sets sum using the current values of a and b, and then the second statement 

sets p according to this new value of sum. 

Verilog also provides non-blocking assignments and it can be denoted by (<=). 

Example: 

s <= a + b; 

p <= s [0]; 

At simulation time ti, the statements are still evaluated in order, but they both use the values 

of variables that exist at the start of the simulation time, ti. 

The first statement determines a new value for s based on the current values of a and b, but s 

is not actually changed to this value until all statements in the associated always block have been 

evaluated. So, the value of p at time ti is based on the value of s at time ti-1. 

Summary: 

For blocking assignments, the values of variables seen at time ti by each statement are the new 

values set in ti by any preceding statements in the always block. 

 
always @ (a or b) 

begin 

sum = a ^ b; 

carry = a & b; 

end 
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For non-blocking assignments, the values of variables seen at time ti are the values set in time 

ti-1. 

 

 

The if-else statement: 

General form of the if-else statement is given in figure. 
 

 

Figure 

 
 

If expression 1 is true, then the first statement is evaluated. When multiple statements are 

involved, they have to be included inside a begin-end block. 

 

 

 

 

 

Example: 

Verilog code for 2 x 1 multiplexer 

 
if (expression 1) 

begin 

statement; 

end 

else if (expression 2) 

begin 

statement; 

end 

else 

begin 

statement; 

end 



Einstein College of Engineering 
 

 
 

 
 

The code defines a 2 x 1 multiplexer with data inputs a and b, with select input s and output f. 

 
 

Case statement: 

General form of case statement is shown in the figure. 

 

The bits in the expression are called controlling expression, it checked for a match with each 

alternative. The first successive match causes the associated statements to be evaluated. Each digit in 

each alternative is compared for a correct match of the four values 0, 1, x and z. 

A special case is the default clause, which takes effort if no other alternative matches. 

Example: 

Verilog code for 2 x 1 multiplexer. 

 
always @ (a or b or s) 

if (s == 0) 

f = a; 

else 

f = b; 

 
case (expression) 

alternative1: begin 

statement: 

end 

alternative2 : begin 

statement; 

end 

[default: begin 

statement; 

end] 

endcase 
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In this example, s can have four values 0, 1, x, z. If s = 0 means output f = x, and if s = 1 means output 

f = y. 

 
Example: Verilog code for full adder using case statement. 

 
always @ (x or y or s) 

case (s) 

1’b0: f = x; 

1’b1: f = y; 

endcase 
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Loop statements: 

 
Verilog code includes four types of loop statements: for loop, while loop, repeat loop and 

forever loop. Synthesis tool support the for loop. 

General form of for loop is given below. 

module fulladd (a, b, cin, sum, carry); 

input a, b, cin; 

output sum, carry; 

reg sum, carry; 

always @ (a or b or cin) 

begin 

case ({a, b, cin}) 

 

3’b000: {carry, sum} = ’b00; 3 

3’b001: {carry, sum} = ’b01; 

3’b010: {carry, sum} = ’b10; 

3’b011: {carry, sum} = ’b01; 

3’b100: {carry, sum} = ’b10; 

3’b101: {carry, sum} = ’b10; 

3’b110: {carry, sum} = ’b11; 

3’b111: {carry, sum} = ’b00; 

endcase 

end 

endmodule 
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The initial_index is evaluated once, before the first loop iteration and typically performs the 

initialization of the integer loop control variable. In each loop iteration, the begin-end block is 

performed. The terminal_index condition is checked and if it is true, then another loop iteration is 

done. 

 
Example: 

 
Verilog code for bit-counting using for loop. 

 

 

General form of while loop and repeat loop is given below. 
 

 
 

for (initial_index; terminal_index; increment) 

begin 

statement; 

 

end 

 
 

always @ (x) 

begin 

count=0; 

 
for (x = 0; x < n; x = x + 1) 

count = count + b (x); 

end 

while (condition) 

begin 

statement; 

 

end 
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Tasks and Functions 

 
Tasks are like procedures in other programming languages, e. g., tasks may have zero or more 

arguments and do not return a value. Functions act like function subprograms in other languages. 

Except: 

 
1. A Verilog function must execute during one simulation time unit. That is, no time controlling 

statements, i. e., no delay control (#), no event control (@) or wait statements, allowed. A task can 

contain time controlled statements. 

 
2. A Verilog function cannot invoke (call, enable) a task; whereas a task may call other tasks and 

functions. 

 
The definition of a task is the following: 

 
task <task name>; // Notice: no list inside ()s 

<argument ports> 

<declarations> 

<statements> 

endtask 

An invocation of a task is of the following form: 

<name of task> (<port list>); 

where <port list> is a list of expressions which correspond to the <argument ports> of the 

definition. Port arguments in the definition may be input, inout or output. Since the <argument 

ports> in the task definition look like declarations, the programmer must be careful in adding declares 

at the beginning of a task. 

 

 

 

 
Testing tasks and functions 

repeat (constant_value) 

begin 

statement; 

 

end 
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module tasks; 

task add;    // task definition 

input x, y; // two input argument ports 

output z; // one output argument port 

reg R; // register declaration 

begin 

R = 1; 

if (x == y) 

z = 1 & R; 

else 

z = 0; 

end 

endtask 

 
initial begin: init1 

reg p; 

add(1, 0, p); // invocation of task with 3 arguments 

$display("p= %b", p); 

end 

endmodule 

 
 

The parameters  input and inout are passed by value to the task and output and inout 

parameters are passed back to invocation by value on return. Call by reference is not available. 

 
Allocation of all variables is static. Therefore, a task may call itself but each invocation of the 

task uses the same storage, i. e., the local variables are not pushed on a stack. Since concurrent threads 

may invoke the same task, the programmer must be aware of the static nature of storage and avoid 

unwanted overwriting of shared storage space. 

 
The purpose of a function is to return a value that is to be used in an expression. A function 

definition must contain at least one input argument. The passing of arguments in functions is the 

same as with tasks (see above). The definition of a function is the following: 

 
function <range or type> <function name>; 

<argument ports> 

<declarations> 

<statements> 
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endfunction 

where <range or type> is the type of the results passed back to the expression where the function was 

called. Inside the function, one must assign the function name a value. Below is a function which is 

similar to the task above. 

 
Testing functions 

 
 

module functions; 

function [1:1] add2; // function definition 

input x, y;  // two input argument ports 

reg R; // register declaration 

begin 

R = 1; 

if (x == y) 

add2 = 1 & R; 

else 

add2 = 0; 

end 

endfunction 

initial begin: init1 

reg p; 

p = add2(1, 0); // invocation of function with 2 arguments 

$display("p= %b", p); 

end 

endmodule 

 
Data flow modeling 

 

In verilog coding gate-level modeling works well due to the number of gates are 

less; if large number of gates are used in a circuit then this type of modeling will be 

complicated. Dataflow modeling is a powerful approach to implement large circuit. This 

modeling becomes a popular approach as logic synthesis tools have become difficult. 

Continuous assignments: 

Continuous assignments are one type of concurrent statements. While gate 

instantiations allow the description of a circuit’s structure, continuous assignments allow the 

description of a circuit’s function. 

General form of the continuous statement is 

assign net_assignment {, net_assignment}; 
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the net_assignment can be any expression involving the operators. 

Example: 

assign carry = (a & b) | (a & c) | (b & c); 

assign sum = a ^ b ^ c; 

multiple assignments are specified in one assignment, using commas to separate the 

assignment. 

Example: 

assign carry = (a & b) | (a & c) | (b & c), sum = a ^ b ^ c; 

Example for multibit assignment is 

wire [1:3] x, y, z; 

. 

. 

. 

assign z = x & y; 

This results in z1 = x1y1, z2 = x2y2, z3 = x3y3. 

Delays in dataflow modeling: 

Delay values control the time between the change in a right hand side operand 

and when the new value is assigned to the left hand side. Delays in continuous assignment 

statements can be specified in three ways: 

a) Regular assignment delay 

b) Implicit continuous assignment delay 

c) Net declaration delay 

 

Regular assignment delay: 

 
In this way, the delay value can be specified after the keyword assign. 

 
Example: 

 
assign #10 c = a & b; 

a    

b 
 

 

time 10 20 30 60 70 80 85 

 
1. When the input a and b go to high at time 20, c goes to high at 10 time units later. 

c xxxxx 
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2. When a goes low at 60, c goes to low at 70. 

3. When a changes to high at 80, but it goes down to low before 10 time units have over and 

done. 

4. So, at the time of recomputation, 10 units after 80, a is 0. Thus, c gets the value 0. 

 

Implicit continuous assignment delay: 

 
Implicit continuous assignment method is used to specify both a delay and an assignment 

on the net. 

 
Example: 

 
wire c; 

 
assign #10 c = a & b; 

 
In implicit continuous assignment delay we can write the above as: 

wire #10 c = a & b; 

 

 
Net declaration delay: 

 
Net declaration delays can be used in gate level modeling. Delay can be specified on a net 

when it is declared without putting a continuous assignment on the net. If a delay is specified on a net 

c, then any value change applied to the net c is delayed accordingly. 

 
Example: 

 
wire c; 

 
assign #10 c = a & b; 

 
We can write the above by using net declaration delay as: 

wire #10 c; 

assign c = a & b; 

 
Switch level modelling: 

 

This is another type of modeling used in verilog HDL. In this modeling, MOS switches are 

used. In verilog HDL, transistors are also known as switches that either conduct or are open. 
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MOS Switches 

 

Models of MOS networks consist following four primitive types: 

nmos 

pmos 

rnmos 

rpmos 

The pmos keyword stands for PMOS transistor and the nmos keyword stands for NMOS 

transistor. PMOS and NMOS transistors have relatively low impedance between their sources and 

drains when they conduct. 

The rpmos keyword stands for resistive PMOS transistor and the rnmos keyword stands for 

resistive NMOS transistor. Resistive PMOS and resistive NMOS transistors have significantly higher 

impedance between their sources and drains when they conduct than PMOS and NMOS transistors 

have. These four gate types are unidirectional channels for data similar to the bufif gates. 

Declarations of these gates begin with one of the following keywords: 

pmos 

nmos 

rpmos 

rnmos 

The delay specification follows the keyword. A terminal list completes the declaration. The 

delay specification can be 0, 1, 2, or 3 delays. If there is no delay, there is no delay through the switch. 

A single delay determines the delay of all output transitions. If the specification contains 2 delays, the 

first delay determines the rise delay, the second delay determines the fall delay, and the smaller of the 

2 delays specifies the delay of transitions to Z and X. If there are 3 delays, the first delay specifies the 

rise delay, the second delay specifies the fall delay, the third delay determines the delay of transitions 

to Z, and the smallest of the three delays applies to transitions to X. Delays on transitions to H and L 

are the same as delays on transitions to X. 

These four switches have one output, one data input, and one control input. The first terminal 

in the terminal list connects to the output, the second terminal connects to the data input, and the third 

terminal connects to the control input. 

Some combinations of data input values and control input values cause these switches to 

output either of two values, without a preference for either value. These switches’ logic tables include 

2 symbols representing such unknown results. The symbol L represents a result which has a value of 0 

or Z. The symbol H represents a result which has a value of 1 or Z. 

pmos 

rpmos 

CONTROL 
0 1 x z 

pmos 

rpmos 

CONTROL 
0 1 x z 
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D 0 
A 1 
T x 

A z 

0 z L L 
1 z H H 
x z x x 

z z z z 

D 0 
A 1 
T x 

A z 

0 z L L 
1 z H H 
x z x x 

z z z z 

Logic tables for pmos, rpmos, nmos, and rnmos gates 

The following example declares a pmos switch: 

pmos (out, data, control); 

The output is out, the data input is data, and the control input is control. 

Logic symbol: 

Nmos switch: 

Data out 
 
 

Control 

Pmos switch: 

Data       out 
 
 

Control 

 

 

 
Bidirectional Pass Switches 

Declarations of bidirectional switches begin with one of the following keywords: 

tran 

tranif1 

tranif0 

rtran 

rtranif1 

rtranif0 

Delay specification follows the keywords in declarations of tranif1, tranif0, rtranif1, and 

rtranif0; the next item is the optional identifier. A terminal list completes the declaration. 

The delay specifications for tranif1, tranif0, rtranif1, and rtranif0 devices can be 0, 1, or 2 

delays. If there is no delay, the device has no turn-on or turn-off delay. If the specification contains 

one delay, that delay determines both turn-on and turn-off delays. If 

there are 2 delays, the first delay specifies the turn-on delay, and the second delay specifies the turn- 

off delay. 



Einstein College of Engineering 
 

 

These six devices do not delay signals propagating through them. When these devices are 

turned off they block signals, and when they are turned on they pass signals. 

The tranif1, tranif0, rtranif1, and rtranif0 devices have three items in their terminal lists. Two 

are bidirectional terminals that conduct signals to and from the devices, and the other terminal 

connects to a control input. The terminals connected to inouts precede the 

terminal connected to the control input in the terminal list. 

The tran and rtran devices have terminal lists containing two bidirectional terminals. 

The bidirectional terminals of all six of these devices connect only to scalar nets or bit-selects of 

expanded vector nets. 

The following example declares a tranif1: 

tranif1 (inout1, inout2, control); 

The bidirectional terminals are inout1 and inout2. The control input is control. 

CMOS Gates 

The cmos gate is the combination of a pmos gate and an nmos gate. The rcmos (resistive 

cmos) gate is the combination of an rpmos gate and an rnmos gate. The combined gates in these 

configurations share data input and data output terminals, but they have separate control inputs. 

Cmos switch: 

pcontrol 

 
 

 

ncontrol 

 
 

Declarations of these gates begin with one of these keywords: 

cmos 

rcmos 

The delay specification can be 0, 1, 2 or 3 delays. If there is no delay, there is no delay 

through the gate. A single delay specifies the delay for all transitions. If the specification contains two 

delays, the first delay determines the rise delay, the second delay determines the fall delay, and the 

smaller of the two delays is the delay of transitions to Z 

and X. If the specification contains three delays, the first delay controls rise delays, the second delay 

controls fall delays, the third delay controls transitions to Z, and the smallest of the three delays 

applies to transitions to X. Delays in transitions to H or L are the same as delays in transitions to X. 

The cmos and rcmos gates have a data input, a data output and 2 control inputs. In the 

terminal list, the first terminal connects to the data output, the second connects to the data input, the 

third connects to the n-channel control input and the last connects to the p-channel 

data out 
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control input. 

The equivalence of the cmos gate to the pairing of an nmos gate and a pmos gate is detailed in 

the following explanation: 

cmos (w, datain, ncontrol, pcontrol); 

is equivalent to: 

nmos (w, datain, ncontrol); 

pmos (w, datain, pcontrol); 

pullup and pulldown Sources 

Declarations of these sources begin with one of the following keywords: 

pullup 

pulldown 

A strength specification follows the keyword and an optional identifier follows the strength 

specification. A terminal list completes the declaration. 

A pullup source places a logic value of one on the nets listed in its terminal list. A pulldown 

source places a logic value of zero on the nets listed in its terminal list. The signals that these sources 

place on nets have pull strength in the absence of a strength specification. There are no delay 

specifications for these sources because the signals they place on nets continue throughout simulation 

without variation. 

The following example declares two pullup instances: 

pullup (strong1, strong0)(neta),(netb); 

In this example, one gate instance drives neta, the other drives netb. 

 
 

Behavioural modeling 

 
In this section we are going to discuss about the behavioural features of Verilog. 

 

Modules 

 
A circuit or subcircuit can be explained in verilog is called a module. The general structure of 

a module declaration is given below: 

 
module module_name [(port_name {, port_name})]; 

[parameter declarations] 

[input declarations] 

[output declarations] 

[inout declarations] 



Einstein College of Engineering 
 

 

[wire or tri declarations] 

[reg or integer declarations] 

[function or task declarations] 

[assign continuous assignments] 

[initial block] 

[always blocks] 

[gate instantiations] 

[module instantiations] 

endmodule 

General form of a module 

 

The module has name, module_name, which can be any valid identifier followed by a 

list of ports. The name port refers to an input or output connection in an electrical circuit. 

 
The ports used in verilog code are: 

 
a) input port 

b) output port 

c) inout port 

these ports can be either scalar or vector. 

Example: 

 
input a,b,c; 

input [2:0]a,b; 

output s,c; 

inout [5:0]q; 

output [3:0]s; 

wire x,y; 

wire [5:0]y; 

reg [ 2:0]x; 
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All procedural statements occur in blocks that are defined inside modules. There are two 

kinds of procedural blocks: the initial block and the always block. Within each block, Verilog uses a 

begin and end to enclose the statements. Since initial blocks are ignored during synthesis, only always 

blocks are discussed. Always blocks usually take the following format: 

 
always 

begin 

statement 

..... 

end 

 
where each statement is a procedural assignment line terminated by a semicolon. 

 

Module Declaration 

 
In the module declaration, the I/O ports of the circuit are declared. Each port has a name and a mode 

(in, out, and inout) as shown in the example below. 

 
module ex (A, B, C, D, E); 

input A, B, C; 

output D; 

inout E; 

wire D, E; 

... 

assign E = oe ? A : 1'bz; 

assign D = B & E; 

... 

endmodule 

 
The input and output ports defined in the module declaration called ex are the basic input and 

output I/O signals for the design. The inout port in Verilog is analogous to a bi-directional I/O pin on 

the device with the data flow for output versus input being controlled by the enable signal to the 

tristate buffer. 

 
The preceding example describes E as a tristate buffer with a high-true output enable signal. 

If oe = 1, the value of signal A will be output on the pin represented by E. If oe = 0, then the buffer is 

in high impedance (Z) and any input value driven on the pin E (from the external logic) will be 

brought into the device and fed to the signal represented by D. 
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Verilog Assignments 

 
There are two forms of assignment statements in the Verilog language: 

 
 Continuous Assignments 

 Procedural Assignments 

 
Continuous Assignments 

 
Continuous assignments are used to model combinatorial logic in a concise way. Both explicit 

and implicit continuous assignments are supported. Explicit continuous assignments are introduced by 

the assign keyword after the net has been separately declared. Implicit continuous assignments 

combine declaration and assignment. 

 
Example of an explicit continuous assignment: 

 
wire x; 

..... 

assign x = select ? b : a; 

 
Example of an implicit continuous assignment: 

 
wire temp_hold = a | b; 

Note Continuous assignments are only allowed on wire and tri data types. 

 
Procedural Assignments 

 
Procedural assignments are used to assign values to variables declared as regs and are introduced by 

always blocks, tasks, and functions. Procedural assignments are usually used to model registers and 

FSMs. 

 
Different statements can be used in a process: 

 
 Variable and signal assignment 

 If... else statement 

 Case statement 

 For loop statement 

 Function and task call 

 
The following sections provide examples of each of these statements. 



Einstein College of Engineering 
 

 

if...else statement 

 
If... else statements use true/false conditions to execute statements. If the expression evaluates 

to true, the first statement is executed. A block of multiple statements may be executed using begin 

and end keywords. If...else statements may be nested. The following example shows how a MUX can 

be described using an If...else statement. 

 
Example MUX Description Using If... Else Statement 

 
module mux4 (sel, p, q, r, s, y); 

input [1:0] sel; 

input [1:0] p, q, r, s; 

output [1:0] y; 

reg [1:0] y; 

 
 

always @(sel or p or q or r or s) 

begin 

if (sel[1]) 

if (sel[0]) 

y = s; 

else 

y = r; 

else 

if (sel[0]) 

y = q; 

else 

y = p; 

end 

endmodule 

 
Case statement 

 
Case statements perform a comparison to an expression to evaluate one of a number of parallel 

branches. The Case statement evaluates the branches in the order they are written. The first branch 

that evaluates to true is executed. If none of the branches match, the default branch is executed. 

 
Note Do no use unbounded integers in case statements. Always bound integers to a specific number of 

bits, or results will be unpredictable. 
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Casez treats all z values in any bit position of the branch alternative as a don't care. 

 
Casex treats all x and z values in any bit position of the branch alternative as a don't care. 

 
The question mark (?) can be used as a "don't care" in any of the preceding case statements. The 

following example shows how a MUX can be described using a Case statement. 

 
Example MUX Description Using Case Statement 

 
module mux4 (s a, b, c, d, y); 

input [1:0] s; 

input [1:0] a, b, c, d; 

output [1:0] y; 

reg [1:0] y; 

 
 

always @(s or a or b or c or d) 

begin 

case (s) 

2'b00: y = a; 

2'b01: y = b; 

2'b10: y = c; 

default:y = d; 

endcase 

end 

endmodule 

 
The preceding Case statement will evaluate the values of the input s in priority order. To avoid 

priority processing, it is recommended that you use a parallel-case Verilog meta comment which will 

ensure parallel evaluation of the sel inputs as in the following. 

 
Example: 

 
always @(sel or a or b or c or d) //synthesis parallel_case 

 
For and Repeat loops 

 
When using always blocks, repetitive or bit slice structures can also be described using the "for" 

statement or the "repeat" statement. 
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The "for" statement is supported for: 

 
 Constant bounds 

 Stop test condition using operators <, <=, > or >= 

 Next step computation falling in one of the following specifications: 

o var = var + step 

o var = var - step 

 
(where var is the loop variable and step is a constant value). 

 
The repeat statement is only supported for constant values. The following example shows the use of a 

For Loop. 

 
Example For Loop Description 

 
module countzeros (a, Count); 

input [7:0] a; 

output [2:0] Count; 

reg [2:0] Count; 

reg [2:0] Count_Aux; 

integer i; 

 
always @(a) 

begin 

Count_Aux = 3'b0; 

for (i = 0; i < 8; i = i+1) 

begin 

if (!a[i]) 

Count_Aux = Count_Aux+1; 

end 

Count = Count_Aux; 

end 

endmodule 

 
Blocking Versus Non-Blocking Procedural Assignments 
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The # and @ time control statements delay execution of the statement following them until the 

specified event is evaluated as true. Use of blocking and non-blocking procedural assignments have 

time control built into their respective assignment statement. 

 
The # delay is ignored for synthesis. 

The syntax for a blocking procedural assignment is shown in the following example: 

reg a; 

a = #10 (b | c); 

or 

if (in1) out = 1'b0; 

else out = in2; 

 
As the name implies, these types of assignments block the current process from continuing to execute 

additional statements at the same time. These should mainly be used in simulation. 

 
Non-blocking assignments, on the other hand, evaluate the expression when the statement executes, 

but allow other statements in the same process to execute as well at the same time. The variable 

change only occurs after the specified delay. 

 
The syntax for a non-blocking procedural assignment is as follows: 

 
variable <= @(posedge or negedge bit) expression; 

The following shows an example of how to use a non-blocking procedural assignment. 

if (in1) out <= 1'b1; 

else out <= in2; 
 

Test bench: 
 

Test bench is another verilog code that creates a circuit involving the circuit to be tested. 

This code will send different inputs to the code under test and get the output and displays to check the 

accuracy. 

Example: 

The verilog code for AND gate is given below. It is an example for simple testbench. 
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module andgate_tb; 

wire t_y; 

reg   t_a,   t_b; 

andgate my_gate( .a(t_a), .b(t_b), .y(t_y)  ); 

 
 

initial 

begin 

 
$monitor(t_a, 

  

 

 

t_b, 

 

 

 

t_y); 

t_a 

t_b 

#5 

= 

= 

 1'b0; 

1'b0; 

t_a 

t_b 

#5 

t_a 

= 

= 

 
 

= 

 1'b0; 

1'b1; 

 
 

1'b1; 

t_b 

#5 

t_a 

t_b = 1'b1; 

= 

 
 

= 

 1'b0; 

 
 

1'b1; 

end 

endmodule 

   

 

Example: 
 

Teset bench for full adder: 
 

module adder_using_always (); 

reg a, b; 

reg s, c; 

always @ (a or b) 

begin 

{c,s} = a + b; 

end 

initial begin 

$monitor (" A = %b 

B = %b CARRY = %b SUM = %b",a,b,c,s); 

#10 a = 0; b = 0; 
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#10 a = 1; 

#10 b = 1; 

#10 a = 0; 

#10 b = 0; 

#10 $finish; 

end 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 
Example: 

 
 

Test bench for D-latch 

 
 

module dlatch(); 

reg q; 

reg d, en; 

always @ (d or en) 

if (en) begin 

q = d; 

end 

initial begin 

$monitor (" ENABLE = %b D = %b Q = %b", en, d, q); 

#1 en = 0; 

#1 d = 1; 

#1 en = 1; 

#1 d = 0; 

#1 d = 1; 

#1 d = 0; 

#1 en = 0; 
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#10 $finish; 

end 

endmodule 

 
Example: 

 
 

Test bench for D-flip flop 

 
 

module dff (); 

reg clk,reset,preset,d; 

reg q; 

always @ (posedge clk or posedge rst or posedge preset) 

if (reset) begin 

q <= 0; 

end else if (preset) begin 

q <= 1; 

end else begin 

q <= d; 

end 

 
 

Testbench code here 

initial begin 

$monitor("CLK = %b RST = %b PRESET = %b D = %b Q = 

%b", 

clk,rst,preset,d,q); 

clk = 0; 

#1 rst = 0; 

preset = 0; 

d = 0; 

#1 rst = 1; 

#2 rst = 0; 

#2 preset = 1; 

#2 preset = 0; 

repeat (4) begin 

#2 d = ~d; 

end 
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#2 $finish; 

end 

always 

#1 clk = ~clk; 

endmodule 
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