

AL-AMEEN ENGINEERING COLLEGE

(Autonomous)

Accredited by NAAC with "A" Grade :: An ISO Certified Institution (Affiliated to Anna University, Chennai & Approved by AICTE, New Delhi) Karundevanpalayam, NanjaiUthukkuli Post, Erode – 638 104, Tamilnadu, INDIA.

CURRICULUM & SYLLABI

SEMESTERS – I to VIII (Regulations 2020)

CHOICE BASED CREDIT SYSTEM

B.E. Electronics and Communication Engineering

Applicable to the Students admitted in the AY 2020-21 only

KNOWLEDGE LEVELS (BLOOM'S TAXONOMY)

Notation	Knowledge Levels
K1	Remembering
K2	Understanding
K3	Applying
K4	Analysing
K5	Evaluating
K6	Creating

VISION

Envisioned to be a centre of academic and research excellence in the field of Electronics and Communication Engineering for uplifting the under-privileged and rural students.

MISSION

- 1. To provide strong fundamentals and technical skills through effective teaching learning Methodologies.
- 2. To inculcate learning of emerging technologies in research addressing the needs of industry and society.
- 3. To create professionals to serve the society with ethical values.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)										
PEO 1	Take up careers in VLSI, Signal Processing, Information and Communication, Embedded system & Control Engineering.									
PEO 2	Pursue higher education / research and practice profession.									
PEO 3	Adapt to the technological advancement for providing the sustainable engineering solutions to meet organization/society needs.									

	PROGRAM OUTCOMES (POs)
PO 1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid

	conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES (PSOs)									
PSO 1	Professional Competence: Apply the knowledge of electronics and communication Engineering in VLSI, Signal processing, Information and Communication, Embedded system & Control Engineering.								
PSO 2	Technical Skill: Design and Implement products using the cutting – edge software and hardware tools.								

CURRICULUM

SEMESTER I

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20MA1T1	Engineering Mathematics I	BS	50	50	3	1	0	4	
2	20CY1T2	Engineering Chemistry	BS	50	50	3	0	0	3	
3	20EN1T3	Communicative English I	HS	50	50	3	1	0	4	
4	20PH1T4	Engineering Physics	BS	50	50	3	0	0	3	
5	20CS1T5	Fundamental of Computing and Programming	ES	50	50	3	0	0	3	
		LABORATORY CO	URSES							
6	20GE1L1	Physics and Chemistry Laboratory	BS	50	50	0	0	3	1.5	
7	20CS1L2	Computer Practices Laboratory	ES	50	50	0	0	3	1.5	
	MANDATORY COURSE									
8		Universal Human Values 1 - Induction Programme	MC	-	-	-	-	-	-	
	Total						2	6	20	

SEMESTER II

Sl. No.	Course Code	Course Title	Category	CIA	ESE	L	Т	P	С	
	THEORY COURSES									
1	20MA2T1	Engineering Mathematics II	BS	50	50	3	1	0	4	
2	20EN2T3	Communicative English II	HS	50	50	3	0	0	3	
3	20EC2T4	Electronic Devices and Circuits	ES	50	50	3	0	0	3	
4	20EE2T5	Circuit Theory	ES	50	50	3	1	0	4	
	LABORATORY COURSES									
5	20EM2L1	Engineering Practices Laboratory	ES	50	50	0	0	3	1.5	
6	20ME2L2	Engineering Drawing Laboratory	ES	50	50	0	0	3	1.5	
7	20EC2L3	Electronic Devices and Circuits Laboratory	ES	50	50	0	0	2	1	
		MANDATORY	Y COURSE							
8	20CY2T2	Environmental Sciences	MC	100		3	0	0	0	
	Total						2	8	18	

SEMESTER III

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20CS3T1	Data Structures	ES	50	50	3	0	0	3	
2	20EC3T2	Signals and Systems	PC	50	50	3	1	0	4	
3	20MA3T3	Transforms and Partial Differential Equations	BS	50	50	3	1	0	4	
4	20EC3T4	Digital System Design	PC	50	50	3	0	0	3	
5	20EE3T5	Principles of Electrical Engineering	ES	50	50	3	0	0	3	
		LABORATORY CO	URSES	}						
6	20ENCL1	Communication Skills Laboratory	HS	50	50	0	0	2	1	
7	20EC3L1	Digital System Design Laboratory	PC	50	50	0	0	2	1	
8	20CS3L3	Data Structures Laboratory	ES	50	50	0	0	2	1	
		MANDATORY CO	URSE							
9	20MCCT1	Constitution of India	MC	100		3	0	0	0	
	Total						2	6	20	

SEMESTER IV

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C	
THEORY COURSES										
1	20MA4T2	Probability and Random Processes	BS	50	50	3	1	0	4	
2	20EC4T3	Linear Integrated Circuits	PC	50	50	3	0	0	3	
3	20EC4T4	Microprocessors and Microcontrollers	PC	50	50	3	0	0	3	
4	20EC4T5	Electronics Circuits	PC	50	50	3	0	0	3	
5	20EC4T6	Electromagnetic Fields	ES	50	50	3	1	0	4	
		LABORATORY CO	URSES							
6	20EC4L1	Linear Integrated Circuits Laboratory	PC	50	50	0	0	2	1	
7	20EC4L2	Microprocessors and Microcontrollers Laboratory	PC	50	50	0	0	2	1	
		MANDATORY CO	URSE							
8	20HSCT1	Universal Human Values 2: Understanding Harmony	HS	100		2	1	0	3	
Total						18	2	4	22	

SEMESTER V

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20EC5T1	Digital Signal Processing	PC	50	50	3	1	0	4	
2	20EC5T2	Analog and Digital Communication	PC	50	50	3	1	0	4	
3		Professional Elective–I	PE	50	50	3	0	0	3	
4		Professional Elective- II	PE	50	50	3	0	0	3	
5		Open Elective–I	OE	50	50	3	0	0	3	
	TH	EORY COURSES WITH LABO	RATOR	RY CO	MPON	ENTS	5			
6	20EE5LT1	Control Systems Engineering	PC	50	50	2	0	4	4	
		LABORATORY	COURS	E						
7	20EC5L1	Digital Signal Processing Laboratory	PC	50	50	0	0	3	1.5	
	MANDATORY COURSE									
8	20PT5T1	Career Guidance - I	MC	100		2	1	0	0	
	Total						3	7	22.5	

SEMESTER VI

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20EC6T1	Antenna and wave Propagation	PC	50	50	3	1	0	4	
2	20EC6T2	VLSI Design	PC	50	50	3	1	0	4	
3		Professional Elective–III	PE	50	50	3	0	0	3	
4		Professional Elective- IV	PE	50	50	3	0	0	3	
5		Open Elective–II	OE	50	50	3	0	0	3	
	THEORY COURSES WITH LABORATORY COMPONENTS									
6	20CSCLT1	Data Communication and Networks	PC	50	50	2	0	4	4	
		LABORATORY	COURS	E						
7	20EC6L1	VLSI Design Laboratory	PC	50	50	0	0	3	1.5	
8	20EC6L2	Mini Project	EEC	100		0	0	4	2	
	MANDATORY COURSE									
9	20PT6T1	Career Guidance - II	MC	100		2	1	0	0	
	Total							11	24.5	

SEMESTER VII

Sl. No.	Course Code	Course Title	Categ	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20EC7T1	RF and Microwave Engineering	PC	50	50	3	1	0	4	
2	20HSCT2	Professional Ethics	HS	50	50	3	0	0	3	
3	20EC7T3	Fiber Optic Communications	PC	50	50	3	1	0	4	
4		Open Elective - III	OE	50	50	3	0	0	3	
5		Open Elective - IV	OE	50	50	3	0	0	3	
	ТН	EORY COURSE WITH LABO	RATOR	Y CON	MPONE	ENTS				
6	20ECCLT1	Embedded Systems	PC	50	50	2	0	4	4	
		LABORATORY	COURS	E						
7	20EC7L1	RF and Microwave Laboratory	PC	50	50	0	0	2	1	
8	HX8001	Professional Readiness for Innovation, Employability and Entrepreneurship	EEC	100		0	0	6	3	
	Total						2	12	25	

SEMESTER VIII

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C	
	LABORATORY COURSES									
1	20EC8L1	Project Work Phase - II	EEC	50	50	0	0	20	10	
2	20EC8L2	Internship / Summer Training	EEC	100		0	0	0	1	
	Total							20	11	

Total Credits: 163

(* Total Credits must be 163)

HUMANITIES AND SOCIAL SCIENCES INCLUDING MANAGEMENT (HS)

S. No.	Course Code	Course Title	L	T	P	C
1	20EN1T3	Communicative English - I	3	1	0	4
2	20EN2T3	Communicative English - II	3	0	0	3
3	20ENCL1	Communication Skills Laboratory	0	0	2	1
4	20HSCT1	Universal Human Values 2: Understanding Harmony	3	0	0	3
5	20HSCT2	Professional Ethics	3	0	0	3

BASIC SCIENCES (BS)

Sl.No.	Course Code	Course Title	L	T	P	C
1	20MA1T1	Engineering Mathematics – I	3	1	0	4
2	20CY1T2	Engineering Chemistry	3	0	0	3
3	20PH1T4	Engineering Physics	3	0	0	3
4	20GE1L1	Physics and Chemistry Laboratory	0	0	3	1.5
5	20MA2T1	Engineering Mathematics II	3	1	0	4
6	20MA3T3	Transforms and Partial Differential Equations	3	1	0	4
7	20MA4T2	Probability and Random Processes	3	1	0	4

ENGINEERING SCIENCES (ES)

Sl.No.	Course Code	Course Title	L	T	P	C
1	20CS1T5	Fundamentals of Computing and Programming	3	0	0	3
2	20CS1L2	Computer Practices Laboratory	0	0	3	1.5
3	20EC2T4	Electronic Devices and Circuits	3	0	0	3
4	20EE2T5	Circuit Theory	3	1	0	4

5	20EM2L1	Engineering Practices Laboratory	0	0	3	1.5
6	20ME2L2	Engineering Drawing Laboratory	0	0	3	1.5
7	20EC2L3	Electronic Devices and Circuits Laboratory	0	0	2	1
8	20CS3T1	Data Structures	3	0	0	3
9	20CS3L3	Data Structures Laboratory	0	0	2	1
10	20EE3T5	Principles of Electrical Engineering	3	0	0	3
11	20EC4T5	Electromagnetic Fields	3	1	0	4

PROFESSIONAL CORE (PC)

Sl.No.	Course Code	Course Title	L	T	P	C
1	20EC3T2	Signals and Systems	3	1	0	4
2	20EC3T4	Digital System Design	3	0	0	3
3	20EC3L1	Digital System Design Laboratory	0	0	2	1
4	20EC4T3	Linear Integrated Circuits	3	0	0	3
5	20EC4T4	Microprocessors and Microcontrollers	3	0	0	3
6	20EC4T5	Electronics Circuits	3	0	0	3
7	20EC4L1	Linear Integrated Circuits Laboratory	0	0	2	1
8	20EC4L2	Microprocessors and Microcontrollers Laboratory	0	0	2	1
9	20EC5T1	Digital Signal Processing	3	1	0	4
10	20EC5T2	Analog and Digital Communication	3	1	0	4
11	20EE5LT1	Control Systems Engineering	2	0	4	4
12	20EC5L1	Digital Signal Processing Laboratory	0	0	3	1.5
13	20EC6T1	Antenna and wave Propagation	3	1	0	4

14	20EC6T2	VLSI Design	3	1	0	4
15	20CSCLT1	Data Communication and Networks	2	0	4	4
16	20EC6L1	VLSI Design Laboratory	0	0	3	1.5
17	20EC7T1	RF and Microwave Engineering	3	1	0	4
18	20EC7T3	Fiber Optic Communications	3	1	0	4
19	20ECCLT1	Embedded Systems	2	0	4	4
20	20EC7L1	RF and Microwave Laboratory	0	0	2	1

PROFESSIONAL ELECTIVES (PE)

	Semester – V (Elective I)									
Sl.No.	Course Code	Course Title	L	Т	P	C				
1	20EC5E1	Transmission lines and waveguides	3	0	0	3				
2	20EC5E2	Optoelectronics Devices	3	0	0	3				
3	20EC5E3	Soft Computing	3	0	0	3				
4	20EC5E4	Microcontroller Based Automation	3	0	0	3				

	Semester – V (Elective II)									
Sl.No.	Course Code	Course Title	L	Т	P	C				
1	20EC5E5	Medical Electronics	3	0	0	3				
2	20EC5E6	Modern Electronic Instrumentation	3	0	0	3				
3	20EC5E7	Electronics Circuit Board Design	3	0	0	3				
4	20EC5E8	Advanced Digital Signal Processing	3	0	0	3				
5	20EC5E9	Computer Architecture	3	0	0	3				

	Semester – VI (Elective III)										
Sl.No.	Course Code	Course Title	L	Т	P	C					
1	20ECCE1	Digital Image Processing	3	0	0	3					
2	20EC6E3	Fundamentals of Nano Electronics	3	0	0	3					
3	20EC6E4	Mobile Communication	3	0	0	3					
4	20EC6E5	Cognitive Radio	3	0	0	3					
5	20EC6E9	Wireless Broadband Communication	3	0	0	3					

	Semester – VI (Elective IV)									
Sl.No.	Course Code	Course Title	L	T	P	C				
1	20EC6E7	Satellite Communication	3	0	0	3				
2	20ECCE2	Wireless Ad hoc and Sensor Networks	3	0	0	3				
3	20EC6E8	VLSI Signal Processing	3	0	0	3				
4	20ITCE6	Cryptography and Network Security	3	0	0	3				
5	20EC6E10	Remote Sensing	3	0	0	3				

OPEN ELECTIVES (OE)

Sl.No.	Course Code	Course Title	L	Т	P	C
1	20ECO01	Television and Video Engineering	3	0	0	3
2	20ECO02	Sensors and Transducers	3	0	0	3
3	20ECO03	Telecommunication Switching Systems	3	0	0	3
4	20ECO04	Wireless Communication	3	0	0	3
5	20EC6T2	VLSI Design	3	0	0	3
6	20EC7T3	Fiber Optic Communications	3	0	0	3
7	20EC5E2	Optoelectronics Devices	3	0	0	3
8	20EC5E5	Medical Electronics	3	0	0	3
9	20ECCE1	Digital Image Processing	3	0	0	3
10	20EC6E3	Fundamentals of Nano Electronics	3	0	0	3
11	20EC6E7	Satellite Communication	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSES (EEC) PRACTICAL COURSES AND PROJECT WORK

Sl. No.	Course Code	Course Title	L	Т	P	C
1	20ME6L2	Mini Project	0	0	4	2
2	20EC8L2	Internship / Summer Training	0	0	2	1
3	HX8001	Professional Readiness for Innovation, Employability and Entrepreneurship	0	0	6	3
4	20EC8L1	0	0	20	10	

MANDATORY COURSES (MC)

Sl.No.	Course Code	Course Title	L	T	P	C
1		Universal Human Values 1 - Induction Programme	0	0	0	0
2	20CY2T2	Environmental Sciences	3	0	0	0
3	20MCCT1	Constitution of India	3	0	0	0
4	20HSCT1	Universal Human Values 2: Understanding Harmony	2	1	0	3
5	20PT5T1	Career Guidance - I	2	1	0	0
6	20PT6T1	Career Guidance - II	2	1	0	0

VALUE ADDED COURSES (VAC)

S.No.	Course Code	Course Title	Credit
1	20ECV01	Basic Electronics Components	1
2	20ECV02	Digital System Design using VHDL	1
3	20ECV03	PCB Design using Cadence EDA Tools	1
4	20ECV04	Embedded System Design using PIC Microcontroller	1
5	20ECV05	Programming using Arduino	1
6	20ECV06	Signal and Image Processing using RaspberryPi	1
7	20ECV07	Embedded System Design using MSP430 and TIVAC Series	1
8	20ECV08	Mobile Phone Servicing	1
9	20ECV09	Basic Networks	1
10	20ECV10	System Design using FPGA	1
11	20ECV11	RF Design using ADS	1

CURRICULUM BREAKDOWN STRUCTURE

Subject	AICTE suggested breakdown of credits	Total number of credits	Curriculum Content (% of total number of credits of the program)
Humanities and Social Sciences including Management (HS)	15	14	8.58
Basic Sciences (BS)	25	23.5	14.41
Engineering Sciences (ES)	24	26.5	16.25
Professional Core (PC)	48	59	36.19
Program Electives (PE)	18	12	7.36
Open Electives (OE)	18	12	7.36
Employability Enhancement Courses (EEC) – Practical Courses and Project Work	15	16	9.81
Mandatory Courses (MC)	0	0	0
Total	163	*163	100.00

CREDIT SUMMARY

CI No	Subject Area			Cre	dits pe	er Sen	nester			Total	AICTE	
Sl. No.		Ι	II	Ш	IV	V	VI	VII	VIII	Credits	Suggested Credits	
1	HS	4	3	1	3			3		14	15	
2	BS	11.5	4	4	4					23.5	25	
3	ES	4.5	11	7	4					26.5	24	
4	PC			8	11	13.5	13.5	13		59	48	
5	PE					6	6			12	18	
6	OE					3	3	6		12	18	
7	EEC						2	3	11	16	15	
8	MC				0					0	0	
T	OTAL	20	18	20	22	22.5	24.5	25	11	*163	163	

- **HS** Humanities and Social Sciences including Management
- **BS** Basic Sciences
- **ES** Engineering Sciences
- **PC** Professional Core
- **PE** Professional Electives
- **OE** Open Electives
- **EEC** Employability Enhancement Courses
- **MC** Mandatory Courses

SEMESTER I

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
		THEORY COUR	SES						
1	20MA1T1	Engineering Mathematics I	BS	50	50	3	1	0	4
2	20CY1T2	Engineering Chemistry	BS	50	50	3	0	0	3
3	20EN1T3	Communicative English I	HS	50	50	3	1	0	4
4	20PH1T4	Engineering Physics	BS	50	50	3	0	0	3
5	20CS1T5	Fundamental of Computing and Programming	ES	50	50	3	0	0	3
		LABORATORY CO	URSES						
6	20GE1L1	Physics and Chemistry Laboratory	BS	50	50	0	0	3	1.5
7	20CS1L2	Computer Practices Laboratory	ES	50	50	0	0	3	1.5
		MANDATORY CO	URSE						
8		-	-	-	-				
		Total				15	2	6	20

Semester	Programme	Course Code	Course Name	L	T	P	C
I	B.E. / B.Tech., Common to all	20MA1T1	ENGINEERING MATHEMATICS I	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)											
	After Successful completion of the course, the students should be able to	RBT Level	Topics Covered									
CO1	Identify Eigen values and Eigenvectors and apply orthogonal diagonalization to convert quadratic form to canonical form.	К3	1									
CO2	Apply differentiation and integration technique to solve algebraic and transcendental function	К3	2									
CO3	Evaluate the total derivative of the function, expand the given as series and locate the maximum and minimum for multivariate function	K5	3									
CO4	Solve first order Ordinary Differential Equations and apply them to certain physical situations	К3	4									
CO5	Choose appropriate integral techniques to find area and volume of the given region	K5	5									

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3		3				1	3	3		3			
CO2	3	3		3				1	3	3		3			
CO3	3	3		3				1	3	3		3			
CO4	3	3		3				1	3	3		3			
CO5	3	3		3				1	3	3		3			

	COURSE ASSESSMENT METHODS											
DIRECT	1	Continuous Assessment Tests										
	2 Assignments and Tutorials											
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

					CC	OURSE CO	ONTENT				
То	pic - 1					MAT	RICES				9+3
Ham	ilton theo	rem (s	tateme	nt and application	ns) –	orthogonal	Eigen values and lateral transformation of m by an orthogonal	a sym	metric n		
То	pic - 2			DIFF	EREN	TIATION	N AND INTEGRA	TION			9+3
prop		thout p	roof) -				ntal functions – de raic and transcende				
То	pic - 3			FUN	стю	NS OF SE	EVERAL VARIA	BLES			9+3
Total derivatives – Taylor's series expansion – maxima and minima – Lagrange's multipliers method – Jacobian's method											
To	Topic - 4 FIRST ORDER ORDINARY DIFFERENTIAL EQUATION								9+3		
	_			noulli's equation – and its application	_	tion of firs	t order and higher	degree	– Claira	ut's form – Li	near first
To	pic - 5				M	ULTIPLE	INTEGRALS				9+3
							tes – change of or an co-ordinates (sin			ion – area as	a double
TH	EORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
BOC)K REFE	RENC	ES								
1		and Iy	engar	S.R.K, "Advance	d Eng	ineering N	fathematics", 3 rd E	dition,	Narosa l	Publishing Hou	ise, New
2	Ramana l	3.V., "I	Higher	Engineering Math	nemat	ics", Tata I	Mcgraw Hill Publis	hing C	ompany,	New Delhi, 200	08.
3	Kreyszig	E., "Ac	lvance	d Engineering Ma	thema	ntics", 9 th E	Edition, John Wiley	Sons,	2012.		
4	Glyn Jam	es., "A	dvanc	ed Modern Engine	ering	Mathemat	ics", Pearson Educa	ation L	mited, 20	007.	
	N P Bali Limited,		sh Go	yal, "A Text Boo	ok of	Engineerii	ng Mathematics",	3 rd Edi	tion, Lax	xmi Publication	n Private
OTE	HER REF	EREN	CES								
1	https://wv	ww.slid	eshare	.net/mailrenuka/m	atrice	s-and-appl	ication-of-matrices				
-		11.1		. / •1 1 /	, .		ication-of-matrices				

https://www.slideshare.net/abhinavsomani3/applications-of-maths-in-our-daily-life-41607055

https://youtu.be/wtuq1oSButE

3

Semester	Programme	Course Code	Course Name	L	Т	P	C
Ι	B.E. / B.Tech., Common to all	20CY1T2	ENGINEERING CHEMISTRY	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Explain the properties & working techniques along with potential applications.	K2	1							
CO2	Choose the appropriate method for specific application in engineering technology.	К3	2							
CO3	Analyse new solutions to problems in materials and energy usage in daily life	K4	3							
CO4	Identify the structure of unknown/new compounds with their properties.	К3	4							
CO5	Categorize the important features of various materials and methods for burgeoning society.	K4	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO-				Pro	ogramn	ne Lear	ning O	utcomes	s (POs)				PS	Os
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2					1	3	3		3		
CO2	3	2						1	3	3		3		
CO3	3	2						1	3	3		3		
CO4	3		2					1	3	3		3		
CO5	3	2	2					1	3	3		3		

COURSE ASSESSMENT METHODS										
	1	Continuous Assessment Tests								
DIRECT	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT											
Toj	pic - 1					WATER C	HEMISTRY				9	
(phos	sphate, c	olloidal,	carbo		cond	itioning) ext	ludge) – treatment ternal treatment –					
Toj	pic - 2				FU	ELS AND	COMBUSTION				9	
meta	Fuels: Introduction - classification of fuels - Combustion- coal - Analysis of coal - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol.											
Toj	pic - 3				ENE	RGY STO	RAGE DEVICES				9	
	Batteries - Types of batteries - primary battery - dry cell. Secondary battery - lead acid battery, Nickel- Cadmium battery, fuel cells - Hydrogen -Oxygen fuel cell Solar energy conversion - solar cells - Application.											
Toj	pic - 4					SPECTRO	SCOPY				9	
				1 0	_	•	nentation, Working e photometry – Ato				etroscopy	
Toj	pic - 5				ENG	GINEERIN	G MATERIALS				9	
Type		pers – S	BR –	Nanomaterial – S			uses of Nylon(6,6 applications of N					
THE	EORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45	
BOC)K REF	ERENC	ES									
1				are 'Engineering	Cher	nistrv', S.Ch	nand Publication, 2	2013				
2							hing Company, 20					
3							niversity Press, 20		ion			
4					•		wall Media, 2006					

ОТН	OTHER REFERENCES									
1 https://www.freebookcentre.net/chemistry-books-download										
2	https://nptel.ac.in/course.html									
3	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/polymers.htm									
4	https://edu.rsc.org/resources/collections/analytical-chemistry-introductions									

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	B.E. / B.Tech., Common to all	20EN1T3	COMMUNICATIVE ENGLISH I	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Apply the rules of grammar to parts of speech, tenses, voices, degrees of comparison, compound nouns and articles	К3	1							
CO2	Interpret graphical representation for composing passages and paraphrase technical texts	K4	2							
CO3	Analyze different spoken discourses like, short talks, comprehend different dialogues, practice conversation for speaking skills	K4	3							
CO4	Examine grammatical errors using correct vocabulary and generating ideas logically on a topic	K5	4							
CO5	Develop language and vocabulary effectively for our real life contexts	K6	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO-	Programme Learning Outcomes (POs)								PS	PSOs				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3			2	3		3		
CO2						2			2	3		2		
CO3						3			2	2		1		
CO4						2			2	3		2		
CO5						3			1	3		2		

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2 Grammar Quizzes									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

				CO	LIDGE CO	AMPEAM						
Topic - 1		GRAMMAR AND VOCABULARY										
						- Tenses - Voices - nes – Articles- Id						
Topic - 2					LIST	ENING				9+3		
			Listening Compre Short and Long co			nsive and Intensive	listenii	ng – Pror	nunciation— Int	onation		
Topic - 3					SPE	AKING				9+3		
						l Communication - Group Discussions			laces, people,	Technica		
Topic - 4					REA	DING				9+3		
						Reading differeStructures) – Cor			xts – Speed F	Reading		
Topic - 5					WR	ITING				9+3		
Resume - Off	icial let	ters- E	_	Circula	ar letters-	g — Formal Letters Employment letters mail writing.						
THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60		

BO	BOOK REFERENCES								
1	Board of Editors, Using English, Orient Black Swan, 2015.								
2	Practical English Usage, Michael Swan, OUP 1995.								
3	Communicative English, J.Anbazhagan Vijay, Global Publishers – Chennai 2018.								
4	Effective Communication, Adair, John. London: Pan Macmillan Ltd., 2003.								
5	Brilliant Communication Skills, Hasson, Gill. Great Britain: Pearson Education, 2012.								

ОТ	OTHER REFERENCES							
1	http://networketiquette.net/							
2	http://www.englishdaily626.com/c-errors.php							
3	http://www.dailywritingtips.com/							

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	B.E. / B.Tech., Common to all	20PH1T4	ENGINEERING PHYSICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Classify the extensive properties of solid materials to use in current field.	K2	1								
CO2	Identify and develop the knowledge of atoms in solid crystals to apply recent engineering fields.	К3	2								
CO3	Describe the fundamentals of lasers, laser systems, their characteristics and diversified applications including industry and medicine.	K4	3								
CO4	Demonstrate a mastery of the core knowledge base in thermal physics.	К3	4								
CO5	Evaluate the nano materials and it's fabrication with behaviour by using advanced technical methods.	K5	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COa	Programme Learning Outcomes (POs)										PS	Os			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2			1	3	2	3	3	3	3	3			
CO2	2	1				3	2	3	3	3	3	3			
CO3	3	2	2			3	2	3	3	3	3	3			
CO4	2					3	2	3	3	3	3	3			
CO5	3	2				3	2	3	3	3	3	3			

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Mini Project
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

COURSE CONTENT												
Topic - 1				PR	OPERTIES	S OF MATTER				9		
Hooke's Law - Stress-Strain Diagram - Elastic moduli - Poisson's Ratio - Expression for bending moment of beam depression of Cantilever - Expression for Young's modulus by Non-uniform bending and its experimental determina												
Topic - 2		CRYSTAL PHYSICS										
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - growth of single crystals: solution and melt growth techniques.												
Topic - 3				LA	SER TECH	NOLOGY				9		
Laser charac	Introduction – principle of spontaneous emission and stimulated emission, population inversion, pumping mechanism. Laser characteristics - Einstein's A and B coefficients derivation. Two, three and four level systems. Threshold gain coefficient- Component of laser. Solid state laser (Nd:YAG). Diode lasers –Application of laser in science and engineering.											
Topic - 4					THERMA	L PHYSICS				9		
conductivity	- Lee's	disc m	ethod - theory ar	id exp	periment - co	and radiation – onduction through rs, ovens and solar	compo	ound medi				
Topic - 5)	NANO TEC	CHNOLOGY				9		
			rials- Moore's la tion of Nanotech			Nano materials- (y.	Quantu	m well, w	vire and dot- I	Fullerene,		
THEORY	45		TUTORIAL	00		PRACTICAL	00		TOTAL	45		

BOOK REFERENCES	BOOK	REFER	ENCES
------------------------	------	-------	-------

- Serway and Jewett, "Physics for Scientists and Engineers with Modern Physics", 6th Edition, Thomson Brooks Cole, 2008
- 2 Charles P. Poole and Frank J.Owens, "Introduction to Nanotechnology", 2nd Edition, Wiley, Delhi, 2008.
- 3 S.O. Pillai, "Solid state Physics", 6th Edition, New Age International Publishers, 2008.

OT	OTHER REFERENCES							
1	https://nptel.ac.in/courses/115/105/115105099/							
2	https://nptel.ac.in/courses/115/106/115106061/							
3	https://www.youtube.com/watch?v=_JOchLyNO_w							
4	https://www.journals.elsevier.com > Journals							
5	https://nptel.ac.in/courses/118/104/118104008/							

Semester	Programme	Course Code	Course Name	L	T	P	C
I	B.E. / B.Tech., Common to all	20CS1T5	FUNDAMENTALS OF COMPUTING AND PROGRAMMING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
	After Successful completion of the course, the students should be able to							
CO1	Understand the word processing tools with text documents	K2	1					
CO2	Organize spreadsheet manipulation tools with sheets also describe the presentation and sliding with layouts	К3	2					
CO3	Develop C program using managing input and output operations.	K6	3					
CO4	Design array and string implementation in C	K6	4					
CO5	Evaluate the function and structure concepts in C	K5	5					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)								PS	Os				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				3		3					2		
CO2	3		2		2							2		
CO3	3		2		3									
CO4	3		2		2							2		
CO5	3											2		
CO6	3				2							3	2	

	COURSE ASSESSMENT METHODS							
DIRECT	2T 1 Continuous Assessment Tests							
	2	Assignments						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE CONTENT

Topic - 1 INTRODUCTION TO MS-WORD AND MS-EXCEL

9

Introduction to word – Creating, editing, saving and printing text documents - Font and paragraph formatting - Simple character formatting -Inserting tables, smart art, page breaks -Using lists and styles-Working with images -Using Spelling and Grammar check -Understanding document properties

Introduction to Spreadsheet basics - Creating, editing, saving and printing spreadsheets -Working with functions & formulas -Modifying worksheets with color & autoformats -Graphically representing data : Charts & Graphs - Data Menu, Subtotal, Filtering Data -Formatting worksheets -Securing & Protecting spreadsheets

Topic - 2 MS-POWERPOINT AND INTERNET 9

Introduction to Powerpoint- Opening, viewing, creating, and printing slides -Applying auto layouts -Adding custom animation -Using slide transitions -Graphically representing data : Charts & Graphs -Creating Professional Slide for Presentation.

Internet - Understanding how to search/Google -bookmarking and Going to a specific website -Copy and paste Internet content into your word file and emails -Understanding social media platforms such as Facebook & Many more -learn with best practices

Topic - 3 C PROGRAMMING BASICS 9

Problem formulation – Problem Solving - Introduction to 'C' programming –fundamentals – structure of a 'C' program – compilation and linking processes – Constants, Variables – Data Types – Expressions using operators in 'C' – Managing Input and Output operations – Decision Making and Branching – Looping statements – solving simple scientific and statistical problems.

Topic - 4 ARRAYS AND STRINGS 9

Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String operations – String Arrays. Simple programs- sorting- searching – matrix operations.

Topic - 5 FUNCTIONS, STRUCTURES AND UNIONS

9

Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion - Structure – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

THEORY	45	TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	----------	---	--	-----------	---	--	-------	----

BOOK REFERENCES

- 1 Microsoft Office 2010 In Depth 1st Edition by Joe Habraken (Author) ,2010
- 2 Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill,2006.
- 3 "Computer basics absolute beginners"9thEdition, Michale Miller,2019

OTHER REFERENCES

- 1 https://youtu.be/ZXAPCy2c33o
- 2 https://courses.lumenlearning.com/wm-compapp/chapter/internet-and-powerpoint/
- 3 https://www.geeksforgeeks.org/c-language-set-1-introduction/
- 4 https://www.studytonight.com/c/string-and-character-array.php
- 5 https://www.geeksforgeeks.org/difference-structure-union-c/

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	B.E. / B.Tech., Common to all	20GE1L1	PHYSICS & CHEMISTRY LABORATORY	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)							
After Successful completion of the course, the students should be able to							
CO1	Compare the physical characteristics of given solid materials.	К3					
CO2	Calibrate the velocity of ultrasonic waves through water medium.	К3					
CO3	Survey the optical property of light sources.	K4					
CO4	Analyse the nature of the hardness, chloride level, pollution level using DO content in water sample.	K4					
CO5	Apply potential and conductometric measurements for quantitative and qualitative analysis.	K3					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COa	Programme Learning Outcomes (POs)												PS	PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	3	2	-	-	2	3	3	-	2	-	-	
CO2	2	2	2	3	2	-	-	2	3	3	-	2	-	-	
CO3	2	2	2	3	2	-	-	2	3	3	-	2	-	-	
CO4	2	2	2	1	2	1	-	2	3	3	-	2	-	-	
CO5	2	2	2	1	2	1	-	2	3	3	-	2	-	-	

	COURSE ASSESSMENT METHODS									
DIRECT	1	1 Laboratory Record								
	2	Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	LIST OF EXPERIMENTS							
	PHYSICS LABORATORY (Any Five Experiments)							
1	Torsional pendulum - determination of moment of inertia and rigidity modulus							
2	Determination of young's modulus by non- uniform bending							
3	(a) Determination of Wavelength, and particle size using Laser (b) Determination of acceptance angle in an optical fiber.							
4	Determination of velocity of sound and compressibility of liquid – Ultrasonic Interferometer.							
5	Air wedge – determination of thickness of a thin wire.							
6	Determination of band gap of a semiconductor.							
	LIST OF EXPERIMENTS							
	CHEMISTRY LABORATORY (Any Five Experiments)							
1	Determination of total, temporary and permanent hardness of water by EDTA method.							
2	Estimate the dissolved oxygen content of the given water sample by Winkler's method.							
3	Determine the chloride content of the given potassium chloride sample using standardized silver nitrate solution.							
4	4 Determination of iron content of the given solution using a potentiometer							
5	5 Determination of strength of acid using conductivity meter.							
6	6 Using conductance measurements, determine the strength of acids in a mixture.							
THE	DRY 0 TUTORIAL 0 PRACTICAL 30 TOTAL 45							

BO	BOOK REFERENCES							
1	C. Ramesh Kumar & Y. Devakumari, "Physics Laboratory Manual", Al-Ameen Publications, 2020.							
2	N. Jafarulla & C. Krishna Moorthy C "Chemistry Laboratory Manual", Al-Ameen Publications, 2020.							

Semester	Programme	Course Code	Course Name	L	Т	P	С
I	B.E. / B.Tech., Common to all	20CS1L2	COMPUTER PRACTICES LABORATORY	0	0	3	1.5

	COURSE LEARNING OUTCOMES (COs)					
After Successful completion of the course, the students should be able to						
CO1	Assembling and Dissembling parts of a computer.	К3				
CO2	Develop documents, presentation, and computation using MS-office.	К3				
CO3	Develop computer programs using different types of operator and expressions in C.	K4				
CO4	Implement programs with arrays and strings.	K4				
CO5	Create programs using structure, union and functions.	К3				

PRE-REQUISITE	NIL
---------------	-----

CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)										PS	PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	-	1	2	3	3	-	3	-	-
CO2	3	2	2	2	1	-	1	2	3	3	-	3	-	-
CO3	3	3	3	2	1	-	1	2	3	3	-	3	-	-
CO4	3	3	3	2	2	-	1	2	3	3	2	3	-	-
CO5	3	3	3	2	2	-	1	2	3	3	2	3	-	-

COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Laboratory Record						
	2 Model Practical Examinations						
	3 End Semester Examinations						
INDIRECT	1	Course Exit Survey					

	LIST OF EXPERIMENTS									
1	Study Experiment a) Hardware specification and PC Assembly b) Getting connected to internet									
2	Word processing a) Documentation creation, Text Manipulation with scientific notation b) Table Creation, Table Formatting and Conversion c) Mail Merge d) Flow Chart Preparation.									
3	Spread Sheet a) Charts- Bar Chart, Pie Chart, Line Chart, X,Y-Chart b) Object Inclusion, Picture and Graphics c) Protecting the Document									
4	Power Point Presentation and Access									
C Programming a) Simple C Program with Data Types, Expressions and Comment Lines b) Programming with Conditional Statements c) Programming with Branching and Looping Statements d) Programming with Arrays and String e) Programming with Function and Structure										
THE	ORY 0 TUTORIAL 0 PRACTICAL 45 TOTAL 45									

В	BOOK REFERENCES					
1	1 Computer Practices Laboratory manual, Al - Ameen Publications 2020					
2	Microsoft Office 2008 In Depth 2nd Edition by Joe (Author), 2010					

ОТ	OTHER REFERENCES					
1	https://youtu.be/ftyWKjT20S4					
2	https://nptel.ac.in/about_nptel.html					
3	https://nptel.ac.in/courses/106/106/106106092/					

SEMESTER II

Sl. No.	Course Code	('niirea l'itla		CIA	ESE	L	Т	P	C		
	THEORY COURSES										
1	20MA2T1	Engineering Mathematics II	BS	50	50	3	1	0	4		
2	20EN2T3	Communicative English II	HS	50	50	3	0	0	3		
3	20EC2T4	Electronic Devices and Circuits	ES	50	50	3	0	0	3		
4	20EE2T5	Circuit Theory	ES	50	50	3	1	0	4		
		LABORATORY	Y COURSES	}							
5	20EM2L1	Engineering Practices Laboratory	ES	50	50	0	0	3	1.5		
6	20ME2L2	Engineering Drawing Laboratory	ES	50	50	0	0	3	1.5		
7	20EC2L3	Electronic Devices and Circuits Laboratory	ES	50	50	0	0	2	1		
		MANDATOR	Y COURSE								
8	20CY2T2	Environmental Sciences	MC	100		3	0	0	0		
	Total								18		

Semester	Programme	Course Code	Course Name	L	T	P	C
II	B.E. / B.Tech., Common to all	20MA2T1	ENGINEERING MATHEMATICS II	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Solve higher order differential equations and apply them to certain physical situations	К3	1								
CO2	Apply various integral theorems for solving engineering problems involving cubes and parallelepipeds.	К3	2								
CO3	Solve linear differential equations using Laplace transform techniques.	К3	3								
CO4	Construct analytic function of complex variables and transform functions from z- plane to w- plane and vice-versa using conformal mappings.	К3	4								
CO5	Apply the techniques of complex integration to evaluate real and complex integrals over suitable closed paths or contours	К3	5								

PRE-REQUISITE	Engineering Mathematics I

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)											PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3		3				1	3	3		3			
CO2	3	3		3				1	3	3		3			
CO3	3	3		3				1	3	3		3			
CO4	3	3		3				1	3	3		3			
CO5	3	3		3				1	3	3		3			

	COURSE ASSESSMENT METHODS							
DIRECT 1 Continuous Assessment Tests								
	2	Assignments and Tutorials						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	COURSE CONTENT						
Topic - 1	SECOND AND HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS	9+3					
	Second order linear differential equations with constant co-efficient – Cauchy equation – Euler equation— Cauch Legendre equation— Method of variation of parameters— Solution of simultaneous equation with constant coefficients						
Topic - 2	VECTOR CALCULUS	9 + 3					
Introduction— gradient—directional derivative—divergence and curl—angel between the surfaces—solenoidal irrotational vector fields—Green's theorem in a plane—Gauss divergence theorem—Stoke's theorem (without proof).							

ODE of second order with constant co-efficients. Topic - 4 **ANALYTIC FUNCTIONS** 9 + 3

function- Inverse Laplace transform- Partial fractions method-convolution theorem(statement only)- Solution of linear

Analytic function - Necessary and sufficient condition - Cauchy Rieman equation (without proof) - Properties of analytic function (statement only) - Harmonic function - Constructions of analytic function - Bilinear transformation -

w = z + a, w = az, $w = \frac{1}{a}$

Conformal mappings

Topic - 5 **COMPLEX INTEGRATION** 9 + 3

Cauchy's integral theorem (without proof) -Cauchy integral formula -Taylor's and Laurent's series (without proof) -Singularities – Cauchy's residue theorem – Contour Integration: Circular and Semi circular contour (excluding polar on real axis).

THEO	RY 4	1 5	TUTORIAL	15		PRACTICAL	0		TOTAL	60
------	------	------------	----------	----	--	-----------	---	--	-------	----

ВО	BOOK REFERENCES									
1	GrewalB.S., "Higher Engineering Mathematics", 42 nd Edition,Khanna Publications New Delhi, 2011									
2	JainR.K and Iyengar S.R.K, "Advanced Engineering Mathematics",4 th Edition, NarosaPublishing House, New Delhi, Reprint 2014.									
3	Ramana B.V., "Higher Engineering Mathematics", Tata Mcgraw Hill Publishing Company, New Delhi, 2011.									
4	Kreyszig E., "Advanced Engineering Mathematics", 10 th Edition, John Wiley Sons, 2010									

OTHER	OTHER REFERENCES										
1 https://www.youtube.com/watch?v=GSpbh94-Cjo											
2 https://www.slideshare.net/RazwanulGhani/application-ofdifferentialequationinreallife											
3	https://www.slideshare.net/poojithchowdhary/applications-of-analytic-functions-and-vector-calculus										
4	https://slideplayer.com/slide/15496011/										

Semester	Programme	Course Code	Course Name	L	T	P	C
П	B.E. / B.Tech., Common to all (Except Civil)	20EN2T3	COMMUNICATIVE ENGLISH II	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
Afte	After Successful completion of the course, the students should be able to										
CO1	Initiate and sustain a discussion maintaining appropriate group behaviour, for a given communication scenario.										
CO2	Speak effectively and express opinions clearly for a given communicative context.										
CO3	Read different technical and professional texts, infer implied meanings and critically analyse evaluate the ideas presented.	K4	3								
CO4	Use functional grammar for improving employment-oriented skills. Use appropriate vocabulary and grammatical forms to complete a passage.		4								
CO5	Comprehend different spoken experts critically and infer spoken and implied meaning.	K6	5								

PRE-REQUISITE	Communicative English I
---------------	-------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
	Programme Learning Outcomes (POs) PSOs								Os					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3			3	3		3		
CO2						2			3	3		3		
CO3						3			3	3		3		
CO4						2			3	3		3		
CO5						3			3	3		3		

	COURSE ASSESSMENT METHODS								
DIRECT	1 Continuous Assessment Tests								
	2 Grammar Quizzes								
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT Topic - 1 Listening: Listening practice – different types of conversation and answering questions – gap exercises Speaking: Introduce one self and others – Opening a conversation Reading: Reading a novel, itinerary, Magazine and News papers Writing: Formal Letters – Job application letter with CV and Resume Grammar: Kinds of Sentences –

Topic - 2 9

Sentence Pattern (Parts/ Patterns/ Column Analysis).

Listening: Short texts – Listening to situation based dialogues – Listening to talks on engineering - Speaking: Sharing information of a personal kind – greeting – taking leave—Reading: Comprehension Questions (multiple choice questions and short questions) – short narrative stories - Writing: Paragraph Writing – Filling Forms – Basics of Business writing – Placing Orders, Letter of Complaint - Grammar: Asking Questions in the Simple Present – Using reference words, Yes/No type questions.

Topic - 3 9

Listening: Listening to academic lectures and live speech – advertisements and announcements –Speaking: Giving and Justifying opinions – apologizing – Introduction to Presentation – Reading: Reading Blogs – Website articles – Paragraphing – Writing: Tweets – Texting and SMS language – Use of Sequence Words - Grammar: Using Past Tense to make correct sentences – WH questions.

Topic - 4 9

Listening: Listening to a telephone conversation – Documentaries and making notes – Speaking: Giving Instructions – Role play – Asking about routine actions – Reading: Reading detailed comprehension - Writing: Writing Reports – Preparing Checklist - Grammar: Make sentences from Future Tense and their Usages (Compare the sentences with Degrees of Comparison).

Topic - 5 9

Listening: Viewing a model group discussion and reviewing the performance of each participant – Casual Conversation - Speaking: Participating in a Group Discussion – Speeches for special Occasions– Reading: Making notes from long passage or any form of written materials – providing a suitable title – Writing: Brainstorming – Writing short essays - Grammar: Numerical Adjectives – Misspelled Words – Direct and Indirect speech – Spot the Errors.

THEORY 45 TUTORIAL PRACTICAL 0 TOTAL 45

BOOK REFERENCES 1 Dr. Elango et al. "Resonance: English for Engineers and Technologist", Foundation, Chennai, 2013. 2 Anderson, Paul V., "Technical Communication: A Reader-Centered Approach", Cengage. 3 Sharma, Sangeetha and Binod Mishra, "Communication Skills for Engineers and Scientists", PHI Learning, New Delhi, 2009. 4 "Exercises in Spoken English Part I –III". EFLU, Hyderabad, OUP, 2014. 5 Raman, Meenakshi, & Sangeeta Sharma. Technical Communication: Principles and Practice, Second Edition. New Delhi: Oxford University Press, 2011.

OTHE	OTHER REFERENCES						
1	http://www.owlnet.rice.edu/						
2	http://zzyx.ucsc.edu/archer/intro.html						
3	http://www.indiabix.com/group-discussion/topics-with-answers/						

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	B.E. ECE	20EC2T4	ELECTRONIC DEVICES AND CIRCUITS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Demonstrate and articulate the concepts related to Semiconductor diodes and Special diodes	K2	1						
CO2	Apply the various types of DC Power Supplies.	К3	2						
CO3	Analyze the Bipolar Transistors and its performance	K4	3						
CO4	Analyze the Field Effect Transistors to infer its limitations	K4	4						
CO5	Evaluate a situation based application and recommend a suitable Integrated Circuit Fabrication	K5	5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COg	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2											3		1
CO2	3	2	2		2					3		2		1
CO3	3	2	3			2		2			2			
CO4	3	2	2	2			3		2			2		3
CO5	2	2												

COURSE ASSESSMENT METHODS									
DIRECT	1 Continuous Assessment Tests								
	2	Assignment							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT

Topic - 1 | SEMICONDUCTOR DIODES AND SPECIAL DIODES

9

Semiconductor diodes: Formation of PN junction – working principle – VI characteristics – PN diode currents – Diode current equation – Diode resistance – transition and Diffusion capacitance – Diode models – voltage breakdown in diodes. Special purpose diodes: Zener diode – Point-contact diode – Backward diode – Varactor diode – Step- recovery diode – Schottky diode, PNPN diode – RF diode – Tunnel diode- Gunn diode - Avalanche diode - Laser diode.

Topic - 2 DC POWER SUPPLIES

9

Half Wave Rectifier - Precision Half Wave Rectifier, Full wave Rectifier- bridge rectifier- Rectifiers with filter capacitors - Clippers and Clampers - Voltage multipliers - Voltage regulators: voltage regulation - Zener diode shunt regulator - transistor series regulator - transistor shunt regulator - switching regulators - design of complete DC power supply circuit

Topic - 3 BIPOLAR TRANSISTORS

9

Bipolar Transistors: Construction – working – transistor currents –transistor configurations and inputoutput characteristics – Early effect (base width modulation) – Ebers Moll model – transistor as an amplifier –Transistor as a switch.

Topic - 4 FIELD EFFECT TRANSISTORS

9

Field-Effect Transistors: construction, working and VI characteristics of JFET – comparison of BJT and JFET – MOSFET – enhancement MOSFET, depletion MOSFET, their working principle and VI characteristics, comparison of MOSFET with JFET, comparison of D MOSFET with E - MOSFET, CMOS, MESFET, CCD. Frequency response: Low frequency response of BJT and FET amplifiers – Miller effect capacitance – high frequency response of BJT and FET amplifiers.

Topic - 5 INTEGRATED CIRCUIT FABRICATION

9

Integrated circuit – advantages and drawback of ICs – scale of integration – classification of ICs – definition of linear IC and digital IC with examples – manufacturing process of monolithic ICs – fabrication of components (diode, capacitor, bipolar transistor and resistor) on monolithic IC – comparison of MOS ICs and bipolar ICs.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES

- Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 4th Edition ,2015
- Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2015
- 3 Thomas L. Floyd, "Electronic Devices", 9th edition, Pearson Education, 2012
- 4 David A Bell, "Fundamentals of Electronic Devices and Circuits", Fifth edition Oxford Press, 2009.

OTHER REFERENCES

- 1 https://www.youtube.com/watch?v=qqQ8wO-lNmI
- 2 https://www.youtube.com/watch?v=usmdrcB_BFA
- 3 https://www.youtube.com/watch?v=Rx43l-QpeWQ
- 4 https://www.youtube.com/watch?v=zHjohO646FE
- 5 https://www.youtube.com/watch?v=sTwRQDVHNiw

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	B.E. ECE	20EE2T5	CIRCUIT THEORY	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Demonstrate the basic concepts related to electrical circuits / Networks.	K2	1					
CO2	Apply the Laws / Rules of circuits in electrical networks.	К3	2					
CO3	Compare electrical networks to rate its performance.	K4	3					
CO4	Analyze electrical networks to infer their limitations.	K4	4					
CO5	Evaluate a network based on a set of criteria / application and recommend a suitable electrical system.	K5	5					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		PSOs												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	2		1	3	3		3		2
CO2	3	3	3	2	2			1	3	3		3		2
CO3	3	3	3		2			1	3	3		3		
CO4	3	3	3	2	2			1	3	3		3		
CO5	3	3	3	2	2			1	3	3		3		

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT											
Topic - 1			В	ASI	C CIRCU	JITS ANALYSIS	S			12		
	Fundamentals of Electrical Engineering - Ohm's Law –Kirchoff's Law – DC & AC Circuits –Resistors in series and parallel circuits – Mesh current and node voltage analysis for DC & AC Circuits.											
Topic - 2	- 2 NETWORK REDUCTION AND THEOREMS											
	Network reduction: voltage and current division – source transformation – Star delta conversion – Thevenins and Norton Theorems – Superposition Theorem – Maximum power transfer theorem.											
Topic - 3	Topic - 3 TRANSIENT RESPONSE ANALYSIS									12		
						, RC and RLC Ci ks– Z & Y param		using L	aplace transf	orm for		
Topic - 4			RESON	ANC	CE AND	COUPLED CIR	CUIT	S		12		
						Quality factorSingle tuned cire		andwidt	h – Self and	mutual		
Topic - 5			7	HRI	EE PHAS	SE CIRCUITS				12		
	A.C. circuits – Power, Power Factor and Energy– Analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced& un-balanced – power measurement in three phase circuits.											
THEORY	45		TUTORIAL	15		PRACTICAL	0		60			

BO	OOK REFERENCES								
1	Ramesh Babu, "Circuit Analysis", Scitech Publications, Bangalore, 6 Th Edition, 2017.								
2	Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", McGraw Hill, 2015.								
	Richard C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 7th Edition, John Wiley								
3	& Sons, Inc. 2015.								
4	Mahadevan, K., Chitra, C., "Electric Circuits Analysis," Prentice-Hall of India Pvt Ltd., New Delhi,								
4	2015.								
5	Rao, "Electrical Circuit Analysis", Cengage Publications, New Delhi, 2013.								

ГО	OTHER REFERENCES							
1	https://youtu.be/5hFC9ugTGLs							
2	https://youtu.be/zs4MnEx7wTQ							
3	https://youtu.be/shJAV59NS6k							
4	https://youtu.be/zXMQeIpUzhQ							
5	https://youtu.be/mc979OhitAg							

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	B.E./B.Tech (Common to all)	20EM2L1	ENGINEERING PRACTICES LABORATORY	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to							
CO1	Develop the carpentry components and plumbing works for the basic machining operations.	К3						
CO2	Concatenate the structures by using welding equipments.	К3						
CO3	Analyze and do all household electrical works.	K4						
CO4	Design and construct different electronics application circuits.	K4						
CO5	Test simple electronic circuits and component on PCB by soldering and assembling respectively.	К3						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	1	1	1	1	-	2	3	3	1	2	-	-	
CO2	3	3	1	1	1	1	-	2	3	3	1	2	-	-	
CO3	3	3	2	3	3	2	-	2	3	3	1	2	-	-	
CO4	3	3	2	3	3	2	-	2	3	3	1	2	-	-	
CO5	3	3	1	3	2	1	-	2	3	3	1	2	-	-	

	COURSE ASSESSMENT METHODS										
DIRECT	1	Laboratory Record									
	2	Model Practical Examinations									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

				LIS	ST O	F EXPE	RIMENTS				
_	CRO	TIP A	(CIX				CIVIL ENGINI	FFRI	NC PR	ACTICE	
1		dings:	(CIV	IL & MECHA	1110	<u>AL)</u> 1.	CIVIL ENGIN		III III	ACTICE	
	Dun	1.	Stuc	ly of plumbing	an an	d carner	ntry components	of	resident	ial and	
				strial buildings				01		2412	
	Plur	nbing		•		, r					
		1.			ioin	ts, its lo	ocation and fund	ctions	: valve	s, taps,	
							vs in household fi			, 1	
		2.					ches for water sup			ge works.	
		3.	Han	ds-on-exercise:			•				
			Basi	ic pipe connection	ons –	Mixed p	pipe material con	nectio	n		
	 Pipe connections with different joining components. 										
		4.	Den	nonstration of pl	umbi	ng requi	rements of high-ri	ise bu	ildings.		
	Car	pentry	using	g manual and p	owei	tools:					
		1.	Stuc	ly of the joints in	n roo	fs, doors,	windows and fur	niture	.		
		2.	Han	ds-on-exercise:							
			Woo	od work, joints b	y sav	wing, pla	nning and cutting	, .			
2	II.M	ECHA	NIC	AL ENGINEE	RIN(G PRAC'	TICE				
2	Weld	ding:									
		1.	Prep	aration of butt jo	oints,	lap joint	s and T-joints by	Shie	ded met	tal arc weldin	ıg.
		2.	Gas	welding practice	;						
	Basi	c Mac		0							
				le Turning and T	Гареі	turning					
				ing Practice							
	Shee	et Meta									
				ing & Bending							
				el making – Tray		d funnels	•				
				rent type of join	ts.						
	Mac			practice:							
				ly of centrifugal		p					
	CD			ly of air condition		LECTR	ONIT CICL				
3				ECTRICAL AN AL ENGINEEI							
	111.1										
				-	ion o	1 Fluores	cent lamp wiring	•			
				r case wiring.							
							gle phase energy r	neter.			
		4	. Ass	embly of Reside	ntial	house wi	ring.				
		5	. Mea	surement of ear	th res	sistance o	of an electrical equ	uipme	nt using	meggar.	
4	IV.F	ELECT	RON	ICS ENGINE	CRIN	IG PRAC	CTICE				
4		1.					ement of AC signa	al			
					_		od, Frequency) u		CRO.		
		2.		,	-		X-OR and NOT.	U			
		3.		surement of rip							
		4.					s, Devices and Ci	ircuits	١.		
		5.		eration of Clock							
THEO	RV	0		TUTORIAL	0		PRACTICAL	45		TOTAL	45
THEO	14.1	U		TOTOMAL	U		IMACITORL	73		TOTAL	73

1 "Engineering Practices Laboratory", Al-Ameen Publications, 2020.

OTHER REFERENCES

- 1 https://www.youtube.com/watch?v=UE3XlSwcpEI
- 2 https://www.youtube.com/watch?v=lk2MwtiEL0k
- **3** https://www.youtube.com/watch?v=v2XnYVYDyWA
- 4 https://www.youtube.com/watch?v=tCpChoMWhjE
- **5** https://www.youtube.com/watch?v=lk2MwtiEL0k

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	B.E. / B.Tech., Common to all	20ME2L2	ENGINEERING DRAWING LABORATORY	0	0	3	1.5

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to	RBT Level							
CO1	Identify the drawing instruments effectively and able to dimension the figure.	K3							
CO2	Appraise the usage of engineering curves in tracing the path of simple machine components.	К3							
CO3	Interpret the concept of projection and acquire visualization skills, projection of points.	K4							
CO4	Construct the basic views related to projections of lines, planes.	K4							
CO5	Plan to use the modern tool for drawing communication.	К3							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
Cos		Programme Learning Outcomes (POs)										omes (POs) PSOs			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	3	3	3	3	2	3	3	1	2	-	1	
CO2	3	3	2	3	3	3	2	2	3	3	1	2	-	1	
CO3	2	3	3	3	3	3	2	2	3	3	1	2	-	1	
CO4	2	2	2	3	3	3	2	2	3	3	1	2	-	1	
CO5	3	2	2	3	3	3	3	2	3	3	1	2	-	1	

	COURSE ASSESSMENT METHODS									
DIRECT	1	1 Laboratory Record								
	2	Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	LIST OF EXPERIMENTS											
1	Drav	Drawing the problems based on Orthographic projection using Software Package										
2	Drawing the problems based on Orthographic projection using Software Package											
3	3 Drawing the problems based on Orthographic projection using Software Package											
4	Drawing the problems based on Orthographic projection using Software Package											
5	5 Drawing the problems based on Isometric projection using Software Package											
6	6 Detailed Study Of Drawing sheet, Drawing Board, Drawing Instruments.											
7	7 Detailed Study Of Dimensioning, Arrow Head, Lettering											
THE	ORY	0		TUTORIAL	0		PRACTICAL	45		TOTAL	45	

BO	BOOK REFERENCES								
1	R.K. Dhawan, "A text book of Engineering Drawing", S.Chand Publishers, Delhi, 2010.								
2	Dhananjay. A.Jolhe, "Engineering Drawing with an introduction to AutoCAD", TataMcGrawHill Publishing Company Ltd., Delhi,2008.								
3	BasantAgarwal and Agarwal.C.M., "Engineering Drawing"Tata McGrawHill Publishing Company Ltd., Delhi, 2008.								

CO	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=IUwkSNvuBZE						
2	https://www.youtube.com/watch?v=nLVnYHbW39E						
3	https://www.youtube.com/watch?v=Pdu8kPKT6Cs						
4	https://www.youtube.com/watch?v=gXX6TJT6Urk						
5	https://www.youtube.com/watch?v=Y4gsOdYpiVQ						

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	B.E. ECE	20EC2L3	ELECTRONIC DEVICES AND CIRCUITS LABORATORY	0	0	2	1

	COURSE LEARNING OUTCOMES (COs)							
	After Successful completion of the course, the students should be able to							
CO1	Analyze the characteristics of different Diode	К3						
CO2	Analyze various transistor configurations	К3						
CO3	Design and Testing of BJT and MOSFET amplifiers	K4						
CO4	Analyzing Rectifier Circuits and Voltage Regulators	K4						
CO5	Understand the concepts of simulation by using Spice/ Multisim Tool	К3						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
Cos	Programme Learning Outcomes (POs)										PS	Os		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	1	-	1	3	3	1	2	2	1
CO2	3	3	2	2	1	1	-	1	3	3	1	2	2	1
CO3	3	2	3	3	ı	2	-	1	3	3	1	2	2	1
CO4	3	3	2	2	1	1	-	1	3	3	1	2	2	1
CO5	2	2	2	2	3	-	-	1	3	3	1	2	2	1

	COURSE ASSESSMENT METHODS								
DIRECT	1	1 Laboratory Record							
	2	Model Practical Examinations							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	LIST OF EXPERIMENTS												
1	Characteris	stics o	f PN junction an	d Ze	ner diode								
2	Input, Output and Transfer characteristics of CE Configuration												
3	Input, Output and Transfer characteristics of CC Configuration.												
4	Characteristics of LDR, Photo-diode and Phototransistor.												
5	Transfer characteristics of JFET												
6	Transfer characteristics of MOSFET. (With depletion and enhancement mode)												
7	Characteris	stics o	f LED with three	diff	erent wav	elengths.							
8	Half wave filter.	rectifi	er, Full wave red	ctifie	r and Full	wave Bridge rect	tifier	with and	without capa	acitive			
9	Series volta	age Ro	egulator										
10	Simulation	expe	riments 1, 2,3,5,6	5 usir	ng PSPIC	E or Multisim.							
THE	THEORY 0 TUTORIAL 0 PRACTICAL 30 TOTAL 3									30			

1 Electronic Devices and Circuits Manual, Al-Ameen Publications, 2020.

OT	OTHER REFERENCES								
1	https://youtu.be/56fIDi-AwY4								
2	https://youtu.be/32K7YjawjYI								
3	https://youtu.be/J6BAUYE6mfs								
4	https://youtu.be/SheW7HjDAUg								
5	https://youtu.be/FbvDMetY								

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	B.E. / B.Tech., Common to all	20CY2T2	ENVIRONMENTAL SCIENCES	3	0	0	0

	COURSE LEARNING OUTCOMES (COs)										
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered								
CO1	Demonstrate the importance of interdisciplinary nature of environment and health risk assessment.	K2	1								
CO2	Discuss the ecosystem and their importance in the environment and conservation of biodiversity.	K2	2								
CO3	Design the rain water harvesting system in their living area.	K6	3								
CO4	Analyze the impact of pollution and hazardous waste in a global and societal context.	K4	4								
CO5	Understand contemporary issues that result in environmental degradation that would attempt to provide solutions to overcome the problems.	К3	5								

PRE-REQUISITE	Engineering Chemistry
---------------	------------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1					2	1	3	3		3		
CO2	2	2					1	1	3	3		3		
CO3	3	1	1					1	3	3		3		
CO4	3	2	1					1	3	3		3		
CO5	3	1					2	1	3	3		3		

	COURSE ASSESSMENT METHODS											
DIRECT	1	Continuous Assessment Tests										
	2	Assignment										
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

COURSE CONTENT

Topic - 1 ENVIRONMENT AND ECOSYSTEMS

9

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs – Introduction, types, characteristic features, structure and function of the forest ecosystem aquatic ecosystems (ponds, river and marine).

Activity: Study of the ecosystem structure in Cauvery River.

Topic - 2 BIODIVERSITY

9

Introduction to biodiversity definition: genetic, species and ecosystem diversity –value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity – endangered and endemic species of India – In-situ and ex- situ conservation of biodiversity. Activity: Study of common plants, insects, birds.

Topic - 3 ENVIRONMENTAL POLLUTION

9

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Thermal pollution (d) Noise pollution – solid waste management: causes, effects and control measures of municipal solid wastes – Hazardous and biomedical waste management -pollution case studies.

Activity: Study of air and water pollution in industry.

Topic - 4 NATURAL RESOURCES

9

Forest resources: over-exploitation, deforestation, — Water resources: Rain water harvesting-watershed management - utilization of surface and ground water, conflicts over water, dams-benefits and problems Food resources: effects of modern agriculture, fertilizer-pesticide problems - Principles of Green Chemistry- Case studies

Activity: Tree plantation and maintenance within the campus.

Topic - 5

SUSTAINABILITY AND POPULATION

9

From unsustainable to sustainable development – environmental Impact Assessment (EIA) – environmental ethics: Issues and possible solutions – climate change, acid rain, ozone layer depletion, and case studies – environment production act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – environment and human health – value education – HIV / AIDS – women and child welfare.

Activity: Small group meetings about environment and human health in local area peoples and making poster and short films about HIV / AIDS – women and child welfare.

THEORY 45 TUTORIAL 00 PRACTICAL 00 TOTAL 45

BOOK REFERENCES

- 1 Erach Bharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hydrabad, 2015.
- 2 Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 3 Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill Education, 2014.

OTHER REFERENCES

- 1 https://www.onlinebiologynotes.com/food-chain-food-web-and-ecological-pyramids/
- 2 https://vikaspedia.in/energy/environment/biodiversity-1/conservation-of-biodiversity
- 3 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ozone-layer-depletion

SEMESTER III

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	С					
	THEORY COURSES													
1	20CS3T1	Data Structures	ES	50	50	3	0	0	3					
2	20EC3T2	Signals and Systems	PC	50	50	3	1	0	4					
3	20MA3T3	Transforms and Partial Differential Equations	BS	50	50	3	1	0	4					
4	20EC3T4	Digital System Design	PC	50	50	3	0	0	3					
5	20EE3T5	Principles of Electrical Engineering	3	0	0	3								
		LABORATORY CO	OURSE	cs .										
6	20ENCL1	Communication Skills Laboratory	HS	50	50	0	0	2	1					
7	20EC3L1	Digital System Design Laboratory	PC	50	50	0	0	2	1					
8	20CS3L3	Data Structures Laboratory	ES	50	50	0	0	2	1					
		MANDATORY CO	OURSE	Σ										
9	20MCCT1	Constitution of India	3	0	0	0								
	Total													

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	B.E.ECE	20CS3T1	DATA STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
Aft	er Successful completion of the course, the students should be able to	RBT Level	Topics Covered								
CO1	Analyze the time complexity of various algorithms.	K4	1								
CO2	Define and use stack, queue Abstract Data Types and Tree ADT.	K1	2								
CO3	Explain Tree and Graph Traversals.	K4	3								
CO4	Use shortest Path Algorithm and minimum spanning Tree algorithms.	К3	4								
CO5	Explain Sorting technique and its types	K4	5								

				CO/	PO MA	APPIN	G (1 – V	Veak, 2 –	Medium	ı, 3 – Stroi	ng)			
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3			1	3	3		3	2	2
CO2	3	3	3	2	2			1	3	3		3	2	
CO3	3	3	3	2				1	3	3		3	2	
CO4	3	3	3	2				1	3	3		3	2	
CO5	3	3	3	3	2			1	3	3		3	2	2

COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests						
	2	Assignments					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT						
Topic-1	c-1 INTRODUCTION AND ABSTRCT DATA TYPES						
	alysis: Calculation of Running Time – Abstract Data Type-List ADT: Array implementation Doubly Linked List, and Circularly Linked Lists.	ı of List					
Topic-2	Copic-2 STACK AND QUEUE ADT 9						
Stack ADT:	Stack Model, Implementation of stacks, Applications: Balancing Symbols, Postfix ex	pression					
evaluation, In Applications.	fix to postfix conversion, Function Calls-Queue ADT: Queue Model, Implementation of						
	fix to postfix conversion, Function Calls—Queue ADT: Queue Model, Implementation of TREE ADT						

Tree ADT–AVL Trees, Rotation for Height Balancing– BTrees – Red Black Trees.

Topic-4

GRAPH ALGORITHMS

9

Definitions— Representation of Graphs—Traversal-Topological sort— Shortest Path Algorithm's Dijkstra's Algorithm—Network Flow Problem—Minimum Spanning Tree: Prim's and Kruskal's algorithm.

Topic-5 SORTING 9

Insertion Sort– Shell Sort –Heap Sort –Merge Sort –Quick Sort–Bucket Sort–External Sorting: Simple Algorithm, Multi way merge, Poly Phase Merge.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

ВО	BOOK REFERENCES				
1	Thomas H. Cormen , Charles E. Leiseron, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, PHI learning Pvt. Ltd., 2011.				
2	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C" Second Edition, PearsonEducation Limited, 2002.				
3	SartajSahni, "Data Structures, Algorithms and applications in C++", Second Edition, Universities Press,2005.				

OT	OTHER REFERENCES				
1	https://nptel.ac.in/courses/106/105/106105034/				
2	https://www.youtube.com/watch?v=6XTYoZymbwE				
3	https://www.youtube.com/watch?v=MP6VIAE_7WY				

Semester	Programme	Course Code	Course Name			P	С
III	B.E. ECE	20EC3T2	SIGNALS AND SYSTEMS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Understand the concepts of Signals and Systems K2 1							
CO2	Apply the concepts of Fourier series and Fourier transform in Continuous time Signals	К3	2					
CO3	Apply the concepts of Laplace transform in LTI Continuous time systems	К3	3					
CO4	Apply the concepts of Discrete Time Fourier Transform & Z Transform in Discrete Time signals	К3	4					
CO5	Apply the concepts of Discrete Time Fourier Transform & Z Transform in LTI Discrete Time systems	К3	5					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)							PSOs						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2			1	3	3		3		
CO2	3	2	2	1	2			1	3	3		3		
CO3	3	1		1	2			1	3	3		3		
CO4	1	3	2	2	1			1	3	3		3	2	
CO5	1	1	2	3	2			1	3	3		3		

COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests						
	2	Assignments					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

COURSE CONTENT				
Topic - 1	INTRODUCTION TO SIGNALS AND SYSTEMS	9+3		

Introduction to Continuous Time (CT) signals and Discrete Time (DT) signals - step, ramp, impulse, exponential, sinusoidal signals, Representation of DT signals by impulses- signal operations classification of CT and DT signals – periodic and aperiodic signals, random signals, energy and power signals, even and odd signals - linear time invariant CT systems and DT systems- basic system properties: linear time invariant, causality, BIBO stability.

Topic - 2 ANALYSIS OF CONTINUOUS TIME SIGNALS 9 + 3

Fourier series analysis- spectrum of Continuous Time signals- properties of continuous time Fourier series, Fourier transform of continuous time aperiodic signals and periodic signals, properties of continuous time Fourier transform. Fourier and Laplace Transforms in signal Analysis.

Topic - 3 LINEAR TIME INVARIANT–CONTINUOUS TIME SYSTEMS 9 + 3

Differential Equation- CT system representations by differential equations -Block diagram representationimpulse response, convolution integrals- Frequency response of systems characterized by Differential Equations- Fourier and Laplace transforms in Analysis- state space representation.

Topic - 4 ANALYSIS OF DISCRETE TIME SIGNALS 9 + 3

Baseband Sampling of CT signals- Aliasing, Reconstruction of CT signal from DT signal, Discrete Time Fourier series representation of DT periodic signals – Properties – Representation of DT a periodic signals by Discrete Time Fourier Transform (DTFT) – Properties – Z Transforms properties.

Topic - 5 LINEAR TIME INVARIANT –DISCRETE TIME SYSTEMS 9 + 3

Difference Equations-Block diagram representation-Impulse response-Convolution sum -DTFT and Z Transform analysis of Recursive & Non-Recursive systems – Frequency response of systems characterized by Difference –Equations-state space representation. Applications: Introduction to SCI Lab and MATLAB Tools.

BOOK REFERENCES 1 H P Hsu, Rakesh Ranjan, "Signals and Systems", Tata McGraw Hill, 7th Reprint, 2010. 2 Edward W. Kamen, Bonnie S. Heck, "Fundamentals of Signals and Systems Using the Web and MATLAB", Pearson Prentice Hall, 2007. 3 John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2008. 4 M.J.Roberts, "Signals and Systems, Analysis Using Transform Methods and MATLAB", Tata McGraw Hill (India), 2nd Edition, 2011

ОТ	OTHER REFERENCES					
1	https://www.youtube.com/watch?v=s8rsR_TStaA&list=PLBlnK6fEyqRhG6s3jYIU48CqsT5cyiD TO					
2	https://www.youtube.com/watch?v=up55tuwestg&list=PLWPirh4EWFpHr_1ZCkuF9ToYUrmujv9Aa					
3	https://www.youtube.com/watch?v=ftKIWPBMWKs&list=PL9RcWoqXmzaIG-RWneeqDJ-FCt66S15pl					
4	https://www.youtube.com/watch?v=- FHm2pQmiSM&list=PLUl4u3cNGP61kdPAOC7CzFjJZ8f1eMUxs					
5	https://www.youtube.com/watch?v=H- R_ZT0IPwY&list=PLgzsL8klq6DJGMumdc_n80bw0nDNgsSas					

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	B.E.,EEE , ECE & MECH	20MA3T3	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
A	RBT Level	Topics Covered									
CO1	Solve partial differential equations and apply them to certain physical situations	K3	1								
CO2	Choose the appropriate methods related to Fourier series to solve the problems based on periodic and non periodic functions.	K6	2								
CO3	Classify the PDE and use Fourier series techniques to find the solutions of one dimensional wave and heat equations.	K3	3								
CO4	Analyse the situation and select an appropriate techniques for solving problems based on Fourier transforms.	K4	4								
CO5	Evaluate Z-transform and estimate inverse Z-transform of certain functions and use it to solve difference equations	K5	5								

PRE-REQUISITE	Engineering Mathematics I & Engineering Mathematics II
---------------	--

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)												Os
COS	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11								PO12	PSO1	PSO2			
CO1	3	3		3				1	2	3		3		
CO2	3	3		3				1	2	3		3		
CO3	3	3		3				1	2	3		3		
CO4	3	3		3				1	2	3		3		
CO5	3	3		3				1	2	3		3		

		COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2 Assignments and Tutorials								
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

					OUDSE	CONTENT						
Topic - 1			PARTI			ENTIAL EQUAT	ΓΙΟΝ	S		9+3		
Formation of partial differential equations- Solutions of standard types of first order partial differential equations- Lagrange's linear equation- Linear partial differential equations of second and higher order with constant coefficients of homogeneous type.												
Topic - 2					FOURIE	R SERIES				9 + 3		
			eneral Fourier dentity- Harm			and even function	ıs- Ha	alf range	e sine series-	Half range		
Topic - 3		APP	LICATIONS	OF I	PARTIAI	L DIFFERENTI	AL E	QUATI	ONS	9 + 3		
	ne dimei					bles- Fourier seri n- Steady state so						
Topic - 4				FOU	JRIER T	RANSFORMS				9 + 3		
						rm pair- Fourier volution theorem						
Topic - 5 Z TRANSFORMS AND DIFFERENCE EQUATIONS									9 + 3			
Z-transforms- Elementary properties (statement only)- Inverse Z-transform (using partial fractions and residues)- Initial and final value theorems- Convolution theorem (without proof)- Formation of difference equations-Solution of difference equations using Z-transform.												
equations-So	nution o	on of difference equations using Z-transform. TUTORIAL 15 PRACTICAL 0 TOTAL 60										

BC	OOK REFERENCES
1	Jain .R.K And Iyengar S.R.K,"Advanced Engineering Mathematics",3rd Edition, Narosa Publishing House, New Delhi , Reprint 2009
2	Ramana B.V., "Higher Engineering Mathematics", Tata Mcgraw Hill Publishing Company, New Delhi, 2008
3	Kreyszig.E.,"Advanced engineering mathematics', 9th Edition , John Wiley Sons , 2012
4	Glyn James., "Advanced Modern Engineering Mathematics", Pearson Education Limited, 2007

OT	THER REFERENCES
1	https://byjus.com/maths/differential-equations-applications/
2	https://www.analyzemath.com/calculus/Differential_Equations/applications.html
3	https://math.stackexchange.com/questions/579453/real-world-application-of-fourier-series
4	https://www.slideshare.net/zakilivebuzz/math-presentation-by-syed-ahmed-zaki
5	https://cadcammodelling.wordpress.com/2011/04/14/fourier-transform-and-its-applications/

Semester	Programme Course Code B.E. ECE 20EC3T4		Course Name	L	Т	P	C
III	B.E. ECE	20EC3T4	DIGITAL SYSTEM DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Apply the Boolean algebra and K map to design the circuits.	К3	1								
CO2	Detailed Knowledge and implementation of Combinational logic circuits.	K2	2								
CO3	Ability to analyze and design Synchronous digital circuits.	K4	3								
CO4	Create the state machine model to design asynchronous sequential circuits	K5	4								
CO5	Knowledge on different memory and programmable logic devices	К3	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		3	2			1	3	3		3		
CO2	1	2		2	2			1	3	3		3		
CO3	1	2		3	2			1	3	3		3		
CO4	1	2		2	2			1	3	3		3		
CO5	2	2		1	2			1	3	3		3		

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2	Mini Project								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT									
Topic - 1			BINARY	COD	ES ANI) BOOLEAN AI	LGEE	BRA		9
- Canonical a	Binary, BCD, Grey Codes - ASCII and Error Detecting Codes - Boolean Algebra - Boolean functions - Canonical and Standard Forms - Minimization of Boolean expressions - Karnaugh map minimization - Don't care conditions - Tabulation Method - Implementation of logic functions using Gates - NAND and NOR implementation- Variable entered k- map.									
Topic - 2			COMB	INA'	TIONA	L LOGIC CIRC	UITS	\$		9
		•				- Binary Multiple converters – Par		_	•	
Topic - 3			SYNCHRON	ous	SEQUE	ENTIAL LOGIC	CIR	CUITS	}	9
Assignment	- Rip	ple (Counters: Binar	ry, B	CD, Mo	d Sequential Circodulo n, Up/Dog counter – Johns	wn c	ounters		
Topic - 4			ASYNCH	RON	OUS SE	EQUENTIAL CI	RCU	ITS		9
						of Asynchronous w Tables - Races			Circuits - Des	sign of
Topic - 5								9		
RAM cell - I	Classification of Memories - RAM organization - Memory decoding - Memory expansion - Static RAM cell - Dynamic RAM cell - ROM organization - Types of ROM - Programmable Logic Array - Programmable Array Logic - Field Programmable Gate Arrays.									
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45

BC	OOK REFERENCES
1	Stephen Brown, ZvonkoVranesic, "Fundamentals of Digital Logic with Verilog Design", 2nd Edition, Tata McGraw Hill Education Pvt.Ltd., 2010.
2	A.Anand Kumar, "Fundamentals of Digital Circuits", 3rd Edition, PHI Learning Pvt. Ltd, New Delhi, 2014
3	Charles H.Roth, Jr, "Fundamentals of Logic Design", 7th Edition, Jaico Publishing House, 2013.Donald D.Givone

O	OTHER REFERENCES							
1	http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/tabular.html							
2	https://youtu.be/_yHo2qq82P0							
3	https://youtu.be/SzV4l0_1MCQ							
4	https://youtu.be/AaN72s5WfOM							
5	https://youtu.be/iaIu5SYmWVM							

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	B.E ECE	20EE3T5	PRINCIPLES OF ELECTRICAL ENGINEERING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Af	RBT Level	Topics Covered							
CO1	Construct and explain the operation of DC machines.	К3	1						
CO2	Analyze the construction, operation and characteristics of AC Machines.	K4	2						
CO3	Conclude the knowledge of transformer to industrial applications.	K5	3						
CO4	Analyze the performance of DC & AC Starters for specific applications.	K4	4						
CO5	Compare the starting methods & speed control techniques of DC and AC motors.	K5	5						

PRE-REQUISITE	CIRCUIT THEORY
---------------	----------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2			2		1	3	3		3		
CO2		2			2			1	3	3		3		
CO3	3			2	3			1	3	3		3		
CO4	3	2						1	3	3		3		
CO5	2			2				1	3	3		3		

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT	
Topic - 1	DC MACHINES	9
D.C. C.		

DC Generator: Construction & Principle of operation- EMF equation- Types —Characteristics — Applications. DC Motor: Construction & Principle of operation - Back EMF - Types — Characteristics - Applications.

Topic - 2 AC MACHINES 9

Construction, Principle of Operation of AC Generators (Sailent & Non Sailent), Synchronous motor, Single and three phase induction Motors.

Topic - 3 TRANSFORMERS 9

Single Phase transformer: Construction & principle of operation- EMF Equation- Ideal transformer- Auto transformer -Three Phase transformer Connections.

Topic - 4 STARTING METHODS 9

Types of DC Motor starters (Two point, Three point & Four point) –Soft starter - Three phase squirrel cage and slip ring induction motors. (DOL Starter, Auto Transformer Starter, Rotor resistance Starter and Star/Delta Starter)

Topic - 5 CONVENTIONAL AND SOLID STATE SPEED CONTROL OF DC & AC DRIVES

Armature and field control, Ward Leonard Scheme, Single phase rectifier controllers (half and Full), Slip power recovery scheme, Single phase voltage regulator.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES

- A.K.Shawney, "A Course in Electrical and Electronics Measurements & Instrumentation", DhanpatRai & Co. 2010.
- 2 Bhattacharya, "Electrical Machines", Tata McGraw Hill, 2013.
- 3 Bakshi, "Electrical Machines –II", Technical Publications, Pune, 2015.
- 4 Dubey, "Fundamental of Electrical Drives", Narosa Publications, New Delhi, 2011.

OTHER REFERENCES

1 https://www.youtube.com/watch?v=Vd2UJiIPbag

Semester	Programme	Course Code	Course Name	L	Т	P	С
II,III & IV	B.E. / B.Tech., Common to all	20ENCL1	COMMUNICATION SKILLS LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)							
After Successful completion of the course, the students should be able to							
CO1	State the aim and develop the procedure to conduct the experiment/exercise in the Communication Skills Laboratory Course.	К3					
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3					
CO3	Draw inferences from the experiment/exercise conducted and present it professionally	K4					
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4					
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3					

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
CO	Programme Learning Outcomes (POs)													PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	-	-	-	-	-	3	3	-	-	-	-	
CO2	3	-	-	-	3	-	-	2	3	-	1	-	-	-	
CO3	3	2	-	2	-	1	-	-	-	3	-	-	-	-	
CO4	3	1	-	-	1	-	1	1	-	3	-	-	-	-	
CO5	3	1	-	-	1	-	1	1	-	3	-	1	-	-	

	COURSE ASSESSMENT METHODS								
DIRECT	1	1 Laboratory Record							
	2	Model Practical Examinations							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	LIST OF EXPERIMENTS	
1	Laboratory Practice Sessions	

2	Con	Conversation Practice Sessions (To be done as real life interactions)									
3	Group Discussion Sessions										
4	Interview Sessions										
5	Presentation										
THE	ORY	0		TUTORIAL	0		PRACTICAL	30		TOTAL	30

BC	BOOK REFERENCES							
1	Baul Emmerson and Nick Hamilton, 'Five Minute Activities for Business English', Cambridge University Press, New York, 2005.							
2	Arthur Brookes and Peter Grundy, 'Beginning to Write: Writing Activities for Elementary and Intermediate Learners', Cambridge University Press, New York, 2003.							
3	George, Livingston. 'Using Communication Skills Lab in Enhancing Speaking Skills of Engineering Students' 2018.							
4	Nira Konar: English Language Laboratory: A Comprehensive Manual, PHI Learning, 2011.							
5	Pandey, Dr.Meenu. 'A Practical Book of Communication Skills', NIRALI Prakashan advancement of knowledge, second edition 2018.							

CO	OTHER REFERENCES						
1	Khan Academy Videos on English Speaking and Writing						
2	https://learningenglish.britishcouncil.org/en/listening						
3	Adrian Duff et.al. (ed.): Cambridge Skills for Fluency						
4	Mark Hancock: English Pronunciation in Use						
5	Audio Cassettes/CD'S OUP 2004						

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	B.E ECE	20EC3L1	DIGITAL SYSTEM DESIGN LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)								
After Successful completion of the course, the students should be able to								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Digital System Design Laboratory Course	К3						
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3						
CO3	Draw inferences from the experiment / exercise conducted and present it professionally -	K4						
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4						
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3						

PRE-REQUISITE NII	
-------------------	--

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	0	0	0	-	0	3	3	-	-	-	-	
CO2	3	-	-	0	3	0	-	2	3	0	1	-	-	-	
CO3	3	2	-	2	0	1	-	0	0	3	-	-	-	-	
CO4	3	-	-	0	0	0	-	0	0	3	-	-	-	-	
CO5	3	-	-	0	0	0	-	0	0	3	-	1	-	-	

	COURSE ASSESSMENT METHODS								
DIRECT	RECT 1 Laboratory Record								
	2	2 Model Practical Examinations							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	LIST OF EXPERIMENTS									
1	Verification of Boolean Theorems using basic gates.									
2	Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters.									
3	Design and implement of Half/Full Adder and Subtractor.									
4	Design and implement of combinational circuits using MSI devices: (i) 4 – bit binary adder / subtractor. (ii) Parity generator / checker (iii) Magnitude Comparator (iv) Application using multiplexers									
5	Design and implement of shift-registers									
6	Design and implement of synchronous counters.									
7	Design and implement of asynchronous counters.									
8	Design and implementation of Mod-N Counter									
9	9 Coding combinational circuits and sequential circuits using VHDL (For Experiment 2, 3, 4, 5, 6 and 7).									
10	Design and implementation of a simple digital system. (Mini Project)									
THEC	EORY 0		TUTORIAL	0		PRACTICAL	30		TOTAL	30

1 Digital System Design Laboratory Manual, Al-Ameen Publications, 2022

ОТ	OTHER REFERENCES						
1	https://youtu.be/oNh6V91zdPY						
2	https://youtu.be/CeD2L6KbtVM						
3	https://youtu.be/zok4iU9YJiE						
4	https://youtu.be/oNh6V91zdPY						
5	https://youtu.be/Mt3AToASuFo						

Semester	Programme Course Code		Course Name	L	Т	P	С
III	B.E. ECE 20CS3L		DATA STRUCTURES LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)								
After Successful completion of the course, the students should be able to								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Data Structures Laboratory Course	К3						
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise.	К3						
CO3	Draw inferences from the experiment / exercise conducted and present it professionally.	K4						
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions.	K4						
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication.	К3						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO-	Programme Learning Outcomes (POs)								PSOs					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	3	3	-	-	-	-
CO2	3	-	-	-	3	-	-	2	3	-	1	-	-	-
CO3	3	2	-	2	-	1	-	-	-	3	-	-	-	-
CO4	3	-	-	-	-	-	-	-	-	3	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	3	-	1	-	-

	COURSE ASSESSMENT METHODS									
DIRECT	1	Laboratory Record								
	2	Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	LIST OF EXPERIMENTS									
1	Implementing sorting algorithms – selection sort, insertion sort, quick sort									
2	Implementing Set operations using Linked List									
3	Implementing stack using array and Linked List									
4	Implementing stack applications (Balancing Parenthesis, Infix to postfix conversion)									
5	Implementing queue applications (Job scheduling- FIFO, Round Robin)									
6	Implementing priority queue									
7	Implementing Binary Search trees									
8	Implementing AVL trees									
9	Implementing BFS and DFS algorithms									
THE	DRY 0 TUTORIAL 0 PRACTICAL 30 TOTAL 30									

1 "Data Structures Laboratory Manual", Al-Ameen Publications 2022.

OI	OTHER REFERENCES							
1	http://enggedu.com/data_structure_lab_exercise_programs/index.php							
2	https://www.slideshare.net/ayeshasaifbhatti/ds-lab-handouts							
3	https://mrcet.com/pdf/Lab%20Manuals/CSE/DATA%20STRUCTURES%20LAB.pdf							

Semo	ester	Programme	Course Code	Course Name	L	Т	P	C
II	Ι	B.E. /B. Tech. Common to All	20MCCT1	CONSTITUTION OF INDIA	3	0	0	0

COURSE LEARNING OUTCOMES (COs)										
At	After Successful completion of the course, the students should be able to									
CO1	Understand and abide the rules of the Indian constitution.	K2	1							
CO2	Applying the functions of Central government.	K2	2							
CO3	Applying the function of state government.	K2	3							
CO4	Evaluate the various constitutional functions.	K2	4							
CO5	Explain the different culture among the people of India	K2	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)												PS	PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1						2	2	2	3	3		3		1	
CO2						1	2	2	3	3		3		1	
CO3						1	2	2	3	3		3		1	
CO4						1	2	2	3	3		3		1	
CO5						1	2	2	3	3		3		1	

	COURSE ASSESSMENT METHODS											
DIRECT	1	Continuous Assessment Tests										
	2	2 Seminar										
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

	COURSE CONTENT	
Topic - 1	INTRODUCTION	9

Historical Background – Constituent Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Principles of State Policy – Fundamental Duties – Citizenship – Role of the Election Commission.

Topic - 2 | STRUCTURE AND FUNCTION OF CENTRAL AND STATE GOVERNMENT 9

Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister – Cabinet – Parliament – Supreme Court of India – Judicial Review. State Government – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial System in States – High Courts and other Subordinate Courts.

Topic - 3 CONSTITUTION FUNCTIONS OF INDIA AND INDIAN SOCIETY 9

Indian Federal System – Central – State Relations – President's Rule – Constitutional Amendments – Constitutional Functionaries - Assessment of working of the Parliamentary System in India. Society: Nature, Meaning and definition; Indian Social Structure; Caste, Religion, Language in India; Constitutional Remedies for citizens – Political Parties and Pressure Groups; Right of Women, Children and Scheduled Castes and Scheduled Tribes and other Weaker Sections

Topic - 4 POLICIES AND ACTS – GENERAL 9

Insurance and Bonding – Laws Governing Sale, Purchase and use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax , Excise and Custom duties and their Influence on Construction Cost – Legal Requirements for Planning – Property Law– Agency Law – Local Government Laws for Approval.

Topic - 5 POLICIES AND ACTS ON INFRASTRUCTURE DEVELOPMENT 9

A Historical Review of the Government Policies on Infrastructure – Current Public Policies on Transportations – Power and telecom Sector – Plans for Infrastructure Development – Legal framework for Regulating Private Participation in Roads and Highways – Ports and Airport and Telecom

THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	--	----------	---	--	-----------	---	--	-------	----

BOOK REFERENCES

- 1 Durga Das Basu, "Introduction to the Constitution of India", Prentice Hall of India, New Delhi, 2018.
- 2 R.C.Agarwal, "Indian Political System", S.Chand and Company, New Delhi, 2004
- 3 Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi, 2007
- 4 K.L.Sharma, "Social Stratification in India: Issues and Themes", Jawaharlal Nehru University, New Delhi, 2006.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/106/105/106105034/
- 2 https://www.youtube.com/watch?v=6XTYoZymbwE
- 3 https://www.youtube.com/watch?v=MP6VlAE_7WY

SEMESTER IV

Sl. No.	Course Code	Course Title	ESE	L	T	P	С							
	THEORY COURSES													
1	20MA4T2	Probability and Random Processes	3	1	0	4								
2	20EC4T3	Linear Integrated Circuits	PC	50	50	3	0	0	3					
3	20EC4T4	Microprocessors and Microcontrollers	PC	50	50	3	0	0	3					
4	20EC4T5	Electronics Circuits	PC	50	50	3	0	0	3					
5	20EC4T6	Electromagnetic Fields	ES	50	50	3	1	0	4					
		LABORATORY CO	OURSE	ES										
6	20EC4L1	Linear Integrated Circuits Laboratory	PC	50	50	0	0	2	1					
7	20EC4L2	Microprocessors and Microcontrollers Laboratory	PC	50	50	0	0	2	1					
		MANDATORY CO	OURSE											
8	20HSCT1	Universal Human Values 2: Understanding Harmony	2	1	0	3								
	18	2	4	22										

Semester	Programme	Course Code	Cource Name				
IV	B.E. ECE	20MA4T2	PROBABILITY AND RANDOM PROCESSES	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered								
CO1	Relate and apply the concept of probability and random variables and predict probabilities of events in models following normal distribution.	К3	1								
CO2	Identify the types of correlation, correlation between variables, and predict unknown values using regression.	К3	2								
CO3	Classify different types of random processes and use it to find whether it is SSS or WSS.	K2	3								
CO4	Analyse correlation related to various random processes and establish the properties of spectral densities,	K4	4								
CO5	Analyse linear time invariant systems performance for random inputs.	K4	5								

PRE-REQUISITE Eng

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)										PS	PSOs		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3				1	3	3		3		
CO2	3	3		3				1	3	3		3		2
CO3	3	3		3				1	3	3		3		
CO4	3	3		3				1	3	3		3		2
CO5	3	3		3				1	3	3		3		

		COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2	Assignments and Tutorials							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT													
Topic - 1	pic - 1 PROBABILITY AND RANDOM VARIABLES												
Basic concepts of probability – Discrete and continuous random variables – Moments – Morgenerating functions – Binomial, Poisson, Exponential and Normal distributions.													
Topic - 2	ic - 2 TWO – DIMENSIONAL RANDOM VARIABLES												
	Joint distributions – Marginal and conditional distributions – Covariance – Correlation and liregression – Transformation of random variables – Central limit theorem (statement only).												
Topic - 3			RA	NDOM :	PROCESSES				9+3				
Classification telegraph pro		ionary process – N	Mark	ov proce	ss - Markov cha	in -	Poisson	process - R	Random				
Topic - 4		CORRELA	ATI(ON AND	SPECTRAL DE	NSIT	TIES		9+3				
Auto correla spectral dens		ctions – Cross corperties.	relati	on funct	ions – Properties	- Po	ower spe	ectral density	/ Cross				
Topic - 5		LINEAR	SYST	TEMS W	TTH RANDOM	INPU	JTS		9+3				
	Linear time invariant system – System transfer function – Linear systems with random inputs–A correlation and cross correlation functions of input and output												
THEORY	THEORY 45 TUTORIAL 15 PRACTICAL 0 TOTAL 0												

BO	OOK REFERENCES
1	Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3rd Indian Edition, 2012.
2	Miller. S.L. and Childers. D.G., — "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2013.
3	Peebles, P.Z., "Probability, Random Variables and Random Signal Principles ", Tata McGraw Hill, 4th Edition, New Delhi, 2011.
4	Oliver . C. Lbe., "Fundamentals of applied probability and random processes" Academic Press, 2007.

CO	THER REFERENCES
1	https://www.cuemath.com/learn/mathematics/probability-in-real-life/
2	https://sciencing.com/examples-of-real-life-probability-12746354.html
3	http://www.iraj.in/journal_file/journal_pdf/14-358-149822091462-64.pdf

Semester	Programme	Course Code	Course Name	L	Т	P	C
IV	B.E. ECE	20EC4T3	LINEAR INTEGRATED CIRCUITS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)												
Af	After Successful completion of the course, the students should be able to												
CO1	Demonstrate and articulate the basic structure of operational amplifiers and itscharacteristics.	K2	1										
CO2	Characterize and analyze the applications of op-amp.	К3	2										
CO3	Design waveform generators and PLL using operational amplifier.	K6	3										
CO4	Analyze the concept of IC based voltage regulator and signal conversion circuits	K4	4										
CO5	Examine the different types of A/D and D/A converters.	K4	5										

PRE-REQUISITE NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)												PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2							1	3	3		3			
CO2	3	2	2		2			1	3	3		3			
CO3	3	2	3					1	3	3		3			
CO4	3	2	2					1	3	3		3			
CO5	3	2						1	3	3		3			

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2	Mini Project								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT	
Topic - 1	OPERATIONAL AMPLIFIER CHARACTERISTICS	9

Op-amp symbol, terminals, packages and specifications, Block diagram Representation of op-amp- Ideal op-amp & practical op-amp - Open loop & closed loop configurations, DC & AC performance characteristics of op-amp, Frequency response and compensation, Basic op-amp internal schematic, Review of data sheet of an op-amp.

Topic - 2 OP-AMP APPLICATIONS 9

Basic op-amp circuits: Inverting & Non-inverting voltage amplifiers, Voltage follower, Summing, scaling & averaging amplifiers, AC amplifiers, Linear Applications: Instrumentation Amplifiers, V-to-I and I-to-V converters, Differentiators and Integrators. Non-linear Applications: Precision Rectifiers, Wave Shaping Circuits (Clipper and Clampers), Log and Antilog Amplifiers, Comparators and its applications.

Topic - 3 WAVEFORM GENERATORS AND PLL 9

Waveform Generators: Sine-wave Generators, Triangle / Saw-tooth Wave generators. IC 555 Timer: Monostable operation and its applications, Astable operation and its applications, VCO, PLL and its operations.

Topic - 4 VOLTAGE REGULATOR IC's 9

Voltage Regulators: Basics of Voltage Regulator, Linear Voltage Regulators using Op-amp, IC Regulators (78xx, 79xx, LM 317, LM 337, 723), Switching Regulators., IC273Voltage regulator, IC 18038 Function Genrator.

Topic - 5 DATA CONVERSION DEVICES 9

Digital to Analog Conversion: DAC Specifications, Weighted Resistor DAC, R-2R Ladder DAC and Inverted R-2R Ladder DAC, Monolithic DAC, Analog to Digital conversion: ADC specifications, Successive Approximation ADC, Dual Slope ADC, Flash Type ADC, Monolithic ADC.

THEORY	45		TUTORIAL	0		PRACTICAL	0	ו ו	TOTAL	45
--------	----	--	----------	---	--	-----------	---	-----	-------	----

BOOK REFERENCES Ramakant A.Gayakwad, "Op-Amps and Linear Integrated Circuits", 4th Edition, Prentice Hall, 2015. David A. Bell, "Operational Amplifiers and Linear ICs", 3rd edition, OUP, 2013. Roy Choudhury and Shail Jain, "Linear Integrated Circuits", 4th Edition, New Age International Publishers, 2014. Robert F. Coughlin, Frederick F. Driscoll, "Operational-Amplifiers and Linear Integrated Circuits", 6th Edition, Prentice Hall, 2001. Bakshi, "Linear Integrated Circuits and Applications", Technical Publications, Chennai, 2016. Sergio Franco, "Design with operational amplifier and analog integrated circuits", McGraw Hill, 1997.

ОТ	THER REFERENCES					
1	https://www.youtube.com/watch?v=Y1KE8eAC9Bk					
2	https://www.youtube.com/watch?v=kiiA6WTCQn0					
3	https://www.youtube.com/watch?v=Uc2R7GND0Dk					
4	https://www.youtube.com/watch?v=icxvLWEOzEA					
5	https://www.youtube.com/watch?v=PzbdTfUatIY					

Semester	Programme	Course Code	Course Name	L	Т	P	С
IV	B.E. ECE	20EC4T4	MICROPROCESSOR AND MICROCONTROLLER	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Describe the basic concept of 8086 microprocessor architecture	K2	1						
CO2	Generalize the system bus architecture of 8086 microprocessor	К3	2						
CO3	Examine the I/O peripheral interface of 8086 microprocessor	К3	3						
CO4	Describe the basic concept of 8051 microcontroller architecture	K2	4						
CO5	Demonstrate the various interfacing of 8051 microcontroller.	К3	5						

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COg	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			2			2	2	3	3		3		2
CO2		2	3		2		2	2	3	3		3		2
CO3		2	3	2			2	2	3	3		3		
CO4	3		3	3			2	2	3	3		3		
CO5		2	3	3	2		2	2	3	3		3		

COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2	Seminar						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

					COL	UDGE O	ONDEND					
	COURSE CONTENT											
Τ	Copic - 1			TH	E 80	86 MIC	ROPROCESSO	R			9	
Introduction to 8086 – Microprocessor Architecture – Addressing modes – Instruction set and assembly directives – Assembly language programming – Modular programming – Linking and routines – B Relocation – Stacks – Procedures – Macros - Interrupts and Interrupt service and String manipulation									s – Byte			
T	Copic - 2		8086 SYSTEM BUS STRUCTURE 9									
pr co	8086 signals — Basic configurations — System bus timing —System design using 8086 — I/O programming — Introduction to Multiprogramming — System Bus Structure — Multiprocessor configurations — Coprocessor, Closely coupled and loosely Coupled configurations — Introduction to advanced processors.								rocessor			
T	Copic - 3				I/	O INTE	ERFACING				9	
Case studies: Traffic Light control, LED display , LCD display, Keyboard display interface and Alarm Controller. Memory Interfacing and I/O interfacing - Parallel communication interface - Serial communication interface - D/A and A/D Interface - Timer - Keyboard /display controller - Interrupt controller - DMA controller - Programming and applications							Serial					
T	opic - 4				MI	CROCO	NTROLLER				9	
				special Function embly language			FRs) - I/O Pins Po g.	orts a	nd Circ	uits - Instruct	tion set -	
T	Copic - 5			INTER	FAC	ING MI	CROCONTROI	LLEI	₹		9	
In W	terfacing -	ADC, enerati	DAC	& Sensor Inter	facin	g - Exte	g - Interrupts Prog rnal Memory Inter or, Microcontrolle	rface	- Steppe	er Motor and		
T	HEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45	
BO	OK REF	EREN	CES									
1	-						ciples of Embedde imprint from Else			g System De	sign",	
2	K.V.Shib	ou, "Int	roduc	tion to Embedd	ed S	ystems",	McGraw Hill,2nd	Editi	on, 201	7		
3	Prasad.K	.V.K.I	K, En	nbedded Real-T	ime S	Systems:	Concepts, Design	1 & P	rogram	ming, Dream	itech	
OT	HER REI	FERE	NCES	5								
1	https://yo	outu.b	e/1m	-jgtGetl4								
2	https://yo	outu.b	e/QP	-4FlwNTvw								
3	https://youtu.be/5fESTph5gA8											

Semester	Programme	Course Code	Course Name	L	Т	P	С
IV	B.E. ECE	20EC4T5	ELECTRONICS CIRCUITS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered					
CO1	Analyse and design bipolar and FET amplifier circuits to meet certain specifications.	K4	1					
CO2	Analyse the frequency response of amplifier circuits, taking into account various circuit capacitors, to determine the bandwidth of the circuit.	К3	2					
CO3	Understand the characteristics of the various types of feedback configurations to be able to determine the type of feedback circuit required for a specific design application and to design stable feedback amplifiers.	K2	3					
CO4	Understand the principle of sine-wave oscillators, and to analyse and design various audio & radio frequency oscillator circuits.	K2	4					
CO5	Understand the analysis and design of tuned amplifier to meet certain neutralization techniques.	K2	5					

PRE-REQUISITE

Electronic Devices

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs Programme Learning Outcomes (es (PO	s)			PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1						1	1		1	2	
CO2	3	2	1						2	1		1	2	1
CO3	3	1							1	1		1	2	
CO4	3	2		1					2	1		1	2	
CO5	3	2		1					2	1		1	2	1

COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2	Assignments						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE CONTENT							
Topic - 1	Topic - 1 BJT AMPLIFIERS						
amplifier co	Overview of DC analysis of BJT circuits and models, AC load line analysis, AC analysis of basic lamplifier configurations using classical discrete circuit bias arrangements: Common-Emir Common-Base, Common-Collector and single-tuned circuits.Multi-stage amplifier configurations: - CE, CE - CC, CE - CB, and CC - CC amplifiers, Frequency response analysis of a basic BJT						
Topic - 2	FET AMPLIFIERS	9					

Introduction Graphical analysis, load lines, and small-signal models, AC analysis of basic MOSFET amplifier configurations using classical discrete circuit bias arrangements: Common-Source, Common-Drain and Common-Gate circuits, Frequency response analysis of FET CS amplifier

Topic - 3 FEEDBACK AMPLIFIERS 9

General Feedback Structure – Properties of negative feedback – Basic Feedback Topologies – Feedback amplifiers – Series – Shunt, Series – Series, Shunt – Shunt and Shunt – Series Feedback – Determining the Loop Gain – Stability Problem – Nyquist Plot – Effect of feedback on amplifier poles – Frequency Compensation

Topic - 4 OSCILLATORS 9

Classification, Barkhausen Criterion - Mechanism for start of oscillation and stabilization of amplitude, General form of an Oscillator, Analysis of LC oscillators - Hartley, Colpitts, Clapp, RC oscillators - phase shift – Wienbridge - Twin-T Oscillators, Frequency range of RC and LC Oscillators, Quartz Crystal Construction, Electrical equivalent circuit of Crystal, Miller and Pierce Crystal oscillators, frequency stability of oscillators.

Topic - 5 TUNED AMPLIFIERS 9

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers - Analysis of capacitor coupled single tuned amplifier - double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth - Stagger tuned amplifiers - large signal tuned amplifiers - Class C tuned amplifier - Efficiency and applications of Class C tuned amplifier - Stability of tuned amplifiers - Neutralization - Hazeltine neutralization method.

BC	OOK REFERENCES
1	David A. Bell, "Electronic Devices and Circuits", 5th edition, Oxford University Press, 2015.
2	Donald Neamen, "Electronic Circuits: Analysis and Design", 3rd edition, McGraw-Hill Education, 2011.
4	Muhammad Rashid, "Microelectronic Circuits: Analysis & Design", 2nd edition, Cengage Learning, 2010

CO	OTHER REFERENCES					
1	https://youtube.com/playlist?list=PLwjK_iyK4LLDoFG8F					
2	https://youtu.be/T-0X1N9N5V8					
3	https://youtu.be/fy0sXbrkMew					
4	https://youtu.be/mn1Qg0ALYds					
5	https://youtu.be/mn1Qg0ALYds					

Semester	Programme Course Code		Course Name	L	Т	P	С
IV	B.E. ECE	20EC4T6	ELECTROMAGNETIC FIELDS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Understand the concepts of Electromagnetic model and Coordinate systems	K2	1						
CO2	Apply the concepts of Electric Potential, Boundary conditions, capacitance and laws related to Electric fields.	К3	2						
CO3	Apply the concepts of Magnetic Potential, Boundary conditions, Inductance and laws related to Magnetic fields.	К3	3						
CO4	Analyse the concepts of Maxwell's equations, Electromagnetic boundary conditions, & Wave equations in Time Varying fields	K4	4						
CO5	Evaluate the concepts of Plane waves in lossless media and lossy media.	K5	5						

PRE-REQUISITE NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	2			1	3	3		3		
CO2	3	2	3	2	2			1	3	3		3		
CO3	3	2	3	2	2			1	3	3		3		
CO4	3	3	3	2	2			1	3	3		3		
CO5	3	2	3	2	2			1	3	3		3		

	COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2 Assignments							
	3 End Semester Examinations							
INDIRECT	1	Course Exit Survey						

				CO	URSE C	CONTENT				
Topic - 1					INTRO	DUCTION				9+3
spherical coo of a vector	Electromagnetic model, Units and constants, Review of vector algebra, Rectangular, cylindrical and spherical coordinate systems, Line, surface and volume integrals, Gradient of a scalar field, Divergence of a vector field, Divergence theorem, Curl of a vector field, Stoke's theorem, Null identities, Helmholtz's theorem									
Topic - 2				E	LECTR	OSTATICS				9+3
electric field conditions, (and Laplace	Electric field, Coulomb's law, Gauss's law and applications, Electric potential, Conductors in static electric field, Dielectrics in static electric field, Electric flux density and dielectric constant, Boundary conditions, Capacitance, Parallel, cylindrical and spherical capacitors, Electrostatic energy, Poisson's and Laplace's equations, Uniqueness of electrostatic solutions, Current density and Ohm's law, Electromotive force and Kirchhoff's voltage law, Equation of continuity and Kirchhoff's current law									
Topic - 3				M	AGNET	TOSTATICS				9+3
Savart law	and a	pplica r of r	tions, Magneti nagnetic materi	c fie	ld inten	les, Ampere's law sity and idea of ry conditions, Ind	relat	tive per	rmeability, N	Magnetic
Topic - 4				FII	ELDS A	ND MAXWELL	's EQ	UATIO	ONS	9+3
•						ell-Ampere law, we equations and s				
Topic - 5			PLANE	EL	ECTRO	MAGNETIC W	AVE	S		9+3
velocity, Ele	waves in lossless media, Plane waves in lossy media (low-loss dielectrics and good conductors), Group velocity, Electromagnetic power flow and Poynting vector, Normal incidence at a plane conducting boundary, Normal incidence at a plane dielectric boundary.									
THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
BOOK REF		~~~								

BC	BOOK REFERENCES						
1	D.J. Griffiths, Introduction to electrodynamics, 4th ed., Pearson (India), 2015						
2	B.M. Notaros, Electromagnetics, Pearson: New Jersey, 2011.						
3	M.N.O. Sadiku and S.V. Kulkarni, Principles of electromagnetics, 6th ed., Oxford (Asian Edition), 2015.						

OT	OTHER REFERENCES					
1	https://www.youtube.com/watch?v=pGdr9WLto4A&list=PL1CE5B4FFFA997E5D					
2	https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx					
3	https://www.youtube.com/watch?v=UWQuMnWcmwc					
4	https://www.youtube.com/watch?v=W1cTpqM9DaU					
5	https://www.youtube.com/watch?v=8kcvyoHsXrw					

Semester	Programme	Course Code	Course Name	L	Т	P	С
IV	B.E. ECE	20EC4L1	LINEAR INTEGRATED CIRCUITS LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)							
	After Successful completion of the course, the students should be able to	RBT Level					
CO1	Acquire knowledge on Application of Op-Amp.	К3					
CO2	Design filters using op-amp and performs an experiment on Instrumentation amplifier.	К3					
CO3	Analyze the working of schmitt trigger and oscillator using Op-amp.	K4					
CO4	Design DC power supply using specified ICs	K4					
CO5	Analyze the performance of Astable and Monostable multivibrators using Op- amp and NE555 Timer.	К3					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs		Programme Learning Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	3	2	2	-	-	-	-	-	1	-	-	-	-	
CO2	3	2	-	-	2	-	-	-	1	-	-	1	-	2	
CO3	3	-	3	3	-	-	-	-	-	1	-	-	-	-	
CO4	2	2	-	-	-	-	-	-	1	-	-	-	-	1	
CO5	3	-	-	-	2	-	-	-	1	-	-	1	-	-	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Laboratory Record									
	2	Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

			L	IST	OF EXP	ERIMENTS						
1	Inverting,	Non i	nverting and dif	feren	tial ampl	ifiers.						
2	Integrator and Differentiator.											
3	Instrumentation amplifier.											
4	Active low	/-pass	s, High-pass and	banc	l-pass filt	ers.						
5	Astable &	Mono	ostable multivib	rator	s using O _J	p-amp.						
6	Schmitt Tr	igger	using op-amp.									
7	Phase shift	t and	Wien bridge osc	illato	ors using (Op-amp.						
8	Astable an	d Mo	nostable multivi	brate	ors using	NE555 Timer.						
9	DC power	supp	ly using LM317	and	LM723.							
10	Study of S	MPS										
11	Active low	/-pass	s, High-pass and	banc	l-pass filt	ers using Op-amp	simu	late using	g PSPICE.			
12	Astable an	d Mo	nostable multivi	brate	ors using	NE555 Timer sim	ulate	using PS	PICE.			
13	Analog mu	ıltipli	er simulate using	g PSl	PICE.							
THEO	ORY 0		TUTORIAL	0		PRACTICAL	30		TOTAL	30		

BOOK REFERENCES

1 Linear Integrated CircuitsLaboratory Manual, Al-Ameen Publications, 2020.

ОТ	HER REFERENCES					
1	https://www.youtube.com/watch?v=csZzm71C0xI					
2	https://www.youtube.com/watch?v=oeiho7-CeZA					
3	https://www.youtube.com/watch?v=gfq1rmIog-g					
4	https://www.youtube.com/watch?v=Q6MaHSxi3bA					
5	https://www.youtube.com/watch?v=gEeF8sEQTEc					

Semester	Programme	Course Code	Course Name	L	T	P	С
IV	B.E – ECE	20EC4L2	MICROPROCESSOR AND MICROCONTROLLER LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to	RBT Level								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Microprocessor And Microcontroller Laboratory Course	К3								
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3								
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4								
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4								
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	-	-	-	-	-	3	3	-	-	-	-	
CO2	3	-	-	-	3	-	-	2	3	-	1	-	-	-	
CO3	3	2	-	2	-	1	-	-	-	3	-	-	-	-	
CO4	3	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO5	3	-	-	-	-	-	-	-	-	3	-	1	-	-	

	COURSE ASSESSMENT METHODS											
DIRECT	1	Laboratory Record										
	1 Laboratory Record 2 Model Practical Examinations 3 End Semester Examinations											
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

	LIST OF EXPERIMENTS													
	8086 Programs using kits													
1	Basic arithmetic and Logical operations													
2	Move a data block without overlap													
3	Code conversion, decimal arithmetic and Matrix operations													
4	Floating point operations, string manipulations, sorting and searching													
5	Password checking, Print RAM size and system date													
6	Counters and Time Delay.													
	Peripherals and Interfacing Experiments													
7	Traffic light controller													
8	Stepper motor control													
9	Digital clock													
10	Key board and Display													
11	Serial interface and Parallel interface													
12	A/D and D/A interface and Waveform Generation Traffic light controller													
	8051 Experiments using kits and MASM													
13	Basic arithmetic and Logical operations													
14	Square and Cube program, Find 2,,s complement of a number													
THE	ORY 0 TUTORIAL 0 PRACTICAL 30 TOTAL 30													

BOOK REFERENCES

1 Microprocessor And Microcontroller Laboratory , Al-Ameen Publications, 2020.

ОТ	THER REFERENCES	
1	https://youtu.be/t3thKRqMK2M	
2	https://youtu.be/TtAsMwhVcAs	
3	https://youtu.be/QVBgKAZIvpI	
4	https://youtu.be/98gmOUItrPk	
5	https://youtu.be/0PLyBaZ6MCU	

Semester	Programme	Course Code	Course Name	L	Т	P	C
IV	B.E. / B.Tech., Common to all	20HSCT1	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY	2	1	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Understand and aware of themselves, and their surroundings (family, society, nature)	K2	1						
CO2	Build more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind	К3	2						
CO3	Relate the critical ability and sensitive to their commitment towards what they have understood (human values, human relationship and human society).	K2	3						
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	К3	4						
CO5	Appraise local, regional and a national culture in harmony with others	K5	5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PSOs			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3					2					2		
CO2		3					3		2					
CO3								3				2		
CO4		2				2	2							
CO5								3		2		2		

		COURSE ASSESSMENT METHODS				
DIRECT	DIRECT 1 Continuous Assessment Tests					
	2	Seminar				
	3	End Semester Examinations				
INDIRECT	1	Course Exit Survey				

	COURSE CONTENT	
Topic - 1	Course Introduction - Need, Basic Guidelines, Content and Process for Value Education	9

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration-what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Topic - 2 Understanding Harmony in the Human Being - Harmony in Myself! 9

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Topic - 3 Understanding Harmony in the Family and Society- Harmony in Human Relationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Topic - 4	Understanding Harmony in the Nature and Existence - Whole existence as	0
	Coexistence	9

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self regulation in nature

- 20. Understanding Existence as Co-existence of mutually interacting units in all pervasive space
- 21. Holistic perception of harmony at all levels of existence.

Topic - 5	Implications of the above Holistic Understanding of Harmony on	0
	Professional Ethics	9

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- 28. Sum up

ВО	OK REFERENCES			
1	Jeevan Vidya: E.K. Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.			
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004			
3	The Story of Stuff (Book)by Annie Leonard , 2011			
4	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi			
5	Small is Beautiful - E. F Schumacher.			
6	Slow is Beautiful - Cecile Andrews			
7	Economy of Permanence - J C Kumarappa			
3	India Wins Freedom - Maulana Abdul Kalam Azad			
4	Vivekananda - Romain Rolland (English)			
4	Gandhi - Romain Rolland (English)			

CO	THER REFERENCES
1 https://www.youtube.com/watch?v=XGxNCFjDGEg	
2	https://www.c-span.org/video/?292709-1/the-story-stuff

SEMESTER V

Sl. No.	Course Course Title Cate gory			CIA	ESE	L	Т	P	C		
	THEORY COURSES										
1 20EC5T1 Digital Signal Processing PC 50 50								0	4		
2	20EC5T2	Analog and Digital Communication	PC	50	50	3	1	0	4		
3	20EC5E1 TO 20EC5E4	Professional Elective–I	PE	50	50	3	0	0	3		
4 TO Professional Elective- II 20EC5E9		PE	50	50	3	0	0	3			
5 Open Elective–I		OE	50	50	3	0	0	3			
	ТНЕОН	RY COURSES WITH LABO	ORATO	RY C	OMPO	ONE	NTS				
6	6 20EE5LT1 Control Systems PC 50 50				2	0	4	4			
		LABORATORY	COUR	SE							
7	20EC5L1	Digital Signal Processing Laboratory	PC	50	50	0	0	3	1.5		
		MANDATORY	COUR	SE							
8	20PT5T1	Career Guidance - I	MC	100		2	1	0	0		
		Total				19	3	7	22.5		

Semester Programme Course Code		Course Code	Course Name	L	T	P	C	
	V	B.E. ECE	20EC5T1	DIGITAL SIGNAL PROCESSING	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)									
At	After Successful completion of the course, the students should be able to									
CO1	Analyze the frequency domain behaviour of a given Discrete Time signal using Discrete Fourier Transform	K2	1							
CO2	Construction of Realization structures and design for IIR filters	К3	2							
CO3	Construction of Realization structures and design for FIR filters	K3	3							
CO4	Analyze the effect of finite word length for fixed &floating point number representation.	K4	4							
CO5	Develop an algorithm using TSM320C6X Processor for simple signal processing applications.	K5	5							

PRE-REQUISITE	SIGNALS AND SYSTEMS
---------------	---------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	3	2					1	3	3		3	2		
CO2	2	3	2		2			1	3	3		3	2		
CO3	2	3	2		2			1	3	3		3	2		
CO4	2	2	2		2			1	3	3		3	2		
CO5	2	1		3				1	3	3		3	2		

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

					COU	RSE CO	ONTENT				
Т	opic - 1			DISCRETE	AN:	D FAST	FOURIER TRA	NSF	ORM		9+3
							Properties of DF7 orithms — Linear a				imation
Т	opic - 2				II	R FILT	ER DESIGN				9+3
	Analog filter design – Discrete time IIR filter from analog filter – IIR filter design: Impulse Invariance, Bilinear transformation technique – Realization using Direct form I, Direct form II and Cascade forms.										
T	opic - 3	FIR FILTER DESIGN									9+3
	Linear phase FIR filters – Filter design: windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency Sampling method.										
T	opic - 4			FINI	TE V	WORD I	LENGTH EFFE	CTS			9+3
Qua off	Fixed point and floating point number representations – Quantization – Truncation and Rounding errors – Quantization noise – coefficient quantization error – Product quantization error – Overflow error – Roundoff noise power – limit cycle oscillations due to product round-off and Overflow errors – Principle of scaling										
Т	Topic - 5 MULTIRATE SIGNAL PROCESSING AND DSP APPLICATIONS 9+3										
1	opic - 5	M	ULT	TRATE SIGN	IAL]	PROCE	SSING AND DS	P AP	PLICA'	ΓΙΟΝS	9+3
Intr ratio	oduction to	Multira – Adaj	ite si ptive	gnal processin	g – I	Decimation	SSING AND DS on – Interpolation pplications of ac	_ Sa	mpling	rate conversi	on by a
Intr ratio	oduction to	Multira – Adaj	nte si ptive	gnal processing Filters: Intro	g – I	Decimation	on – Interpolation	_ Sa	mpling	rate conversi	on by a
Intr ratio Intr	roduction to onal factor roduction to	Multira - Adap DSP Pro	nte si ptive	gnal processing Filters: Intro sor (TMS320C	g – Γ oducti (50).	Decimation	on – Interpolation pplications of ac	– Sa laptiv	mpling	rate conversiing to equal	on by a ization-
Intr ratio Intr	roduction to onal factor roduction to HEORY OK REFE John G.	Multira - Adap DSP Pro 45 CRENCE	ptive ocess	gnal processing Filters: Introsor (TMS320C) TUTORIAL	g – I oducti (50).	Decimation – A	on – Interpolation pplications of ac PRACTICAL tal Signal Proces	- Sa daptiv	mpling e filter	rate conversing to equal	on by a ization-
Intr ratio Intr TH	roduction to onal factor roduction to HEORY OK REFE John G. Applicati Sanjit K.	Multira — Adap DSP Pro 45 CRENCE Proakis ons", Pea	ptive ocess ES &Diarson	gnal processing Filters: Intro sor (TMS320C TUTORIAL mitris G. Mar n Education / F	g – I oducti 50). 15	Decimation – A	on – Interpolation pplications of ac	- Sadaptiv	mpling e filter	rate conversing to equal	on by a ization-
Intrration Intr	roduction to onal factor roduction to HEORY OK REFE John G. Applicati Sanjit K. edition 20	Multirar — Adap DSP Pro 45 CRENCE Proakis a ons", Pea Mitra, 6 013. enheim,	este si ptive ocess ES &Dii arson "Dig	gnal processing Filters: Introsor (TMS320C) TUTORIAL mitris G. Marn Education / Popital Signal Processing	g – Induction (50). 15 nolakirocess	Decimation – A is, "Digiting – A	practical Signal Proces	- Sadaptiv 0 ssing 007.	mpling e filteri	rate conversiting to equal TOTAL iples, Algorit, McGraw H	on by a ization- 60 chms &
Intrration Intration Intraction Intration Internation Intration Internation Intration Internation In	roduction to onal factor roduction to HEORY OK REFE John G. Applicati Sanjit K. edition 20 A.V.Opp	D Multirar - Adap DSP Pro 45 CRENCE Proakis of ons", Pea Mitra, 10 013. enheim, eprint, 20	ES & Di arson "Dig R. W 004.	gnal processing Filters: Introsor (TMS320C) TUTORIAL mitris G. Marn Education / Popital Signal Processing	g – Induction (50). 15 nolakirocess	Decimation – A is, "Digiting – A	practical Procession - Interpolation polications of action of action and procession of the procession	- Sadaptiv 0 ssing 007.	mpling e filteri	rate conversiting to equal TOTAL iples, Algorit, McGraw H	on by a ization- 60 chms &
Intrration Intration Intraction Intration Internation Intration Internation Intration Internation In	John G. Applicati Sanjit K. edition 20 A.V.Opplindian Re	D Multirar - Adap DSP Pro 45 CRENCE Proakis of the cons", Pea Mitra, 1013. enheim, eprint, 20 FERENCE V.nptelvide	experience signature signa	gnal processing Filters: Introsor (TMS320C) TUTORIAL mitris G. Marn Education / Progital Signal Provided Signal Provided Schafer and	g – I oducti (50). 15 nolaki renti ocess	Decimation – A is, "Digiting – A is Buck,	practical Procession - Interpolation polications of action of action and procession of the procession	o Salaptiv	mpling e filteri	TOTAL iples, Algorit , McGraw H	on by a ization- 60 chms & Cill, 4th on, 8th
Intraction Interaction	John G. Applicati Sanjit K. edition 20 A.V.Opp Indian Ref	Multirate Adap DSP Pro 45 Proakis a cons", Pea Mitra, 1013. enheim, eprint, 20 FERENCE V.nptelvide Delhi.	ES &Diarson R.W004.	gnal processing Filters: Introsor (TMS320C) TUTORIAL mitris G. Marn Education / Popital Signal Provided Signal Provided Filters (Schafer and Interpretation)	g – I oducti (50). 15 nolaki Prenti ocess	Decimation — A is, "Digiting — A ising — A Buck, mal-proces	practical Process Fourth Edition, 20 Computer Base	- Sadaptiv o ssing 07. d Ap Signa	mpling e filteri	TOTAL iples, Algorit , McGraw H ssing", Pears	on by a ization- 60 chms & chm
Intr ratio Intr TH BO 1 2 3	John G. Applicati Sanjit K. edition 20 A.V.Opplindian Ref http://www Roy, IIT D http://www IIT Kharag	Multirate — Adap DSP Pro 45 CRENCE Proakis & Ons", Pea Mitra, 1013. enheim, eprint, 20 FERENCE Ov.nptelvide Delhi.	tte si ptive ocessi decision de la constitución de	gnal processing Filters: Introsor (TMS320C) TUTORIAL mitris G. Marn Education / Popital Signal Provided Signal Provided Filters (Schafer and Interpretation)	g – Ibducti (50). 15 nolaki Prenti ocess I J.R	Decimation — A is, "Digiting — A ising — A Buck, mal-proces	practical processing.html, "Digital signal process"	- Sadaptiv o ssing 07. d Ap Signa	mpling e filteri	TOTAL iples, Algorit , McGraw H ssing", Pears	on by a ization- 60 chms & cill, 4th on, 8th

5 https://www.youtube.com/watch?v=8kcvyoHsXrw

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5T2	ANALOG AND DIGITAL COMMUNICATION	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)								
Afte	After Successful completion of the course, the students should be able to								
CO1	Apply the concept of amplitude modulation and infer the effect of noise in AM receivers	К3	1						
CO2	Make use of the concept of narrowband and wide band FM and interpret the effect of noise in FM receivers	К3	2						
CO3	Identify the notion of baseband pulse transmission, inter-symbol interference and its compensation methods	К3	3						
CO4	Apply the scheme of pass band digital transmission for band limited and wideband signals	К3	4						
CO5	Inspect the characteristics of discrete memory less channel and provide the solution for lossless, error free communication	K4	5						

PRE-REQUISITE NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)									PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1				1	3	3		3	3	1
CO2	3	2	1	1				1	3	3		3	2	1
CO3	3	2	1	1				1	3	3		3	3	1
CO4	3	2	1	1	1			1	3	3		3	2	1
CO5	3	3	2	2	1			1	3	3		3	2	1

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

spectrum -Fre	Modulation and its need— Linear modulation schemes: DSBSC, SSBSC and VSB-p	9+3						
spectrum –Fre		ower						
Introduction: Modulation and its need—Linear modulation schemes: DSBSC, SSBSC and VSB-pow spectrum—Frequency translation—Frequency division multiplexing—Superheterodyne receivers Noise in AM receivers:coherent detection, envelope detection								
Topic - 2	ANGLE MODULATION	9+3						
Frequency modulation, Narrowband FM, Wideband FM – Generation of FM: indirect method – FM demodulation:frequency discriminator – Non-linear effects in FM systems – Noise in FM receivers – capture effect – pre-emphasisand de-emphasis in FM								
Topic - 3	PULSE MODULATION AND BASEBAND PULSE TRANSMISSION 9							
unipolar NRZ Intersymbol I transmission –	Sampling process – PAM – Quantization process –PCM – TDM – Delta modulation, Line coding: unipolar NRZ, Polar NRZ, Unipolar RZ, Manchester – Matched Filter as optimum receiver – Intersymbol Interference – Eyepatterns – Nyquist Criterion for distortion less baseband binary transmission – Pulse shaping with raised cosine filter– Duobinary signaling – Adaptive equalization: LMS algorithm							
Topic - 4	PASSBAND DIGITAL TRANSMISSION AND SPREAD SPECTRUM COMMUNICATION	9+3						
analysis ofBP	Coherent Phase shift keying: BPSK, QPSK, OQPSK, $\pi/4$ shifted QPSK – QAMSK and QPSK-concepts of MSK-Spread Spectrum: PN sequence and its prope ce SpreadSpectrum-Frequency Hopping Spread Spectrum							
	INFORMATION THEORY AND CODING 9+3							
Topic - 5	Topic - 5 INFORMATION THEORY AND CODING 9+3 Entropy and its properties – Source coding theorem : Huffman coding, LZ coding – Discrete Memory less Channel –mutual information and its properties – Channel coding theorem – information capacity theorem; Hamming codes –Convolutional codes – Trellis diagram – Viterbi algorithm – Trellis coded modulation :8 array PSK							

modulation	:8 arra	y PSF	<u> </u>				1		
THEORY	45		TUTORIAL	15	PRACTICAL	0		TOTAL	60

во	OK REFERENCES
1	B. Sklar, —Digital Communication Fundamentals and Applications, 2nd Edition, Pearson Education, 2009
2	B.P.Lathi, —Modern Digital and Analog Communication Systems 3rd Edition, Oxford UniversityPress 2007.
3	H P Hsu, Schaum Outline Series - —Analog and Digital Communications , TMH 2006

OT	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=dZAg5YLyJqw						
2	https://www.youtube.com/watch?v=qQcpnmJNluU						
3	https://www.youtube.com/watch?v=bm0f8mBBsjc						
4	https://www.youtube.com/watch?v=KXFF8m4uGDc						
5	https://www.youtube.com/watch?v=M75X-QzY834						

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	Common to B.E. EEE & ECE	20EE5LT1	CONTROL SYSTEMS ENGINEERING	2	0	4	4

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Develop various representations of system based on the knowledge of Mathematics, Science and Engineering fundamentals.	К3	1								
CO2	Conclude time domain analysis of various models in linear system and analyzing various controllers in closed loop system.	K4	2								
CO3	Conclude frequency domain analysis of various models in linear system.	K5	3								
CO4	Examine the stability of a given system using various methods.	K4	4								
CO5	Design a lag, lead and lag lead compensator and examine a system using state variables.	K6	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)												PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2							1	3	3		3			
CO2	3	2	2					1	3	3		3		2	
CO3	2	2	3	2				1	3	3		3			
CO4	3	2	2	3	2			1	3	3		3	2		
CO5	3	3	3	3	3			1	3	3		3			

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2	Assignments & Model Practical								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT												
Topic - 1 SYSTEMS AND ITS REPRESENTATION													
Basic elements in control systems – Open and closed loop system – Electrical analogy of mechanical system – Transfer function of mechanical and electrical system –Block diagram reduction technique Signal flow graph.													
Topic - 2 TIME DOMAIN ANALYSIS													
-	Time response of first order and second order systems for unit step test signals—Time domain specifications—Steady state response—Root locus technique - Effects of P,D, PI systems.												
Topic - 3			FREC	QUEN(CY DO	MAIN ANALY	SIS			6			
•	•	-	ency domain sp de plot, Polar pl		tions -	Correlation betw	een fre	quency	domain an	d time			
Topic - 4				STAB	ILITY	ANALYSIS				6			
	•		•		•	y - Characteristics tability criterion.	s equati	ion - Lo	ocation of r	oots in			
Topic - 5			COMPENS	SATO	RS AN	D STATE VAR	IABLE	S		6			
						ensator - Lag-leac nd observability.	l compe	ensator	using Bode	plot -			
THEORY	30		TUTORIAL	0		PRACTICAL	0		TOTAL	30			

	LIST OF EXPERIMENTS							
1	P, PI and PID controllers							
2	Stability Analysis							
3	Modeling of Systems – Machines, Sensors and Transducers							
4	Design of Lag, Lead and Lag-Lead Compensators							
5	Position Control Systems							
6	Synchro-Transmitter- Receiver and Characteristics							
7	Bridge Networks –AC and DC Bridges							
8	Dynamics of Sensors/Transducers							
	a. Temperature							
	b. Displacement							

	c. Optical												
	d. Strain												
	e. Flow												
9	Power and Energy Measurement												
10	Signal Conditioning												
	a. Instrumenta	ation	Amplifier										
	b. Analog – D	Digita	al and Digital –	Anal	og conver	ters (ADC and D	ACs)						
11	Design and in	mplei	mentation of Fi	rst or	der syster	ns.							
12	Design and in	mplei	mentation of Se	cond	order sys	stems.							
THE	ORY 0		TUTORIAL	0		PRACTICAL	60		TOTAL	60			

Bo	BOOK REFERENCES								
1	Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 201								
2	Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.								
3	Katsuhiko Ogata, "Modern Control Engineering", Pearson, 2015.								
4	Richard C.Dorf and Bishop, R.H., "Modern Control Systems", Pearson Education, 2009.								
5	Control and Instrumentation Manual, Al-Ameen Publications, 2020.								

O'	OTHER REFERENCES							
1	John J.D., Azzo Constantine, H. and Houpis Sttuart, N Sheldon, "Linear Control System Analysis and Design with MATLAB", CRC Taylor& Francis Reprint 2009.							
2	M.Gopal, "Control System: Principle and design", McGraw Hill Education, 2012.							
3	https://youtu.be/V09Ct3RYSWU							
4	https://youtu.be/65GGqUZNi4s							
5	https://youtu.be/NQAQkSyOnBY							

Semester	Programme	Course Code	Course Name	L	Т	P	C
V	B.E. ECE	20EC5L1	DIGITAL SIGNAL PROCESSING LABORATORY	0	0	3	1.5

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Digital Signal Processing Laboratory Course	К3									
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3									
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4									
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4									
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication -	К3									

PRE-REQUISITE	NIL
---------------	-----

				CO/	PO M	APPIN	G (1 - V	Weak, 2 –	Medium	ı, 3 – Stroi	ng)			
COs	Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	2	-	3	-	-	-	2	2	-	2	-	2
CO2	3	-	3	-	3	-	-	-	2	2	-	2	-	2
CO3	3	2	2	-	3	-	-	-	3	2	2	2	2	2
CO4	3	-	2	-	3	-	-	-	3	2	2	3	2	3
CO5	3	2	2	-	3	-	-	-	3	2	-	2	-	2

COURSE ASSESSMENT METHODS									
DIRECT	1	Laboratory Record							
	2	2 Model Practical Examinations							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	LIST OF EXPERIMENTS									
1	Introduction to Matlab for Signal Processing									
2	Sampling of	of Con	tinuous time Sig	nals						
3	Linear and	Circu	lar Convolution							
4	Computati	on of I	DFT of a signal	ısing	FFT algo	orithms				
5	Design and Simulation of IIR and FIR filters									
6	Design and Simulation of IIR and FIR filters using DSP Kit									
7	Linear Cor	rvoluti	on using DSP K	it						
8	Generation of Signals using DSP Kit									
9	9 Convolution Operation using DSP Kit									
10	10 Implementation of FFT algorithms using DSP Kit									
THEC	ORY 0		TUTORIAL	0		PRACTICAL	45		TOTAL	45

BOOK REFERENCES

1 Digital Signal Processing Laboratory Manual, Al-AmeenPublications,2020

OT	THER REFERENCES
1	https://www.youtube.com/watch?v=pGdr9WLto4A&list=PL1CE5B4FFFA997E5D
2	https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx
3	https://www.youtube.com/watch?v=UWQuMnWcmwc
4	https://www.youtube.com/watch?v=W1cTpqM9DaU
5	https://www.youtube.com/watch?v=8kcvyoHsXrw

Semester	Programme	Course Code	Course Name	L	Т	P	C
V	B.E. / B. Tech. (CSE, EEE, ECE & IT)	20PT5T1	Career Guidance - I	2	1	0	0

	COURSE LEARNING OUTCOMES (COs)									
Afte	After Successful completion of the course, the students should be able to									
CO1	Understand the basic concepts of logical reasoning Skills	K1	1							
CO2	Understand the basic concepts of Quantitative Aptitude.	K2	2							
CO3	Understand the importance and type of communication in personal and professional environment.	К3	3							
CO4	To provide insight into much needed technical and non technical qualities in career planning.	K4	4							

PRE-REQUISITE NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PS	Os	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3			3	3		3		
CO2						2			3	3		2		
CO3						3			3	2		1		
CO4						2			3	3		2		

COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests									
	2	Quiz							
INDIRECT	1	Course Exit Survey							

				COU	RSE CO	ONTENT				
Topic - 1				LOC	GICAL	REASONING				5
LR 1: Series, Odd man out, Analogy										
LR 2: Codin	g and l	Deco	ding							
LR 3: Direct	ion, R	ankin	g and Ordering							
LR 4: Blood	Relati	on								
LR 5: Venn	Diagra	ım, D	ecision Making							
LR 6: Syllog	ism									
Topic - 2			Q	UAN	TITAT	IVE APTITUDE	,			12
NR 1: Avera	ge									
NR 2: Percei	ntage									
NR 3: Profit	and L	oss								
NR 4: Ages										
NR 5: Ratio	and Pr	opor	tion							
NR 6: Allega	ation a	nd M	lixture							
NR 7: Time	and W	ork								
NR 8: Time,	Speed	l and	Distance							
NR 9: Trains	s, Boat	s and	Streams							
Topic - 3		VE	RBAL REASO	NIN(G & BU	SINESSES CON	1MU	NICAT	TION	3
VR 1:Prepos	ition &	& Co	njunction							
VR 2: Synor	yms, z	Antoi	nyms & Tenses							
BS1: Art of	Introdu	action	n, Communication	on Ba	rriers, P	ersonal Interview				
Topic - 4				TE	CHNIC	AL CODING				10
TECH 1: I/0	O, Ope	rater	s							
TECH 2: Co	TECH 2: Conditional statement (branching and jumping statement)									
ТЕСН 3: Со	TECH 3: Control statements and patterns programming									
TECH 4: 1D	and p	ointe	rs.							
THEORY	20		TUTORIAL	10		PRACTICAL	0		TOTAL	30

BC	OOK REFERENCES
1	Logical Reasoning and Data Interpretation for CAT by Nishit K. Sinha
2	Quantitative Aptitude for Competitive Examinations (5th Edition) - Abhjit Guha
3	A Modern Approach To Verbal Reasoning by R S Aggarwal.
4	Computer Programming for Beginners: Fundamentals of Programming Terms and Concepts - Nathan Clark

OTHER REFERENCES	
1	https://www.youtube.com/watch?v=x0WkptLF6oE&list=PLpyc33gOcbVADMKqylIO_O_RMe HTyNK
2	https://www.youtube.com/watch?v=LMY7GoAMcDI
3	https://www.youtube.com/watch?v=K7sj1yzXzng
4	https://www.youtube.com/watch?v=fyzmCU931QE
5	https://www.youtube.com/c/TechnicalCoding

SEMESTER VI

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
	THEORY COURSES								
1	20EC6T1	Antenna and wave Propagation	PC	50	50	3	1	0	4
2	20EC6T2	VLSI Design	PC	50	50	3	1	0	4
3		Professional Elective–III	PE	50	50	3	0	0	3
4		Professional Elective- IV	PE	50	50	3	0	0	3
5		Open Elective–II	OE	50	50	3	0	0	3
	THEORY COURSES WITH LABORATORY COMPONENTS								
6	20CSCLT1	Data Communication and Networks	PC	50	50	2	0	4	4
		LABORATORY	COUR	SE					
7	20EC6L1	VLSI Design Laboratory	PC	50	50	0	0	3	1.5
8	20EC6L2	Mini Project	EEC	100		0	0	4	2
MANDATORY COURSE									
9	20PT6T1	Career Guidance - II	MC	100		2	1	0	0
	Total							11	24.5

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. ECE	20EC6T1	ANTENNAS AND WAVE PROPAGATION	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)						
A	After Successful completion of the course, the students should be able to						
CO1	Analyze the Hertzian and Half wave dipole antenna using Maxwell's equation to determine the electric and magnetic field components.	K4	1				
CO2	Determine the radiation pattern, half power beam width and directivity of broadside array and endfire array using pattern multiplication method.	K5	2				
CO3	Design the length and width of pyramidal horn antenna with optimum gain at a frequency of C band.	K6	3				
CO4	Demonstrate the antenna parameters of gain, radiation pattern, polarization and VSWR using anechoic chamber.	K2	4				
CO5	Explain the performance characteristics of various special antennas	K2	5				

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2				1	3	3		3	2	
CO2	3		3					1	3	3		3	2	
CO3	3	3	3	3				1	3	3		3		2
CO4	3	3	2					1	3	3		3		2
CO5	2	2		2				1	3	3		3		

COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2 Assignment							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	COURSE CONTENT						
Topic - 1	FUNDAMENTALS OF RADIATION	9+3					
Definition of antenna parameters: Radiation pattern, Beam solid angle, Radiation Intensity, Gain, Directivity, Antenna aperture, Radiation Resistance, Input Impedance. Matching- Baluns – Polarization mismatch – Antenna noise temperature – Radiation from Hertizian dipole – Half wave dipole and Folded dipole.							
Topic - 2	ANTENNA ARRAYS	9+3					
	near Array: N element linear array, Broadside and End fire array. Pattern multiplic – Adaptive array – Binomial array.	ation –					
Topic - 3	APERTURE ANTENNAS	9+3					
	s – Horn antenna – Reflector Antenna: Flat reflector, Corner Reflector, Parabolo reding structures, Aperture blockage. Microstrip antennas – Numerical tool for antennas						
Topic - 4	SPECIAL ANTENNAS AND ANTENNA MEASUREMENT	9+3					
	ntenna, Log periodic antenna, Helical antenna Antenna Measurements: Radiation pation, VSWR, Anechoic Chamber.	pattern,					
Topic - 5	PROPAGATION OF RADIO WAVES	9+3					
Modes of propagation: Ground wave propagation, Attenuation characteristics — Tropospheric propagation: Duct propagation, Troposcatter propagation — Sky wave propagation: Structure of the ionosphere, Virtual height, critical frequency, Maximum usable frequency, Skip distance, Fading, Multi hop propagation. THEORY 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60							
THEORY	45 TUTORIAL 15 PRACTICAL 0 TOTAL	60					
BOOK REI	FERENCES						
	Kraus, Ronald J Marhefka, Ahmad S Khan, "Antennas and Wave Propagation", Mc GrawHill n Private Limited, Fourth Edition, 2015.						
2 Constantine.A.Balanis, "Antenna Theory Analysis and Design", Wiley Student Edition, ThirdEdition, Reprint 2016.							

ЪС	OK REFERENCES
1	John D Kraus, Ronald J Marhefka, Ahmad S Khan, "Antennas and Wave Propagation", Mc GrawHill Education Private Limited, Fourth Edition, 2015.
2	Constantine.A.Balanis, "Antenna Theory Analysis and Design", Wiley Student Edition, ThirdEdition, Reprint 2016.
3	K.D.Prasad, "Antennas and wave propagation", Sathya Praksham, 3rd Edition, 2013.
4	R.E.Collin, "Antennas and Radiowave Propagation", Mc Graw Hill, 1985.
5	Edward C.Jordan and Keith G.Balmain, "Electromagnetic Waves and Radiating Systems", Prentice Hall of India, 2006

CO	OTHER REFERENCES					
1	https://nptel.ac.in/content/storage2/courses/108101092/					
2	https://nptel.ac.in/courses/108/101/108101092/					
3	https://www.youtube.com/watch?v=COe7dxkWsCI					
4	https://www.youtube.com/watch?v=8_GbiRk_gLI					
5	https://www.youtube.com/watch?v=QX0-d54oB7I					

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	BE - ECE	20EC6T2	VLSI DESIGN	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Develop digital logic circuits and VLSI systems using Verilog Hardware Description Language Programming	К3	1					
CO2	Illustrate the components in the logic synthesis-based design flow	K3	2					
CO3	Elaborate the characteristics of MOS transistor and techniques used for VLSI fabrication	K2	3					
CO4	Make use of layout design rules to draw layout of logic functions and to design circuits using various logic styles	К3	4					
CO5	Apply various testing techniques/algorithms to test circuits	К3	5					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2		1			1	3	3		3	1	3	
CO2	3	2	2		1			1	3	3		3	1	3	
CO3	3				1			1	3	3		3		2	
CO4	3	2	2		1			1	3	3		3	1	3	
CO5	3	2						1	3	3		3		1	

		COURSE ASSESSMENT METHODS						
DIRECT	1 Continuous Assessment Tests							
	2	Assignment						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE	CONTENT
COUNSE	CONTENT

Topic - 1 Verilog HDL 9+3

Data flow Modelling- Behavioural modelling – Structured Procedures- Blocking and non blocking statements- delay control- event control, conditional statements- multiway branching-loops- Switch level modelling - Tasks and Function

Topic - 2 Logic Synthesis and RTL Design 9+3

Logic Synthesis- Impact of Logic Synthesis- Verilog HDL Synthesis- Synthesis Design Flow-Modelling Tips for Logic Synthesis- RTL Design- 4-bit full adder subtractor- ALU Design – Booth Multiplication- GCD Computation.

Topic - 3 MOS Transistor 9+3

CMOS Logic- MOS Transistor Theory- Long Channel I-V characteristics- C-V characteristics- Nonideal I-V effects DC characteristics-- Power dissipation – Switching Characteristics

Topic - 4 MOS Fabrication 9+3

An overview of silicon semiconductor technology - Basic CMOS technology: N well- P well, Twin tub and SOI Process- Latch up and prevention- Layout Design rules- Stick diagram- Layout diagram for basic logic gates Introduction to Static CMOS- Pseudo nMOS logic -Dynamic CMOS-Cascade Voltage Switch Logic.

Topic - 5 CMOS Testing 9+3

Introduction to testing- Logic Verification Principles- Test Vectors-Manufacturing test principles- Fault Models observability, controllability –Fault coverage- DFT-Ad-Hoc Testing- Scan Design-BIST- D-Algorithm and Boolean Difference Method

THEORY | 45 | TUTORIAL | 15 | PRACTICAL | 0 | TOTAL | 60

BOOK REFERENCES

- Neil Weste & David Harris , "CMOS VLSI Design-A circuits & System Perspective", 4th Edition, Pearson education, New Delhi, 2017.
- Palnitkar Samir, "Verilog HDL: Guide to Digital Design and synthesis", 2nd Edition, Pearson Education, New Delhi, 2017.

OTHER REFERENCES

- 1 https://www.youtube.com/watch?v=PJGvZSlsLKs
- 2 https://www.youtube.com/watch?v=sIDe76QFG2g
- 3 https://www.youtube.com/watch?v=6OZL1689pi0
- 4 https://www.youtube.com/watch?v=sV2xT-WCSSI
- 5 https://www.youtube.com/watch?v=YpbtAwmYCcI

Semester	Programme	Course Code	Course Name	L	Т	P	С
V & VI	B.Tech., IT (V) & B.E. ECE (VI)	20CSCLT1	DATA COMMUNICATION AND NETWORS	2	0	4	4

	COURSE LEARNING OUTCOMES (COs) RBT Topics									
Ai	After Successful completion of the course, the students should be able to									
CO1	Interpret the importance of layering, addressing and annotate the protocol stack of OSI and TCP/IP model.	K5	1							
CO2	Design and analyze error and flow control algorithms for communication between adjacent nodes in a network.	K6	2							
CO3	Identify and apply the suitable routing algorithms for the given network.	К3	3							
CO4	Simulate the network topologies using NS2 for data communication.	K2	4							
CO5	Implement protocols to understand and describe the devices and services used to support communications in data networks and the Internet	K3	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3					1	3	3	2	3	2	
CO2	1	2	3	2	2			1	3	3		3		2
CO3	3	2	2					1	3	3	2	3		2
CO4	1	3	2	2				1	3	3		3	2	
CO5	3	2						1	3	3	3	3		2

		COURSE ASSESSMENT METHODS					
DIRECT 1 Continuous Assessment Tests							
	2	Assignment & Model Practical Examinations					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT								
Topic - 1	DATA COMMUNICATIONS 6								
Introduction: Data Communications, Networks, Network Types, Protocol Layering, TCP/IP Protocol Suite, OSI Model - Physical Layer: Introduction to Physical Layer, Multiplexing and Spectrum Spreading - Transmission Media: Guided Media, Unguided Media.									
	Copic - 2 DATA LINK LAYER 6								
Topic - 2	DATA LINK LAYER	6							
Introduction to Cyclic Codes, Protocols, HD	DATA LINK LAYER Data Link Layer: Link Layer Addressing - Error Detection and Correction: Block Checksum, Forward Error Correction - Data Link Control: DLC services, Data-Link LC, Point-to-Point Protocol - Media Access Control: Random Access and Contel: IEEE 802.3 - IEEE 802.11.	Coding, nk Layer							

Topic - 4 TRANSPORT LAYER 6

Generation IP: IPv6 Addressing, IPv6 Protocol.

Layer Protocols: IP, ICMPv4, Mobile IP - Routing Algorithms- Unicast Routing Protocols - Next

Introduction to Transport Layer: Simple Protocol, Stop-and-Wait Protocol, Go-Back-N Protocol, Selective-Repeat Protocol, Bidirectional Protocols: Piggybacking - User Datagram Protocol - Transmission Control Protocol - Congestion Control.

Topic - 5 APPLICATION LAYER 6

Client Server Programming - WWW - HTTP - FTP - Electronic Mail - Telnet - SSH - DNS - SNMP - DHCP - MQTT - IMAP - TLS/SSL

THEORY 30 TUTORIAL 0 PRACTICAL 0 TOTAL 30

	LIST OF EXPERIMENTS
1	Experiment on configuring network topology using packet tracer.
2	Experiment on packet capturing and analyzing using packet tracer.
3	Experiment on error correction code like CRC and Checksum.
4	Experiment on ARP and RARP in live network using Wireshark.
5	Experiment on chat programming using TCP and UDP sockets.
6	Experiment on routing algorithms like Distance Vector and Link State Routing.
7	Implementation of Various Topologies using NS2 Simulator.

8	Prog	ram to	simul	ate Stop & Wait	prot	cocol.				
9	Implementation of Sliding Window Protocol									
10	Program to simulate Distance Vector Routing algorithm.									
11	Experiment on Routing algorithms Link state Routing.									
12	Experiment on RARP I live network using wireshack.									
THE	ORY	0		TUTORIAL	0		PRACTICAL	60	TOTAL	60

BC	OOK REFERENCES
1	Behrouz A. Forouzan, Data Communication and Networking, Fifth Edition, McGraw Hill Education (India) Private Limited, 2013
2	Andrew S Tanenbaum and David J Wetherall, Computer Networks, Fifth Edition, Pearson Education, 2011.
3	William Stallings, Data and Computer Communications, Tenth Edition, Prentice Hall, 2013.
4	Larry L Peterson and Bruce S Davie, Computer Networks: A Systems Approach, Fifth Edition, Elsevier, 2011.
5	James F Kurose and Keith W Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Sixth Edition, Addison-Wesley, 2013

CO	THER REFERENCES									
1	http://www.nptel.ac.in/downloads/106105080, 'Kharagpur.	"Computer	Networks",	Prof.Sujoy	Ghosh,	IIT				
2	https://www.elsevier.com/journals/subjects/computer-science									

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	BE ECE	20EC6L1	VLSI DESIGN LABORATORY	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to									
CO	State the aim and develop the procedure to conduct the experiment / exercise in the VLSI Design Laboratory Course	К3								
CO	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3								
CO	Draw inferences from the experiment / exercise conducted and present it professionally	K4								
CO	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4								
CO	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication -	К3								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	-	-	-	-	-	3	3	-	-	-	-	
CO2	3	-	-	-	3	-	-	2	3	-	1	-	-	-	
CO3	3	2	-	2	-	1	-	-	-	3	-	-	-	-	
CO4	3	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO5	3	-	-	-	-	-	-	-	-	3	-	1	-	-	

	COURSE ASSESSMENT METHODS										
DIRECT	DIRECT 1 Laboratory Record										
	2	Model Practical Examinations									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	LIST OF EXPERIMENTS											
1	Design of 16x1 multiplexer using structural modelling.											
2	Design of 8 bit carry look ahead adder and BCD adder											
3	Modelling of Sequential Digital Systems											
4	Modelling of State Machine Design											
5	Modelling of Memory Design											
6	Design of 4 * 4 array multiplier using structural modelling											
7	Design and implementation of 4-bit Adder-Subtractor Unit											
8	Design and implementation of ALU											
9	Design and implementation of Booth multiplier											
10	Design and implementation of Real Time Clock											
11	Design of Full adder using CMOS transistor											
12	2 Design of D-Flip flop using CMOS transistor											
THEO	ORY 0 TUTORIAL 0 PRACTICAL 45 TOTAL 45											

BOOK REFERENCES

1 VLSI Design Laboratory Manual, Al-Ameen Publications, 2020.

OI	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=cghlCRN-tC8								
2	https://www.youtube.com/watch?v=6Z1WikEWxH0								

Semeste	er Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. / B. Tech. (CSE, EEE, ECE & IT)	20PT6T1	Career Guidance - II	2	1	0	0

	COURSE LEARNING OUTCOMES (COs)											
Afte	After Successful completion of the course, the students should be able to											
CO1	Analyze the Problems logically and approach the problems in a different manner	К3	1									
CO2	Solve the problems easily by using Short-cut method with time management which will be helpful to them to clear the competitive exams for better job opportunity.	K5	2									
CO3	Effectively communicate through verbal/oral communication and improve the listening skills	К3	3									
CO4	Develop skills in ideation, innovation in algorithmic thinking, and be able to apply them in problem solving	K4	4									

PRE-REQUISITE	SOFTSKILL COURSE - I
---------------	----------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1						3			3	3		3			
CO2						2			3	3		2			
CO3			2			3			3	2		1			
CO4		3	3			2			3	3		2			

COURSE ASSESSMENT METHODS										
DIRECT 1 Continuous Assessment Tests										
	2	Quiz								
INDIRECT	1	Course Exit Survey								

			COU	RSE CO	ONTENT					
Topic - 1 LOGICAL REASONING										
LR 1: Seating Arrangement LR 2: Critical Reasoning										
		y and Condition (Groupi	ing						
LR 4: Cubes	•		1	8						
LR 5: Clocks		_								
Topic - 2		Q	UAN	ΓΙΤΑΤ	IVE APTITUDE				12	
NR 1: Simpl	e Interest a	and Compound Ir	nterest	<u> </u>						
NR 2: Logar		1								
NR 3: Permu										
NR 4: Comb	ination									
NR 5: Proba	bility									
NR 6: Numb	er System									
NR 7: HCF a	and LCM									
Topic - 3	VI	ERBAL REASO	NING	S & BU	SINESSES COM	1MU	NICAT	TION	3	
VR 1: Voice	s & Speecl	h, Parajumbles, E	Error S	potting						
VR 2: Readi	ng Compre	ehension								
BS1: Effective	ve Commu	inication, Person	al Etiq	uettes,C	Group Discussion,	, Resi	ume Wı	riting.		
Topic - 4			TEC	CHNIC	AL CODING				10	
TECH 1: 2D	array									
TECH 2: Str	ing function	ons and functions								
TECH 2: String functions and functions TECH 3: structure and union, DS intro										
TECH 3: structure and union, DS intro TECH 4: Array list, linked list and it's implementation										
		inica not ana ito i								
	20	TUTORIAL	10		PRACTICAL	0		TOTAL	30	
TECH 4 : At	20	TUTORIAL	10		PRACTICAL	0		TOTAL	30	

BC	BOOK REFERENCES												
1	Logical Reasoning and Data Interpretation for CAT by Nishit K. Sinha												
2	Quantitative Aptitude for Competitive Examinations (5th Edition) - Abhjit Guha												
3	A Modern Approach To Verbal Reasoning by R S Aggarwal.												
4	Computer Programming for Beginners: Fundamentals of Programming Terms and Concepts - Nathan Clark												

O	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=4WCq6leqnHs								
2	https://www.youtube.com/watch?v=tnc9ojITRg4&list=PLpyc33gOcbVA4qXMoQ5vmhefTruk5t9lt								
3	https://www.youtube.com/watch?v=tWNieZVZU								
4	https://www.youtube.com/watch?v=HAnw168huqA								
5	https://www.youtube.com/watch?v=HIj8wU_rGIU								

SEMESTER VII

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C			
THEORY COURSES												
1	20HSCT2	Professional Ethics	HS	50	50	3	0	0	3			
2	20EC7T1	RF and Microwave Engineering	PC	50	50	3	1	0	4			
3	20EC7T3	Fiber Optic Communications	PC	50	50	3	1	0	4			
4		Open Elective - III	OE	50	50	3	0	0	3			
5		Open Elective - IV	OE	50	50	3	0	0	3			
	ТНЕО	RY COURSE WITH LABO	RATO	RY C	OMPO	NEN	NTS					
6	20ECCLT1	Embedded Systems	PC	50	50	2	0	4	4			
		LABORATORY	COUR	SE								
7	20EC7L1	RF and Microwave Laboratory	PC	50	50	0	0	2	1			
8	HX8001	Professional Readiness for Innovation, Employability and Entrepreneurship	EEC	100		0	0	6	3			
	Total							12	25			

Semester	Programme	Course Code	Course Name	L	Т	P	С
VII	B.E. ECE	20HSCT2	Professional Ethics	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)												
Afte	After Successful completion of the course, the students should be able to												
CO1	Articulate engineering ethics theory with sustained lifelong learning. actions.	K2	1										
CO2	Adopt a good character and follow high professional ethical life.	K2	2										
CO3	Contribute to shape a better character by following ethical	К3	3										
CO4	Confront and resolve moral issues occurred during technological activities.	K4	4										
CO5	Resolve moral and ethical problems through exploration and assessment by established experiments	K4	5										

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2					2	1	3	3	2	2	1	1	
CO2	2					3	1	2	2	1	2	1	1	
CO3	2					1	2	3	3	1	2			1
CO4	1					2	1	3	2	1	2			1
CO5	2					1		2	1		2			

	COURSE ASSESSMENT METHODS										
DIRECT 1 Continuous Assessment Tests											
	2	Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

COL	IRCE	1 66	ENTS

Topic - 1 HUMAN VALUES

9

Morals and Ethics - Honesty - Integrity - Values - Work Ethic - Civic Virtue - Respect for Others - Living Peacefully - Caring and Sharing - Self-Confidence - Courage - Co-operation - Commitment - Empathy.

Topic - 2

ENGINEERING ETHICS AND PROFESSIONALISM

9

Scope of Engineering Ethics- Variety of moral issues - Types of inquiry - Accepting and sharing responsibility - Ethical dilemmas - Moral autonomy - Kohlbergs and Gilligan's theory - Consensus and controversy - Senses of corporate responsibility - Codes of ethics: Importance - justification - limitation - Abuse.

Topic - 3

ENGINEERING AS SOCIAL EXPERIMENTATION

9

Engineering as experimentation - Engineers as responsible experimenters - Balanced outlook on law - Cautious optimism - Safety and risk - Assessing and reducing risk - Safe exits - The Challenger case study - Bhopal Gas Tragedy - The Three Mile Island and Chernobyl.

Topic - 4

WORKPLACE RESPONSIBILITIES AND RIGHTS

9

Fundamental Rights - Responsibilities and Duties of Indian Citizens - Teamwork - Ethical corporate Climate - Collegiality and loyalty - Managing conflict - Respect for authority - Collective bargaining - Confidentiality - Conflicts of interest - Occupational crime - Professional rights - Employee rights.

Topic - 5 GLOBAL ISSUES

9

Multinational corporations: Technology transfer and appropriate technology - International rights - promoting morally just measures - Environmental ethics: Engineering, ecology - economics - Human and sentient centred - and bio and eco centric ethics - Consulting engineers - Engineers as expert witnesses and advisors - Moral leadership

THEORY

45

TUTORIAL

PRACTICAL

Λ

TOTAL

45

BOOK REFERENCES

- Mike W Martin and Roland Schinzinger, Ethics in Engineering, 4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi, 2014.
- M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi, 2012.

OTHER REFERENCES

- 1 | R S Naagarazan, A text book on professional ethics and human values, New age international (P)
- 2 Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics Concepts and Cases, Wadsworth Thompson Learning, United States, 2005.
- 4 http://www.slideworld.org/slidestag.aspx/human-values-and- Professional-ethics
- 5 https://www.youtube.com/watch?v=0ibZPqHcb5Y

5	Semester	Programme	Course Code	Course Name	L	Т	P	С
	VII	B.E. ECE	20EC7T1	RF AND MICROWAVE ENGINEERING	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
Afte	After Successful completion of the course, the students should be able to										
CO1	Analyze the working and performance of RF and Microwave Passive Devices.	K2	1								
CO2	Design and analyze different filter techniques and its characteristics	К3	2								
CO3	Analyze the working and performance of Microwave signal generators.	К3	3								
CO4	Analyze the working of high frequency semiconductor devices.	K4	4								
CO5	Analyze the performance of planar transmission lines.	K5	4								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs) PSOs												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2						1	3	3		3	2	
CO2	1		3					1	3	3		3	2	
CO3	2		1					1	3	3		3	2	
CO4	1	2	3					1	3	3		3	2	
CO5	1	2	3					1	3	3		3	2	

COURSE ASSESSMENT METHODS							
DIRECT 1 Continuous Assessment Tests							
2 Assignment							
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT	
Topic - 1	HIGH FREQUENCY NETWORK CHARACTERIZATION AND PASSIVE DEVICES	9+3

Basic Definitions of Networks; Interconnecting Networks; Scattering Parameters: Definition, Chain Scattering Matrix, Conversion of S-parameters, Generalized S-parameters and Practical Measurements; S parameter representation of N port networks, properties -S Matrix of a Directional Coupler- waveguide tees and rat race coupler-Qualitative discussion on: Waveguide Corners- Bends- Twists- Matched loads and movable shorts.

Topic - 2 HIGH FREQUENCY CIRCUITS 9+3

RF Passive Components: Resistor, Inductor and Capacitor at High Frequency; Chip Resistor, Chip Capacitor and Surface Mounted Inductors, Microstrip lines-Microstrip Filter Design; Amplifier Design: Characteristics, Power Relations, Stability considerations, Constant Gain, Noise Figure and Constant VSWR circles.

Topic - 3 MICROWAVE SIGNAL GENERATOR 9+3

Two cavity Klystron amplifier - Transit time effect- Velocity modulation - current modulation-bunching - Reflex Klystron-Slow-Wave structures - Helix Traveling Wave Tubes- Convection Current- Axial Electric Field- Wave Modes- Bandwidth, Power and Gain Considerations - cross field device-Magnetron – power and frequency considerations.

Topic - 4 HIGH FREQUENCY SEMICONDUCTOR DEVICES 9+3

Gunn-Effect -Gunn Diode- Differential Negative Resistance- Modes of Operation-Amplification-Microwave Generation Read Diode- Physical Description- Avalanche Multiplication IMPATT Diodes-TRAPATT Diode- BARITT Diode-Principles of Operation- Physical Structures; RF Bipolar Junction Transistor, RF Field Effect Transistor: Construction, High Electron Mobility Transistor: Functionality, Frequency Response, Temperature Behaviour and Noise Performance.

Topic - 5 MICROWAVE MEASUREMENTS 9+3

Slotted line VSWR measurement- impedance measurement- insertion loss and attenuation measurements-measurement of scattering parameters - Return loss measurement using directional coupler-Introduction to vector network analyzer and its uses- return loss and insertion loss-Measurement of return loss and Insertion loss using Spectrum analyzer.

	THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
--	--------	----	--	----------	----	--	-----------	---	--	-------	----

BC	BOOK REFERENCES							
1	Samuel.Y.Liao, MicrowaveDevices and Circuits, PHI, 2000.							
2	David.M.Pozar, Microwave Engineering, John Wiley, 2003							
3	Annapurna Das and SisirK.Das, Microwave Engineering, Tata Mc Graw-Hill, 2000.							

O'	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=pGdr9WLto4A&list=PL1CE5B4FFFA997E5D							
2	https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx							
3	https://www.youtube.com/watch?v=UWQuMnWcmwc							
4	https://www.youtube.com/watch?v=W1cTpqM9DaU							
5	https://www.youtube.com/watch?v=8kcvyoHsXrw							

Semester	Programme	Course Code	Course Name	L	Т	P	С
VII	B.E. ECE	20EC7T3	FIBER OPTIC COMMUNICATIONS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Analyze the behaviour of different optical medium (fibers) and performance of signal Propagation	K4	1								
CO2	Analyze the issues in propagation of optical signals resulting from signal degradation mechanism of optical fiber media	K4	2								
CO3	Analyze the performance of light sources and apply the concept for choice of light sources for agiven optical link	K4	3								
CO4	Apply the concept of working of optical receivers and identify the type of receiver for differentoptical links	К3	4								
CO5	Assess the power loss and signal dispersive nature of optical media and apply the result to identifyappropriate transmitter, receiver, on line	K5	5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)												Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3			2	2	3	3		3	2	1
CO2	3	2	2	3			2	2	3	3		3	1	2
CO3	3	2	2	1			2	2	3	3		3	2	3
CO4	1	3	2	1			2	2	3	3		3	2	2
CO5	3	2	3	1			2	2	3	3		3	1	1

COURSE ASSESSMENT METHODS							
DIRECT 1 Continuous Assessment Tests							
	2 Seminar						
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT							
Topic - 1		0 0						
<u>-</u>	INTRODUCTION TO OPTICAL FIBERS	9+3						
Evolution of fiber optic system- Element of an Optical Fiber Transmission link- Ray Optics-Optical Fib Modes and Configurations. Mode theory of Circular Waveguides- Overview of Modes-Key Modes Concepts- Linearly Polarized Modes Single-Mode Fibers								
Topic - 2	SIGNAL DEGRADATION OPTICAL FIBERS	9+3						
Attenuation, Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Waveguides-Information Capacity determination. Group Delay-Material Dispersion Waveguide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling, Design Optimization of SM fibers. RI profile and cut-off wavelength.								
Tonia 2	FIBER OPTICAL SOURCES AND COUPLING 9+3							
Topic - 3	FIBER OPTICAL SOURCES AND COUPLING	9+3						
Direct and in power, Mod	direct Band gap materials LED structures Light source materials Quantum efficiency are ulation of a LED, lasers Diodes Modes and Threshold condition Rate equations Efficiency Resonant frequencies	nd LED						
Direct and in power, Mod	direct Band gap materials LED structures Light source materials Quantum efficiency an ulation of a LED, lasers Diodes Modes and Threshold condition Rate equations E	nd LED						
Direct and in power, Mod Quantum eff Topic - 4 PIN and AF Noise Comp	direct Band gap materials LED structures Light source materials Quantum efficiency and ulation of a LED, lasers Diodes Modes and Threshold condition Rate equations Efficiency Resonant frequencies	nd LED external 9 +3						
Direct and in power, Mod Quantum eff Topic - 4 PIN and AF Noise Comp	direct Band gap materials LED structures Light source materials Quantum efficiency are ulation of a LED, lasers Diodes Modes and Threshold condition Rate equations Efficiency Resonant frequencies FIBER OPTICAL RECEIVERS Department of Photo detector noise, SNR, Detector Response time, Avalanche Multiples parison of Photo detectors, Fundamental Receiver Operation, preamplifiers, Error Section 1997.	nd LED external 9 +3						

•			•		•		
THEORY	45	TUTORIAL	15	PRACTICAL	0	TOTAL	60

BC	BOOK REFERENCES									
1	Gerd Keiser, Optical Fiber Communication, McGraw-Hill International, Singapore, 5th edition. 2013									
2	J.Gower, Optical Communication System, Prentice Hall of India, 2001. Copy right 2002									
3	J.H. Franz, V.K. Jain, Optical Communication-Components and Systems, Narosa Publishing House, 2000									
4	J.Senior, Optical Communication, Principles and Practice, Prentice Hall of India, Third edition published 2009.									

ОТ	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=pavBq7HIoIE							
2	https://www.youtube.com/watch?v=EreQPmHANmg							
3	https://www.youtube.com/watch?v=Pb2CrmCgmkQ							
4	https://www.youtube.com/results?search_query=FIBER+OPTICAL+RECEIVERS							
5	https://www.youtube.com/watch?v=rOZOa8MHll8							

Semester	Programme	Course Code	Course Name	L	Т	P	С
VII	Common to B.E. ECE & B.E. EEE	20ECCLT1	EMBEDDED SYSTEMS	2	0	4	4

	COURSE LEARNING OUTCOMES (COs)						
Afte	After Successful completion of the course, the students should be able to						
CO1	Evaluate the major tools of abstraction in the embedded system design process.	K2	1				
CO2	Elaborate the working functionality of LPC 214X Family Peripherals based on the hardware architecture, memory organization and other attributes of ARM processor.	К3	2				
CO3	Analyze the hardware and software platform used for embedded computing.	К3	3				
CO4	Explain how the process and the operating system used to build applications with more complex functionality and much greater flexibility to satisfy timing requirements.	K4	4				
CO5	Classify the important features that are essential for the successful completion of large embedded system projects.	K5	5				

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1		2	1			1	3	3		3	2	
CO2		1		2	2			1	3	3		3	1	
CO3		1		2	2			1	3	3		3	1	2
CO4		2		2	2			1	3	3		3	1	1
CO5		2		2				1	3	3		3	2	1

		COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests						
	2 Assignment & Model Practical Examination							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

				COU	RSE CO	ONTENT				
Topic - 1		INT	TRODUCTION	OT I		DDED COMPUT ESSORS	ΓING	AND A	ARM	6
methodologi	Introduction – Embedded system design process –Design example: Model train controller- Design methodologies- Design flows – Requirement Analysis -System analysis and architecture design – Quality Assurance techniques.							_		
Topic - 2			ARM P	ROC	ESSOR	AND PERIPHE	CRAL	S		6
mode, excep	Instruction sets preliminaries – ARM Processor – CPU: programming input and output- supervisor mode, exceptions and traps - Memory system mechanisms – CPU performance- CPU power consumption									
Topic - 3			EMBEDDEI	о со	MPUTI	ING PLATFOR	M DE	ESIGN		6
						nniques- Progran energy and power				
Topic - 4			PROCES	SSES	AND O	PERATING SY	STE	MS		6
	d sche					ses – Preemptiv on mechanisms -				
Topic - 5	Topic - 5 SYSTEM DESIGN TECHNIQUES AND NETWORKS 6									
	Multi processors-CPUs and Accelerators -Distributed embedded systems – Networks for Embedded Systems:-I2C, -Internet enabled systems-Elevator controller.									
THEORY	30		TUTORIAL			PRACTICAL	0		TOTAL	30

	COURSE CONTENT
1	Interfacing interrupt.
2	Interfacing ADC
3	Interfacing LED and PWM.
4	Interfacing real time clock
5	Interfacing keyboard and LCD.
6	Interfacing EPROM.
7	Mailbox.
8	Interfacing serial port
9	Flashing of LEDS.
10	Interfacing temperature sensor.
11	Interfacing PWM.

12	External	[nterru	pt.							
13	Interfacin	g Zigb	ee Pr	otocol Node A	& No	ode B.				
14	Interfacin	g Step	per N	lotor.						
T	HEORY	0		TUTORIAL	0		PRACTICAL	60	TOTAL	60

BC	OOK REFERENCES
1	Marilyn Wolf, "Computers as Components – Principles of Embedded Computing System Design", Third Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.
2	K.V.Shibu, "Introduction to Embedded Systems", McGraw Hill,2nd Edition, 2017
3	Prasad.K.V.K.K, Embedded Real-Time Systems: Concepts, Design & Programming, Dreamtech
4	Embedded & Real Time System : - Al-Ameen Publication, 2020

O'	THER REFERENCES
1	Nptel video https://nptel.ac.in/courses/106/105/106105159/, "Introduction to Embedded Systems", Dr.AnubamBasu, Computer Science Engineering, IIT Kharagpur.
2	Nptel video https://nptel.ac.in/courses/108/102/108102169/, "Introduction to Embedded System Design", Prof.Badri N Subudhi& Prof. Dhananjay V. Gadre, Electrical Engineering, IIT, Jammu.
3	https://youtu.be/d5duBWX71M4

Semester	Programme Course Code		Course Name	L	Т	P	С
VII	B.E. ECE	20EC7L1	RF AND MICROWAVE LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to							
CO1	Understand the Characteristics of diodes	К3						
CO2	Analysis of microwave network parameters	К3						
CO3	Understand the Measurement of BER and losses in optical fiber cable.	K4						
CO4	Analysis of Scattering parameters	K4						
CO5	Design and Simulation of RF filter and microwave couplers.	К3						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	2	2	2	3	3	3	2	3	2	
CO2	3	3	3	3	3	2	2	2	3	3	3	2	3	2	
CO3	3	3	3	3	3	2	2	2	3	3	3	2	3	2	
CO4	3	3	3	3	3	2	2	2	3	3	3	2	3	2	
CO5	3	3	3	3	3	2	2	2	3	3	3	2	3	2	

	COURSE ASSESSMENT METHODS										
DIRECT	DIRECT 1 Laboratory Record										
	2	Model Practical Examinations									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	LIST OF EXPERIMENTS											
1	Characteristics of reflex klystron											
2	Characteristics of Gunn diode											
3	Scattering parameters of Microwave Tee junctions											
4	Characteristics of Directional coupler											
5	Analysis of microwave network parameters (Attenuation, Impedance, frequency and VSWR measurement).											
6	D.C. Characteristics of LED and PIN Photo Diode											
7	WDM using Fiber Optic Passive Component Module and Dual Source Kit											
8	BER measurement Advanced Fiber optic communication Trainer kit.											
9	Measurement of losses in optical fiber cable.											
10	Design and Simulation of RF filter.											
11	11 Design and Simulation of microwave couplers.											
THEORY 0 TUTORIAL 0 PRACTICAL 30 TOTAL 3												

BOOK REFERENCES

1 "RF and Microwave Laboratory Manual", Al-Ameen Publications, 2020

CO	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=pGdr9WLto4A&list=PL1CE5B4FFFA997E5D							
2	https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx							
3	https://www.youtube.com/watch?v=UWQuMnWcmwc							
4	https://www.youtube.com/watch?v=W1cTpqM9DaU							
5	https://www.youtube.com/watch?v=8kcvyoHsXrw							

Semester	Programme	Course Code	Course Name	L	Т	P	C
VII	B.E. ECE, CSE B.Tech. IT	HX8001	PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP	0	0	6	3

	COURSE LEARNING OUTCOMES (COs)									
Afte	After Successful completion of the course, the students should be able to									
CO1	Upskill in emerging technologies and apply to real industry-level use cases	K5	1,2,3							
CO2	Understand agile development process	K2	4							
CO3	Develop career readiness competencies, team skills / Leadership qualities	K4	5							
CO4	Develop time management, project management skills and communication skills	K4	5							
CO5	Use critical thinking for innovative problem solving -	К3	6							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	3	2	-	3	3	3	1	-	1	3	
CO2	3	3	2	2	3	2	-	3	3	3	1	2	2	3	
CO3	3	3	3	2	2	1	-	3	3	3	1	-	2	3	
CO4	3	3	3	2	2	3	1	3	3	3	3	3	1	3	
CO5	3	3	3	3	3	2	-	3	3	3	2	3	1	3	

COURSE ASSESSMENT METHODS									
DIRECT	CT 1 Model Practical Examination								
	2	Record							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

			CC	URS	SE CON	TENT					
Choosing a project		_	n project from omains	the li	st of pro	jects categ	orized	vario	ous tech	nnologies &	2
Team Formation			hall form a tea hall distribute					_	•	oject. Team	1
Hands on Training		ents will be provided with hands on training on selected technologies in h they are going to develop the project.					2				
Project Development		Project shall be developed in agile mode. The status of the project shall be updated to the mentors via appropriate platform.				6					
Code submission, Project Doc an Demo	demo	roject deliverables must include the working code, project document and emonstration video. All the Project deliverables are to uploaded to cloud ased repository such as GitHub.				3					
Mentor Review	-				Mentor will be reviewing the Project deliverables as per the milestone schedule and the feedback will be provided to the team.						1
Evaluating and Scoring	Evaluating and Scoring Evaluators will be assigned to the team to evaluate the Project deliverables, and the scoring will be provided based on the evaluation metrics				1						
THEORY	0		TUTORIAL	0		PRACTI	CAL	30		TOTAL	30

OTHER REFERENCES

1 https://careereducation.smartinternz.com/

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5E1	TRANSMISSION LINES AND WAVEGUIDES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Explain the characteristics of transmission lines and its losses	K2	1					
CO2	Explain the standing wave ratio and input impedance in high frequency transmission lines	K2	2					
CO3	Analyze impedance matching by stubs using smith charts	K4	3					
CO4	Analyze the passive filters with different frequencies	K4	4					
CO5	Analyze the characteristics of TE and TM waves	K4	5					

PRE-REQUISITE	NIL

				CO/	PO MA	APPIN	G (1 - V	Weak, 2 –	Medium	ı, 3 – Stroi	ng)			
COs				Prog	ramm	e Lear	ning O	utcom	es (PO	s)			PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		3	1			1	3	3		3		1
CO2	2	2		3	1			1	3	3		3		
CO3	2	2		2	2			1	3	3		3	1	1
CO4	2	2		2	2			1	3	3		3	1	
CO5	2	2		2	2			1	3	3		3	1	1

	COURSE ASSESSMENT METHODS					
DIRECT	1	Continuous Assessment Tests				
	2	Assignments				
	3	End Semester Examinations				
INDIRECT	1	Course Exit Survey				

COURSE CONTENT	
TRANSMISSION LINE THEORY	9

General theory of Transmission lines - the transmission line - general solution - The infinite line - Wavelength, velocity of propagation - Waveform distortion - the distortion-less line - Loading and different methods of loading - Line not terminated in Z_0 - Reflection coefficient - calculation of current, voltage, power delivered and efficiency of transmission - Input and transfer impedance - Open and short circuited lines - reflection factor and reflection loss.

Topic - 1

Topic - 2 HIGH FREQUENCY TRANSMISSION LINES 9

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength

Topic - 3 IMPEDANCE MATCHING IN HIGH FREQUENCY LINES 9

Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.

Topic - 4 PASSIVE FILTERS 9

Characteristic impedance of symmetrical networks - filter fundamentals, Design of filters: Constant K - Low Pass, High Pass, Band Pass, Band Elimination, m- derived sections - low pass, high pass composite filters

Topic - 5 WAVE GUIDES AND CAVITY RESONATORS 9

General Wave behaviours along uniform Guiding structures, Transverse Electromagnetic waves, Transverse Magnetic waves, Transverse Electric waves, TM and TE waves between parallel plates, TM and TE waves in Rectangular wave guides, Bessel's differential equation and Bessel function, TM and TE waves in Circular wave guides, Rectangular and circular cavity Resonators

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
--------	----	----------	---	-----------	---	-------	----

BOOK REFERENCES 1 John D Ryder, "Networks, lines and fields", 2nd Edition, Prentice Hall India, 2010 2 E.C.Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems", Prentice Hall of India, 2006 3 G.S.N Raju "Electromagnetic Field Theory and Transmission Lines", Pearson Education, Firstedition 2005

CO	THER REFERENCES
1	https://www.youtube.com/watch?v=surDm-x5Uwo
2	https://www.youtube.com/watch?v=H_O6A5NuxsY
3	https://www.youtube.com/watch?v=mpI2AZqoO4g
4	https://www.youtube.com/watch?v=WDK_xXX84m4
5	https://www.youtube.com/watch?v=iijVRWxwg

Semester	Programme	Course Code	Course Name	L	Т	P	C
V	B.E. ECE	20EC5E2	OPTO ELECTRONICS DEVICES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Understand the basics of solid state physics.	K2	1					
CO2	Design and implement display devices.	K6	2					
CO3	Demonstrate and articulate optoelectronic detection devices	K2	3					
CO4	Analyze the various optoelectronic modulators.	K4	4					
CO5	Determine optoelectronic integrated circuits.	K5	5					

PRE-REQUISITE	Electron Devices
---------------	------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3		2				1	3	3		3		3
CO2	3	2	2	2				1	3	3		3	2	
CO3	3	3	3	2				1	3	3		3		
CO4	2		2					1	3	3		3	2	2
CO5	2	2	3	2				1	3	3		3		

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	2 Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT									
Topic - 1			ELEMENTS	OF I	IGHT A	ND SOLID STA	TE P	HYSICS	S	9
	Wave nature of light, Polarization, Interference, Diffraction, Light Source, review of Quantum Mechanical concept, Review of Solid State Physics, Review of Semiconductor Physics and Semiconductor Junction Device.									
Topic - 2			DIS	SPLA	Y DEVI	CES AND LASI	ERS			9
Luminescene Displays, La	Introduction, Photo Luminescence, Cathode Luminescence, Electro Luminescence, Injection Luminescence, Injection Luminescence, LED, Plasma Display, Liquid Crystal Displays, Numeric Displays, Laser Emission, Absorption, Radiation, Population Inversion, Optical Feedback, Threshold Condition, Laser Modes, Classes of Lasers, Mode Locking, laser applications.									
Topic - 3			OP	TIC	AL DETE	ECTION DEVIC	CES			9
Photo detect	or, The	ermal	detector, Photo	Devi	ces, Photo	o Conductors, Ph	oto di	odes, De	tector Perfori	nance.
Topic - 4			ОРТ	OEI	LECTRO	NIC MODULA	TOR			9
		_	nd Digital M ical, Switching			ectro-optic modu vices.	ılators	, Magn	eto Optic I	Devices,
Topic - 5			OPTOELI	ECT	RONIC I	NTEGRATED (CIRC	UITS		9
	•		l Monolithic Ind Receivers, C	_		oplication of Opevices.	to El	ectronic	Integrated (Circuits,
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45

BC	OOK REFERENCES
1	Pallab Bhattacharya "Semiconductor Opto Electronic Devices", Prentice Hall of India Pvt., Ltd., New Delhi, 2006.
2	Jasprit Singh, "Opto Electronics – As Introduction to Materials and Devices", Mc Graw-Hill International Edition, 1998
3	J. Wilson and J.Hawkes, "Opto Electronics – An Introduction", Prentice Hall, 1995
4	S C Gupta, Opto Electronic Devices and Systems, Prentice Hal of India, 2005.

OT	THER REFERENCES
1	https://www.youtube.com/watch?v=J6ES-sW8Eig
2	https://www.youtube.com/watch?v=mtAcrB9JrhA
3	https://www.youtube.com/watch?v=WWjldCmRteg
4	https://www.youtube.com/watch?v=K6ewdRw329s
5	https://www.youtube.com/watch?v=m1gCBJ8jshU

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5E3	3 SOFT COMPUTING		0	0	3

	COURSE LEARNING OUTCOMES (COs)									
Afte	After Successful completion of the course, the students should be able to									
CO1	Effectively use existing software tools to solve real problems using a soft computing approach.	K1	1							
CO2	Classify fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic.	K2	2							
CO3	Identify appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications.	К3	3							
CO4	Identify and explain neuro-fuzzy systems for classification and prediction in the diagnosis of different types of medical disorders.	K4	4							
CO5	Explain the principles of underlying Evolutionary Computation in general and Genetic Algorithms in particular application.	K5	5							

	CO / PO MAPPING (1 – weak, 2 – medium, 3 – strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	2		2	1	3	3		3		
CO2	3	2	2	2	2			1	3	3		3		2
CO3	3	1	2	2	2		2	1	3	3		3		2
CO4	2	3	2	2	2			1	3	3		3		
CO5	2	2	3	1	2		2	1	3	3		3		

	COURSE ASSESSMENT METHODS											
DIRECT	1	Continuous Assessment Tests										
	2	Assignment										
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

α	TIE		001		TEN
	ШK	SH		VTE	И. І.

Topic - 1 NEURO-FUZZY AND SOFT COMPUTING

9

Introduction – Soft Computing Constituents and Conventional Artificial Intelligence – From Conventional AI to Computational Intelligence – Neural Networks – Fuzzy Set Theory – Evolutionary Computation – Neuro-Fuzzy and Soft Computing Characteristics.

Topic - 2 FUZZY LOGIC 9

Introduction to Fuzzy logic, Classical sets and Fuzzy Sets – Classical Relations and Fuzzy Relations – Membership Functions – Fuzzy Rules and Fuzzy Reasoning – Fuzzy Decision Making.

Topic - 3 NEURAL NETWORKS 9

Supervised Learning Neural Networks: Perception Networks – Adaptive Linear Neuron – Multiple Adaptive Linear Neuron – Back Propagation Network – Radial Basis Function Networks – Unsupervised Learning Neural Networks: Fixed Weight Competitive Nets – Kohonen Self-Organizing Networks – Learning Vector Quantization – Adaptive Resonance Architectures.

Topic - 4 NEURO-FUZZY MODELING 9

Adaptive Neuro-Fuzzy Inference Systems: Architecture – Hybrid Learning Algorithm – Learning Methods that Cross-fertilize ANFIS and RBFN – Coactive Neuro Fuzzy Modeling: Framework – Neuro-fuzzy modeling – Classification and Regression Trees – Data Clustering Algorithms – Rule base Structure Identification – Neuro-Fuzzy Control : Feedback Control Systems and Neuro-Fuzzy Control – Expert Control – Back propagation Through Time and Real Time Recurrent Learning.

Topic - 5 GENETIC ALGORITHMS 9

Basic Concepts – working principle – Basic operators – Basic Terminologies in GA – encoding – fitness function and reproduction – Genetic modeling: Inheritance operator – cross over – inversion & deletion – mutation operator – Bitwise operator – Applications of GA– Differences & similarities between GA & other traditional methods.

	THEORY	45	TUTORIAL) د	0	PRACTICAL	0		TOTAL	45	
--	--------	----	----------	-------	---	-----------	---	--	-------	----	--

BOOK REFERENCES

- Jyh Shing Roger Jang, Chuen Tsai Sun, EijiMizutani, "Neuro Fuzzy and Soft Computing", Prentice Hall of India Learning Pvt. Ltd., 2003.
- 2 S.Rajasekaran, G. A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm", PHI Learning Pvt. Ltd., 2003.
- 3 S. N. Sivanandam, S.N. Deepa, "Principles of Soft Computing", John Wiley & Sons, 2011.
- George J. Klir and Bo Yuan, "Fuzzy sets and fuzzy logic theory and applications", Prentice hall, 1995.

O'	THER REFERENCES								
1	https://www.youtube.com/watch?v=mV5vNaXypwc								
2	https://www.ibm.com/in-en/cloud/learn/neural-networks								
3	https://www.youtube.com/watch?v=rln_kZbYaWc								
4	https://www.youtube.com/watch?v=7C19X6pJEuU								
5	youtube.com/watch?v=7C19X6pJEuU								

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5E4	MICROCONTROLLER BASED AUTOMATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)		
After	Successful completion of the course, the students should be able to	RBT Level	Topics Covered
CO1	Comprehend the architecture and concepts of PIC microcontroller	K2	1
CO2	Illustrate the working principle of internal peripherals in PIC microcontroller and its applications	K2	2
CO3	Apply embedded C programming skills for on-chip peripherals in real applications using PICmicrocontroller	К3	3
CO4	Develop embedded C program for automation process in boilers and conveyor belt based LPG cylinderfilling	K1	4
CO5	Build embedded C program for digital Alarm clock through I2C protocol and Speed Control using DCmotor for electric vehicles.	К3	4

PRE-REQUISITE MICROPROCESSORS AND MICROCONTROLLERS

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
				P	rogram	me Lea	rning O	utcomes	s (POs)				PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		1			1	1	3	3	1	3	1	1
CO2	3	2	1	1	1	1	1	1	3	3	1	3	2	1
CO3	3	2	1	1	3	1	1	1	3	3	1	3	2	1
CO4	3	2	1	1	3	1	1	1	3	3	2	3	3	2
CO5	3	2	3	1	3	1	1	1	3	3	3	3	3	3

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Seminar
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

	COURSE CONTENT										
Topic - 1				Intr	oduct	ion to 8	bit Microcontro	ller			9
Architecture of PIC 16F877A- Register file structure -CPU Register- Status Register- Instruction sets- Addressing modes -Simpleprograms using ALP- Oscillator and reset circuits											
Topic - 2					M	emory (Organization				9
Program me Interrupts-W	•		•	On-c	hip P	eriphera	ls: Timers-Comp	are-Ca	apture a	and PWM Mo	odules-
Topic - 3		PIC Programming in C									9
Simple I/O p	ort pro	gran	ming-LEI	D-7 s	egme	nt-switc	h-Timer program	ming-	ADC-U	JSART.	
Topic - 4						Case	Studies				9
							, Water level-di count - weight -				
Topic - 5						Case	Studies				9
_	Digital Alarm clock using real time clock interfacing through I2C protocol-time, date, day, alarm time-display in LCD-DC motor based speed control for electric vehicles- speed and direction control										
THEORY	45		TUTOR	IAL	0		PRACTICAL	0		TOTAL	45

BOOK REFERENCES

- Peatman & John B, "Design with PIC Microcontrollers", 1st Edition, Pearson Education, New Delhi, 2009.
- Myke Predko, "Programming and customizing the PIC Microcontroller", 3rd Edition, Tata Mcgraw Hill, Delhi, 2008.

O'	THER REFERENCES
1	https://circuitdigest.com/microcontroller-projects/bluetooth-controlled-home-automation-using-8051
2	https://www.youtube.com/watch?v=ZkQdN2uliCo
3	https://www.electronicshub.org/rf-based-home-automation-using-8051/
4	https://www.youtube.com/watch?v=So0t4cPdlVE
5	https://www.youtube.com/watch?v=YGOxPPSfduY

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5E5	MEDICAL ELECTRONICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
Afte	er Successful completion of the course, the students should be able to	RBT Level	Topics Covered							
CO1	Analyze the concepts of Electro-Physiology and Bio-Potential Recording	K4	1							
CO2	Demonstrate Bio medical and non electrical parameter measurement	K2	2							
CO3	Apply the concepts of Assist Devices in medical treatment	K3	3							
CO4	Examine the concepts of Biotelemetry and physical medicine	K4	4							
CO5	Describe the recent trends in Medical Instrumentation	K2	5							

				CO/I	PO M	APPIN	VG (1 -	Weak, 2	– Mediu	m, 3 – Str	ong)			
COs				Progr	ramme	e Lear	ning O	utcom	nes (PC	Os)			PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1			2	2	3	3		3	1	
CO2	3	2	3	1			2	2	3	3		3	1	
CO3	2	2	1	2			2	2	3	3		3	1	
CO4	3	1	1	2			2	2	3	3		3	1	
CO5	1	3	3	1			2	2	3	3		3	1	

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Seminar
	3	End Semester Examinations
INDIRECT	1	Course End Survey

			1	COU	RSE CO	ONTENT	٢				
Topic - 1	E	LEC	TRO-PHYSIC	LOC	GY ANI	BIO-PO)TENT	IAL I	RECOI	RDING	9
The Origin of Bio-potentials; bio potential electrodes, biological amplifiers, ECG, EEG, EMG, leasy systems and recording methods-typical waveform and signal characteristics.										G, lead	
Topic - 2		BI	O- CHEMICA			ELECT REMEN		PAR	RAMET	TER	9
PH, PO2,PCO2,Electrophoresis,colorimeter, Autoanalyzer, Blood flow meter, Cardiac output, respiratory measurement, Blood pressure, Temperature.								output,			
Topic - 3		ASSIST DEVICES								9	
Cardiac pace	maker	s, DC	Defibrillator, I	Dialy	zer, Hea	rt lung m	achine.				
Topic - 4			PHYSICAL	МЕ	DICINI	E AND B	IOTEL	EME	TRY		9
			, ultrasonic and elements and it					plica	tions, S	Surgical Diat	hermy,
Topic - 5		R	ECENT TREN	NDS 1	IN MEI	DICAL I	NSTRU	MEN	TATIC	ON	9
Thermograph, Endoscopy Unit, Lasers in medicine, Electrical safety in medical Equipment Patient monitoring system.								Patient			
THEORY	45		TUTORIAL	0		PRACT	TICAL	0		TOTAL	45

BC	BOOK REFERENCES								
1	Leislie Cromwell, Bio medical Instrumentation and Measurement,PHI,2007								
2	David Prutchi and Michael Norris, Design and Development of Medical Electronic Instrumentation : A Practical perspective of the design construction and test of Medical Device, 2004.								
3	RS Khandpur, Hand book of Bio medical Instrumentation, Tata McGraw-Hill,200								

O'	THER REFERENCES
1	https://www.youtube.com/watch?v=O0CHWFc-gO8
2	https://youtu.be/QnLRl96fqf4
3	https://www.youtube.com/watch?v=T_iYsVohkz4
4	https://www.youtube.com/watch?v=O8dJ77Xz_IQ
5	https://www.youtube.com/watch?v=-633zoLcHHo

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E.ECE	20EC5E6	MODERN ELECTRONIC INSTRUMENTATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
Afte	After Successful completion of the course, the students should be able to									
CO1	Use different measuring instruments and sensors	К3	1							
CO2	Understand the working principle of various transducers for real time applications	K2	2							
CO3	Develop programs for virtual systems using Lab VIEW	К3	3							
CO4	Design virtual system using the features of Lab VIEW	К3	4							
CO5	Build ladder diagram for industrial applications	К3	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs				Progr	ramme	Lear	ning O	utcom	es (PC	Os)			PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1		1	3	2	3	3	3	3	3	2	
CO2	2	1				3	2	3	3	3	3	3	3	1
CO3	3	2	1		3	3	2	3	3	3	3	3	3	2
CO4	3	2	1		3	3	2	3	3	3	3	3	3	2
CO5	3	2	1		3	3	2	3	3	3	3	3	2	2

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2	Mini Project								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

('n	UR	SE	CO	N	TEN	JT

Topic - 1 I MEASUREMENT CONCEPTS AND MEASURING INSTRUMENTS

9

Measurement systems- Static and dynamic characteristics – Units and standards of measurements – Error analysis – Moving coil – Torque equations - DC Ammeters-DC Voltmeters-Digital meters: Wattmeter-Energy meters – Bridge measurements: Maxwell- Kelvin- Schering.

Topic - 2

TRANSDUCERS

9

Strain gauge- Thermistor - Humidity sensor- Variable reluctance transducers - Linear variable differential transformer- Capacitive transducer - Piezoelectric transducers - Vibration sensor- Proximity sensor- Optoelectronic transducers Implementation of Instrumentation amplifier with sensor.

Topic - 3

VIRTUAL INSTRUMENTATION & SOFTWARE

9

Block diagram of a virtual instrument – Physical quantities and analog interfaces - Hardware and software – User interfaces – Advantages– Architecture of a virtual instrument and its relation to the operating system – Lab VIEW – Graphical user interfaces - Controls and indicators.

Topic - 4

VI SOFTWARE TOOLS & PROGRAMMING TECHNIQUES

9

Editing, debugging and running a virtual instrument – Graphical programming palettes and tools – Front panel objects – Function and libraries– VI and sub-VI Decision structures - Formula nodes – Sequence structures – Arrays and clusters – String and file I/O – High level and Low level file I/Os – Attribute nodes- Local and global variables.

Topic - 5

PLC PROGRAMMING

9

PLC: Evolution – Components of PLC – Advantages over relay logic – PLC programming languages – Ladder diagram – Programming timers and counters –PLC specifications – Timer functions: Types, Programming - Counter functions: Types, Programming

THEORY

45 TUTORIAL

PRACTICAL

0

TOTAL

45

BOOK REFERENCES

- Helfrick Albert D. and Cooper William D., —Modern Electronic Instrumentation and Measurement Techniques, 2nd Edition, PHI Learning, New Delhi, 2003, I,II
- 2 Jeffery Travis and Jim Kring, —LabVIEW for Everyone: Graphical programming made easy and Fun, 3rd Edition, Pearson Education, India, 2009.

OTHER REFERENCES

- 1 https://www.youtube.com/watch?v=xLjk5DrScEU
- 2 https://www.youtube.com/watch?v=nSeW3R2hr1A
- 3 https://www.youtube.com/watch?v=Ss-7ZtlHzi4
- 4 https://www.youtube.com/watch?v=9JoLOHAQ5AA
- 5 https://www.youtube.com/watch?v=y2eWdLk0-Ho

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5E7	ELECTRONICS CIRCUIT BOARD DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Afte	After Successful completion of the course, the students should be able to								
CO1	Describe the PCB design rules and consideration	K2	1						
CO2	Apply the PCB Design rules to design and simulate single layer PCB	К3	2						
CO3	Prepare Gerber file for a single layer PCB for a given circuit	К3	3						
CO4	Construct and verify the working of a single layer PCB using simulation software	К3	4						
CO5	Carry out steps to fabricate single layer PCB	К3	5						

PRE-REQUISITE | ELECTRONIC CIRCUITS

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs				Progr	ramme	Lear	ning O	utcom	nes (PC	Os)			PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	1				1	3	3		3	3	3	
CO2	3	2	2	1	3			1	3	3		3	2	3	
CO3	3	2	2	1	3			1	3	3		3	3	3	
CO4	3	2	3	1	3			1	3	3		3	2	3	
CO5	3	3	2	2	3			1	3	3		3	2	3	

	COURSE ASSESSMENT METHODS									
DIRECT	CCT 1 Continuous Assessment Tests									
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT										
Topic - 1		INTRODUCT	FION TO F	CB DESIGNING	CON	CEPTS	S	9		
				s in PCB Designin Flexible PCB, Ma						
Topic - 2		PCI	B DESIGN	CONSIDERATIO	NS			9		
PCB Design flow, General, Mechanical and Electrical considerations, Design rules for Analog, Digital and High frequency circuits. Electromagnetic interference/ Compatibility (EMI/ EMC).										
Topic - 3	DESIGN AND SIMULATION OF PCB									
	_			gle layer PCB, Two g, Generating Gerb	•			_		
Topic - 4 PCB FABRICATION TECHNIQUES										
Topic - 4		PCB.	FABRICA	TION TECHNIQ	UES			9		
Image trans	•		niques: Imr	nersion, Electro le		ectropla	ting, Solder			
Image trans	nniques, Me	ues. Plating tech	niques: Imr ons		ss, Ele	•				
Image trans Etching tech Topic - 5	nniques, Me	ues. Plating tech echanical operation CIRCUIT TRA Testing PCB, E	niques: Imrons CING ANI	nersion, Electro le	ss, Ele	TUDIE	SS	Mask,		

BC	BOOK REFERENCES							
1	Mehta S D, Electronic Product Design: Volume 1 – Basics of PCB Design, 1st, S Chand Publications, NewDelhi, 2011							
2	Clyde Coombs, Printed Circuits Handbook, 7th, McGraw Hill Professional, New Delhi, 2016.							
3	Khandpur R S, Printed Circuit Board: Design, Fabrication, Assembly and Testing, 1st, McGraw Hill Education Pvt.Ltd., New Delhi, 2017							

O'	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=59Io2Moz8G4								
2	https://www.youtube.com/watch?v=_GVk_hEMjzs								
3	https://www.youtube.com/watch?v=8ZgAooUkbEY								
4	https://www.youtube.com/watch?v=_RBDELs51N4								
5	https://www.youtube.com/watch?v=bBRv7t5t1-c								

Semester	Programme	Course Code	Course Name	L	Т	P	C
V	B.E. ECE	20EC5E8	ADVANCED DIGITAL SIGNAL PROCESSING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)												
Aft	After Successful completion of the course, the students should be able to												
CO1	To have in-depth knowledge on random signal and its spectrum estimation.	K2	1										
CO2	To design adaptive filters	К3	2										
CO3	To have in-depth knowledge on multirate DSP systems.	К3	3										
C04	To have in-depth knowledge eon multivalve DSP systems.	K2	4										
C05	To have in-depth knowledge on MATLAB implementation in DSP systems.	К3	5										

PRE-REQUISITE - DIGITAL SIGNAL PROCESSING

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													Os	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2					1	1	3	3		3	2		
CO2	1		3					1	3	3		3	2		
CO3	2		1					1	3	3		3	2		
CO4	1	2	3					1	3	3		3	2		
CO5	1	2	3					1	3	3		3	2		

	COURSE ASSESSMENT METHODS												
DIRECT	1	Continuous Assessment Tests											
	2	Assignment											
	3	End Semester Examinations											
INDIRECT	1	Course Exit Survey											

	COURSE CONTENT												
Topic - 1	pic - 1 DISCRETE RANDOM SIGNAL PROCESSING:												
Weiner Khitchine relation - Power spectral density – filtering random process, Spectral Factorization Theorem, special types of random process – Signal modeling-Least Squares method, Pagapproximation, Prony's method, iterative Prefiltering, Finite Data records, Stochastic Models.													
Topic - 2	SPECTRUM ESTIMATION	9											
estimators – Welch estim	tric methods - Correlation method - Co-variance estimator - Performance analy Unbiased consistent estimators —Period gram estimator —Barlett spectrum estimation - Model based approach - AR, MA, ARMA Signal modeling -Parameter estimator method.	ation -											
Topic - 3	LINEAR ESTIMATION AND PREDICTION	9											
Wiener filte	.Maximum likelihood criterion - Efficiency of estimator - Least mean squared error criterion - Wiener filter - Discrete Wiener Hoff equations - Recursive estimators - Kalman filter - Linear prediction, Prediction error - Whitening filter, Inverse filter - Levinson recursion												
Topic - 4	Γοpic - 4 ADAPTIVE FILTERS												
FIR Adaptiv	FIR Adaptive filters - Newton's steepest descent method - Adaptive filters based on steepest descent												

FIR Adaptive filters - Newton's steepest descent method - Adaptive filters based on steepest descent method - Widrow Hoff LMS Adaptive algorithm - Adaptive channel equalization - Adaptive echo canceller - Adaptive noise cancellation - RLS Adaptive filters - Exponentiallyweighted RLS - Sliding window RLS - Simplified IIR LMS Adaptive filter

Topic - 5 MULTIRATE DIGITAL SIGNAL PROCESSING	9
---	---

Mathematical description of change of sampling rate - Interpolation and Decimation - Continuous time model - Direct digital domain approach - Decimation by integer factor - Interpolation by an integer factor

THEORY	45	TUTORIAL	0	PRAC'	TICAL 0	TOTAL	45
--------	----	----------	---	-------	---------	-------	----

BC	BOOK REFERENCES									
1	Sophoncles J. Orfanidis, "Optimum Signal Processing", McGraw-Hill, 2000.									
2	John G.Proakis, Dimitris G.Manolakis, "Digital Signal Processing", Prentice Hall of India, New Delhi, 2005.									
3	S. Kay," Modern Spectrum Estimation Theory And Application", Prentice Hall, Englehood Cliffs, Nj1988.									

OTHER REFERENCES1https://www.youtube.com/watch?v=Lgdr9WLto4A&list=PL1CE5B4FFFA997E5D2https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx3https://www.youtube.com/watch?v=UWQuMnWcmwc4https://www.youtube.com/watch?v=W1cTpqM9DaU5https://www.youtube.com/watch?v=8kcvyoHsXrw

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. ECE	20EC5E9	COMPUTER ARCHITECTURE	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)												
After	Successful completion of the course, the students should be able to	RBT Level	Topics Covered										
CO1	Identify the different addressing modes used in a processor.	К3	1										
CO2	Distinguish micro programmed control and Hardwired Control.	K4	2										
CO3	Classify the control units present in a processor	K2	3										
CO4	Analyze the various performance enhancement techniques of Cache memories.	K4	4										
CO5	Classify the memory management requirements.	K2	5										

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
CO	Programme Learning Outcomes (POs)													PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2						1	3	3		3			
CO2	3		2					1	3	3		3	2		
CO3	3	3						1	3	3		3			
CO4	3	3						1	3	3		3			
CO5		3	2					1	3	3		3			

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignment
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

				COU	RSE C	ONTENT				
Topic – 1			BASIC	STRU	JCTUT	RE OF COMPU	TER	S		9
Addresses - 1	Functional Units - Basic Operational Concepts - Bus Structures - Performance - Memory Locations and Addresses - Memory Operations - Instruction and Instruction Sequencing - Addressing Modes - Basic I/O Operations.									
Topic - 2				AR	RITHM	ETIC UNIT				9
Numbers - S	Addition and Subtraction of Signed Numbers - Design of Fast Adders - Multiplication of Positive Numbers - Signed Operand Multiplication - Fast Multiplication - Integer Division - Floating Point Numbers and Operations									
Topic - 3			F	BASIC	PROC	CESSING UNIT				9
						struction - Multip actions- Micropro				
Topic - 4				M	EMOR	Y SYSTEM				9
	•	-	d, Size and Co			Memories - Perfo	rman	ce Con	siderations -	- Virtual
Topic - 5	Topic - 5 PIPELINING AND I/O ORGANIZATION 9							9		
Basic Concepts - Data Hazards - Instruction Hazards - Influence on instruction sets - Data path and control considerations - Superscalar operation - Accessing I/O devices- Interrupts - Enabling and disabling interrupts- Handling multiple devices - Direct Memory Access. Case study - ARM interrupt structure										
THEORY	45	TUTORIAL 0 PRACTICAL 0 TOTAL 45								
BOOK RE	FERE	NCE	S							

- Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization", 5th Edition, McGraw-Hill,2014.
- 2 John P.Hayes, "Computer Architecture and Organization", 3rdEdition, McGraw Hill, 2010.

O'	OTHER REFERENCES					
1	https://www.youtube.com/watch?v=GRInNLx3Tug					
2	https://online.princeton.edu/computer-architecture					
3	https://www.youtube.com/watch?v=Ol8D69VKX2k					
4	https://www.youtube.com/watch?v=HEjPop-aK_w					
5	https://www.youtube.com/watch?v=c3mPdZA-Fmc					

Semester	Programme Course Code		Course Name	L	Т	P	С
VI	B.E. ECE	20ECCE1	DIGITAL IMAGE PROCESSING		0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Afte	After Successful completion of the course, the students should be able to								
CO1	Explain the fundamental concepts of a digital image processing.	K2	1						
CO2	Compare various Image Transform Techniques.	К3	2						
CO3	Apply enhancement and restoration algorithms for image analysis.	К3	3						
CO4	Choose appropriate segmentation algorithms for given application.	K4	4						
CO5	Compare various Image compression techniques.	K5	5						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs) PSOs							Os					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2						1	3	3		3	2	
CO2	1		3					1	3	3		3	2	
CO3	2		1			1		1	3	3		3	2	
CO4	1	2	3					1	3	3		3	2	
CO5	1	2	3					1	3	3		3	2	

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignment
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

	COURSE CONTENT								
Topic - 1	DIGITALIMAGEFUNDAMENTALS	9							
Elements of visual perception – Image sensing and acquisition – Image Formation Model, Im Sampling and Quantization, Representation of Digital Images, Spatial and Gray level Resolut Zooming and Shrinking of Digital Images, Basic relationship between pixels									
Topic - 2	IMAGETRANSFORMS	9							
Two-dimens	mage transforms - Separable Transforms - One dimensional Fourier Transform - ional Fourier Transform-Discrete Cosine Transform-Walsh-Hadamard Transform - discrete and continuous - Haar transform- Properties.								
Topic - 3	IMAGEENHANCEMENTANDRESTORATION	9							
filtering - Si Equalization	Incement: Spatial Domain Methods. Image subtraction—Image averaging— Spatial Domain Methods. Image subtraction—Image averaging— Spatial Methods—First and Second Derivatives—Histogram—Histogram—Frequency Domain Methods—Filtering-Smoothing and Sharpening—Butterworth ration: Model of image Degradation / Restoration process.	am–							
Topic - 4	c - 4 IMAGESEGMENTATIONANDREPRESENTATION 9								
Detection of discontinuities - Point, Line and Edge detection - Gradient operators - Edge linking - Graph theoretic technique - Thresholding - global and adaptive - Region - based segmentation Boundary representation - chain codes - Polygonal approximation - Signatures - skeletons.									
Topic - 5	IMAGECOMPRESSION 9								

Introduction to image compression – Lossy and Lossless compression–Sequential and Progressive
Compression – Rate / Distortion optimization – compression metrics – Huffman c o d i n g–Run
Length Coding – Predictive coding – DPCM - Transformcoding – Vector quantization-Image
compression standards.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL	THEORY	CT	PRAC	ACTIC	CAL	0		TOT	ΓAL		45	
--	--------	----	------	-------	-----	---	--	-----	-----	--	----	--

BC	BOOK REFERENCES						
1	R.C.Gonzalez, R.E.Woods, "Digital Image Processing", Pearson Education, 4 th Edition,2017.						
2	Anil K. Jain, "Fundamentals of Digital Image Processing" Pearson Education, 1st edition, 2015.						
3	David Salomon, "Data Compression", SpringerVerlagNewYorkInc., 4 th Edition, 2006.						

O'	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=Lgdr9WLto4A&list=PL1CE5B4FFFA997E5D							
2	https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx							
3	https://www.youtube.com/watch?v=UWQuMnWcmwc							
4	https://www.youtube.com/watch?v=W1cTpqM9DaU							
5	https://www.youtube.com/watch?v=8kcvyoHsXrw							

Semester	Programme	Course Code	Course Name	L	Т	P	C
VI	B.E. ECE	20EC6E3	FUNDAMENTALS OF NANO ELECTRONICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)		
Afte	er Successful completion of the course, the students should be able to	RBT Level	Topics Covered
CO1	Illustrate nano electronics device architectures and interface engineering at atomic level.	K1	1
CO2	Discuss the types of nano-materials and fabrication methods of nanostructures.	K2	2
CO3	Explain electron transport in nanostructures using quantum mechanics theory.	К3	3
CO4	Illustrate nano electronic devices constructed using tunnelling mechanism.	K4	4
CO5	Explain nano MOSFETs with its shrink down approaches and nano devices like Single Electron Transistors, Carbon nano tube transistors, Semiconductor nano wire SETs and FETs-Molecular SETs and molecular electronics-Quantum dot cellular automata.	K5	5

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2					2	1	3	3		3		
CO2		2	2		2			1	3	3		3	2	
CO3				2			2	1	3	3		3	2	
CO4	2		2		2			1	3	3		3	2	
CO5	2	2			2		2	1	3	3		3		

		COURSE ASSESSMENT METHODS					
DIRECT 1 Continuous Assessment Tests							
	2	Assignment					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

COURSE CONTENT

Topic - 1 PHYSICS OF NANOELECTRONICS

9

The changing landscape of micro / nano electronics-The region of nanostructures-Beyond CMOS-More than Moore-Classical particles, classical waves-Wave-particle duality, Heisenberg uncertainty principle Electrons behaving as waves (Schrödinger equation)- Scattering and bound states-Atoms to crystals- bands and bonds.

Topic - 2 MATERIALS AND FABRICATION OF NANOSTRUCTURES

9

Semiconductors - Semiconductor hetero structures - Lattice-matched hetero structures - Pseudomorphic hetero structures - Organic semiconductors - Carbon nano materials - NanolithographyEtching-Other means for fabrication of nanostructures and nano devices.

Topic - 3 ELECTRON TRANSPORT IN NANOSTRUCTURES

9

9

9

Time scales of the electrons in solids-length scales of the electrons in solids-Statistics of the electrons in solids and nanostructures: Classical-Statistics of the electrons in solids and nanostructures: Fermi-The density of states of electrons in nanostructures-Classical transport: classical resistance and conductance Quantum ballistic transport: quantum Resistance and conductance-Transport of spin, spintronic devices and applications.

Topic - 4 TUNNELING DEVICES

Tunnelling through a potential barrier-Potential energy profiles for material interfaces-Metal - insulator, metal - semiconductor-Metal - insulator - metal junctions-Tunnelling diode (TD) and Resonant tunnelling diode (RTD)- Three-terminal resonant tunnelling devices-Technology of RTD-Inverter and logic OR gates based on RTD.

Topic - 5 | SINGLE ELECTRON AND OTHER NANOELCTRONIC DEVICES

Coulomb blockade-Tunnel junction excited by a current source-Performance of the single-electron transistor-SET technology and Field effect transistors-Carbon nano tube transistors (FETs and SETs)-Semiconductor nano wire SETs and FETs-Molecular SETs and molecular electronics-Quantum dot cellular automata.

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

BOOK REFERENCES

- Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge University Press, 2012.
- George W. Hanson, "Fundamentals of Nanoelectronics", Prentice Hall, 2007. 3. Karl Goser, Peter GlÖsekötter, Jan Dienstuhl, "Nanoelectronics and Nanosystems", Springer, 2004.

O'	THER REFERENCES
1	https://nanohub.org/courses/FON2
2	https://www.coursera.org/lecture/nanotechnology/introduction-to-nano-fabrication-tools-7jeWL
3	https://videoportal.uni-freiburg.de/video/Quantum-Transport-in-Nanostructures/157da162206840382181e328a2bb1d4a
4	https://www.youtube.com/watch?v=GJxHvOfwJnQ
5	https://www.youtube.com/watch?v=asEvPyfFhF0

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.EECE	20EC6E4	MOBILE COMMUNICATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs) RBT Topics										
A	After Successful completion of the course, the students should be able to										
CO1	Understand the cellular concept and its coverage with capacity improvement techniques.	K2	1								
CO2	Characterize the propagation models and channel models	K5	2								
СОЗ	Illustrate the effects of multipath propagation and the compensation by diversity and equalization	К3	3								
CO4	Elaborate the concepts of multiple access techniques for real world problems	K2	4								
CO5	Interpret the characteristics of 4G wireless networks	K2	5								

PRE-REQUISITE	ANALOG & DIGITAL COMMUNICATION
---------------	--------------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2					1	3	3		3		1
CO2	3	2	1	1	1			1	3	3		3		1
CO3	2	1	3		2			1	3	3		3	1	
CO4	3	1						1	3	3		3	1	
CO5	3							1	3	3		3		1

		COURSE ASSESSMENT METHODS					
DIRECT 1 Continuous Assessment Tests							
	2	Assignment					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

					CO	URSE C	ONTENT				
Top	oic - 1				CE	ELLULA	R CONCEPT				9
•	-			-	_		off strategies, Inte		nce and	system capaci	ity, Co-
Top	oic - 2			PROPAGATI	ON I	MODEL	S AND CHANNI	EL M	ODELS	5	9
groun	nd mod el Smal	el – K ll-scale	nife ed mult	dge diffraction i	mode on ar	l - Scatte nd measu	odel- Terrestrial pring model – Outrements - Mobilemel models	door	propaga	tion model -	Durkin
Top	oic - 3			EQUALIZ	ERS	AND DI	VERSITY TECH	HNIQ	UES		9
Equa		gorithr					qualizer, Linear ire- Selection dive				
Top	oic - 4			MULTIPLE A			CHNIQUES FOR NICATIONS	WIF	RELESS	,	9
				spectrum mult Capture effect in			apacity of cellula	ar CI	DMA –	SDMA- WO	CDMA-
Top	oic - 5			4G V	VIRI	ELESS C	OMMUNICATI	ON			9
UM7 Mob	ΓS Terrile Cell	estrial	Radio		ork, I	Evolved 1	High Level Archi Packet Core, Roa	ming	Archite	cture-OFDM	IA in a
THE											FDMA
	EORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
BOC	ORY OK REI	45		TUTORIAL	0						
)K REI	45 FERE	NCES	TUTORIAL		nunication		0		TOTAL	
1 R	OK REI	45 FERENT S. The pher C	NCES neodor	TUTORIAL re, —Wireless Conn Introduction	Comm to L	TE: LTE	PRACTICAL	earson	n Educat	TOTAL	45
1 R 2 (OK REI appapo Christo Commu	FERENT S. The pher Conication Asif. 5	neodon fox. A ons, 2r	re, —Wireless Con Introduction ad Edition, Wile	Comm to L y Pul	TE: LTE	PRACTICAL ns, 2nd Edition, Pe E, LTE Advanced	earson 1, SA	n Educat E, VoL	tion, 2010 TE and 4G	45 Mobile
1 R 2 G	OK REI appapo Christo Commu	FERENT S. The pher Conication Asif. 5	neodon fox. A ons, 2n	re, —Wireless Connuction and Edition, Wile Obile Communic SA, 2019.	Comm to L y Pul	TE: LTE	PRACTICAL as, 2nd Edition, Pe E, LTE Advanced New Delhi, 2014	earson 1, SA	n Educat E, VoL	tion, 2010 TE and 4G	45 Mobile
1 R 2 G	OK REI appapo Christo Commu Saad Z. & France	FERENT S. The pher Conication Asif. 5 cis Gro	NCES neodor fox. A fons, 2r fog Mo tup, US	re, —Wireless Connuction and Edition, Wile Obile Communic SA, 2019.	Comm to L y Pul	TE: LTF blications as Concep	practical as, 2nd Edition, Po E, LTE Advanced , New Delhi, 2014 ats and Technolog	earson 1, SA	n Educat E, VoL	tion, 2010 TE and 4G	45 Mobile
1 R 2 (6)	Appapo Christo Commu Saad Z. & France HER RI https://	FERENT S. The pher Conication Asif. 5 cis Gro	NCES neodor lox. A ons, 2n oG Mo up, US ENCE	re, —Wireless Con Introduction and Edition, Wile Obile Communic SA, 2019.	Comm to L y Pul vation	TE: LTF blications as Conceptions	practical as, 2nd Edition, Po E, LTE Advanced New Delhi, 2014 ats and Technolog TwR8	earson 1, SA	n Educat E, VoL	tion, 2010 TE and 4G	45 Mobile
1 R 2 (6)	OK REI appapo Christo Commu Saad Z. & Franc HER RI https://	FERENT S. The pher Connication Asif. 5 cis Gro	neodor dox. A dons, 2r of Mo up, US ENCE	re, —Wireless Con Introduction and Edition, Wile Obile Communic SA, 2019.	Comm to L y Pul vation	TE: LTE blications s Concep crysugu	practical as, 2nd Edition, Po E, LTE Advanced New Delhi, 2014 ats and Technolog TwR8 yJkg	earson 1, SA	n Educat E, VoL	tion, 2010 TE and 4G	45 Mobile

https://www.youtube.com/watch?v=-ymnQ5rpcYA&list=PLbMVogVj5nJSi8FUsvglRxLtN1TN9y4nx

5

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. ECE	20EC6E5	COGNITIVE RADIO	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Explain the basics of SDR and how it evolves from Software Defined Radio to Cognitive Radio.	K2	1							
CO2	Illustrate the performance of cognitive networks using Cooperative Cognitive Radio and Cooperative wireless networks.	K2	2							
CO3	Determine the ability to design and implement algorithms for cognitive radio spectrum sensing and dynamic spectrum access	K5	3							
CO4	Analyze the functions of MAC layer and Network layer and its various protocols to performingmultiplexing and scheduling tasks in QoS.	K4	4							
CO5	Identify the basics of security management and the various attacks & its counter measures to secureRouting Model in Cognitive Radio Network	K2	5							

PRE-REQUISITE Nil

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)																					
COg	COs Programme Learning Outcomes (POs)													Programme Learning Outcomes (POs)							PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2								
CO1	2			2				1	3	3		3		2								
CO2	3	2	2					1	3	3		3	2									
CO3	3	3	3	2				1	3	3		3										
CO4	2	2	2					1	3	3		3		2								
CO5	2	2		2				1	3	3		3										

	COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests							
	2 Assignment								
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	COURSE CONTENT
Topic - 1	INTRODUCTION TO SOFTWARE DEFINED RADIO

Evolution of Software Defined Radio and Cognitive radio: goals, benefits, definitions, architectures, relations with other radios, issues, enabling technologies, radio frequency spectrum and regulations.

Topic - 2 COGNITIVE RADIO ARCHITECTURE 9

Cognition cycle – orient, plan, decide and act phases, Organization, SDR as a platform for Cognitive Radio – Hardware and Software Architectures, Overview of IEEE 802.22 standard for broadband wireless access in TV bands.

Topic - 3 | SPECTRUM SENSING AND DYNAMIC SPECTRUM ACCESS 9

Introduction – Primary user detection techniques – energy detection, feature detection, matched filtering, cooperative detection and other approaches, Fundamental Tradeoffs in spectrum sensing, Spectrum Sharing Models of Dynamic Spectrum Access - Unlicensed and Licensed Spectrum Sharing, Fundamental Limits of Cognitive Radio..

Topic - 4 MAC AND NETWORK LAYER DESIGN 9

MAC for cognitive radios – Polling, ALOHA, slotted ALOHA, CSMA, CSMA / CA, Network layer design – routing in cognitive radios, flow control and error control techniques..

Topic - 5 TRUSTED COGNITIVE RADIO NETWORKS 9

Overview of security issues in cognitive radios, auction based spectrum markets in cognitive radio networks, public safety and cognitive radio, cognitive radio for Internet of Things.

THEORY	45		TUTORIAL	0	PRACTICAL	0	TOTAL	45
--------	----	--	----------	---	-----------	---	-------	----

BOOK REFERENCES

- Alexander M. Wyglinski, Maziar Nekovee, Thomas Hou, —Cognitive Radio Communications and Networks, Academic Press, Elsevier, 2010.
- Huseyin Arslan (Ed.), —Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007.
- 3 | Bruce Fette, —Cognitive Radio Technology, Newnes, 2006.
- 4 Kwang-Cheng Chen, Ramjee Prasad, Cognitive Radio Networksl, John Wiley and Sons, 2009.
- E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, Principles of Cognitive Radio", Cambridge University Press, 2013.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/108/107/108107107/
- 2 https://www.youtube.com/watch?v=SljXFf0vgvw
- 3 https://nptel.ac.in/courses/108/107/108107107/
- 4 https://www.youtube.com/watch?v=09eXRHf6glA

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. ECE	20EC6E9	WIRELESS BROADBAND COMMUNICATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Interpret the functioning of fixed and mobile broadband MAC layer functionalities.	K2	1							
CO2	Apply suitable QoS framework and resource management of wireless broadband networks.	К3	2							
CO3	Comprehend different energy efficient algorithms suitable for wireless broadband networks.	K2	3							
CO4	Apply the suitable methods in solving mobility related issues	К3	4							
CO5	Comprehend technical issues in Cellular Multi-hop 802.16 Networks	K2	5							

	MOBILE COMMUNICATION, DATA COMMUNICATION AND
FRE-REQUISITE	NETWORKING

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COa	COs Programme Learning Outcomes (POs)												PS	Os	
COS									PO12	PSO1	PSO2				
CO1	2	1				3		1	3	3		3		2	
CO2	3	2	1					1	3	3		3		1	
CO3	3	3	2	2	1		1	1	3	3		3		1	
CO4	3	2	1	1				1	3	3		3			
CO5	3	3	2	2	1			1	3	3		3			

	COURSE ASSESSMENT METHODS							
DIRECT	1	Continuous Assessment Tests						
	2 Assignment							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE CONTENT									
Topic - 1	WIRELESS MAN	9							
Evolution of Broadband Wireless -Spectrum Options for Broadband Wireless-Technical Challenges Broadband Wireless- Background on IEEE802.16 and WiMAX- Salient Features of WiMAX									
Topic - 2	MEDIUM ACCESS CONTROL IN WIRELESS MAN	9							
Sub layers of the MAC Layer of IEEE 802.16 – Service Flows and Connection – Frame Structure – Open Issues in IEEE 802.16- MAC Layer of ETSI HiperAccess									
Topic - 3	RADIO RESOURCE MANAGEMENT	9							
	Operations – RRM in Tree Topology– RRM in Mesh Topology. QoS in WiMAX ervices Provisioning-QoS Framework– QoS Scheduling	Mesh							
Topic - 4	MOBILITY MANAGEMENT	9							
Energy mana	Mobile WiMAX Network - Idle-Mode Management- Anchored Mobility Management- (ASN and CSN). Energy management: PMP and Mesh Modes in IEEE 802.16 WiMAX- Sleep Mode in the IEEE 802.16e-Energy Consumption Analysis with Downlink, Uplink Traffic and Generalized Traffic Process								
Topic - 5	IEEE 802.16j MULTI-HOP RELAY NETWORKS	9							
	Overview-Challenges- Tunnelling and Aggregation- Resource Scheduling Methods- Dimensioning Cellular Multi-hop 802.16 Networks								

BC	OOK REFERENCES
1	Yan Zhang and Hsiao-Hwa Chen, "Mobile WiMAX : toward broadband wireless metropolitan area networks", Auerbach Publications, 2008.
2	Jeffrey G. Andrews, Arunabha Ghosh and RiasMuhamed, "Fundamentals of WiMAX: understanding broadband wireless networking", Pearson Education, 2007
3	Kwang-Cheng Chen and J. Roberto B. de Marca, "Mobile WiMAX", John Wiley & Sons, 2008.
4	Uma ShankerJha and Ramjee Prasad, "OFDM Towards Fixed and Mobile Broadband Wireless Access", Artech House, 2007.

PRACTICAL

OT	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=fSTs_F9lHrE							
2	https://www.youtube.com/watch?v=G0h0dC4Zycs							
3	https://www.youtube.com/watch?v=gwCxVwmHnRw							
4	https://www.youtube.com/watch?v=ASU5nT3cTfs							
5	https://www.youtube.com/watch?v=T4Q2sRe98f0							

TUTORIAL 0

THEORY

45

TOTAL

45

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. ECE	20EC6E7	SATELLITE COMMUNICATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
At	After Successful completion of the course, the students should be able to									
CO1	Identify and explain the orbital parameters, types of orbit and geo-stationary satellite launching method.	К3	1							
CO2	Determine the carrier to noise density ratio, link power budget, system noise in satellite link design	K5	2							
CO3	Summarize the equivalent isotropic radiated power, antenna noise, saturation flux density and Inter modulation noise for satellite earth segment	K2	3							
CO4	Summarize the equivalent isotropic radiated power, antenna noise, saturation flux density and Inter modulation noise for satellite earth segment	K2	4							
CO5	Explain the launching procedures, payloads and functions of Chandrayan-1 and Mangalyaan satellites	K2	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO-	Programme Learning Outcomes (POs)										PSOs			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		1			1	3	3		3	2	2
CO2	3	1	1		1			1	3	3		3	1	2
CO3	3	2	2			1		1	3	3		3	1	1
CO4	2		1		1			1	3	3		3	1	
CO5	2	2	2		2	1		1	3	3		3		2

	COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests							
	2	Assignment							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

CO	TID	CT	COL	TE	TT
	шк	SH.		NIHJ	V

Topic - 1 SATELLITE ORBITS

9

Kepler"s Laws – Newton"s Law – orbital parameters – orbital perturbation – station keeping – geo stationary and non-Geo-stationary orbits – Antenna Look angle – Limits of visibility – eclipse – Sub satellite point – Sun transit outage – Launching Procedure – Launch Vehicles and propulsion

Topic - 2 SPACE SEGMENT AND SATELLITE LINK DESIGN

9

Spacecraft Technology – Structure – Primary power – Attitude Control – Station Keeping – Thermal control – Propulsion Subsystem – Telemetry – Tracking and command (TTC) – Transponders and supporting subsystem – Satellite uplink and downlink Analysis and Design – Link power budget equation – E/N calculation – performance impairments – system noise – inter modulation and interference – Propagation Characteristics and Frequency consideration – System reliability and design lifetime

Topic - 3 EARTH SEGMENT

9

Introduction – Receive – Only home TV systems – Outdoor unit – Indoor unit for analog (FM) TV – Master antenna TV System – Community antenna TV System – Transmit – Receive earth stations – Equivalent isotropic radiated power – System noise – Antenna noise – Carrier to Noise ratio – Uplink – Saturation flux density – Input back off – The earth station – HPA – Downlink – Output back off – Satellite TWTA output – Effects of rain – Inter modulation noise.

Topic - 4 SATELLITE ACCESS

9

Modulation and Multiplexing: Voice, Data, Video – Analog-digital transmission system – Multiple Access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum Communication

Topic - 5 SATELLITE APPLICATIONS

9

INTELSAT Series – INSAT – VSAT – Mobile satellite services: GPS – INMARSAT – Satellite Navigational System – Direct to home Broadcast (DTH) – Worldspace services – Business TV (BTV) – GRAMSAT. Case Studies: Chandrayaan -I – Chandrayaan- II – Mangalyaan (MOM)

IEORY 45 TUTORIAL 0	PRACTICAL 0	TOTAL 45
---------------------------	-------------	----------

BOOK REFERENCES

- 1 Dennis Roddy, "Satellite Communication", Mc Graw Hill International, 4th Edition 2016
- Wilbur L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, Twelfth Impression 2013.
- 3 | Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986
- David Tse and Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005
- 5 Bruce R.Elbert, "The Satellite Communication Application", Hand Book, Artech House Bostan London, 1997
- 6 Tri T.Ha, "Digital Satellite Communication", Mc Graw Hill Education, 2nd Edition 200

OTE	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=8D7afGk_OOg							
2	https://www.youtube.com/watch?v=Hdc4IQIbmQQ							
3	https://www.youtube.com/watch?v=_oDZeKTp99I							
4	https://www.youtube.com/watch?v=951kYJpozrk							
5	https://www.youtube.com/watch?v=PJvK9kGxUKE							

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. CSE & ECE B.Tech. IT	20ECCE2	WIRELESS AD HOC AND SENSOR NETWORKS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Explain the fundamentals of wireless communication technology that facilitate the insight of infrastructure less networks formation, application and design issues of the given Ad hoc and Sensor networks	K5	1							
CO2	Apply the MAC Protocol designing issues and contention-based algorithms with reservation and scheduling to achieve node mobility, , bandwidth efficiency and QoS support for the given Ad hoc wireless network	K3	2							
CO3	Examine the issues behind the routing protocol blueprint and classification in transport layer to suit with Ad hoc Wireless Network.	K4	3							
CO4	Apply the MAC layer protocols to emphasize the energy efficient operation, and assignment operations for the Wireless sensor networks	К3	4							
CO5	Develop the architecture, data handling and localization techniques to optimize the location discovery of sensor nodes for the given wireless sensor networks.	K6	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2				2	2	3	3		3	1	
CO2	3	2	3				2	2	3	3	2	3		
CO3		2	2				2	2	3	3		3		1
CO4	2	2	2	3			2	2	3	3		3		
CO5	3	3	2			2	2	2	3	3		3	3	

	COURSE ASSESSMENT METHODS						
DIRECT	DIRECT 1 Continuous Assessment Tests						
	2	Assignment					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

COURSE CONTENT					
UNIT 1	TUNING TO SENSOR NETWORKS FUNDAMENTALS	9			

Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum – Radio propagation Mechanisms – Characteristics of the wireless channel – Mobile Ad hoc Networks (MANETs) and Wireless Sensor networks (WSNs): concepts and architectures – Applications of Ad Hoc and Sensor networks – Design Challenges in Ad hoc and Sensor Networks.

UNIT 2 MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS 9

Issues in designing a MAC Protocol – Classification of MAC Protocols – Contention based protocols – Contention based protocols with Reservation Mechanisms – Contention based protocols with Scheduling Mechanisms – Multi channel MAC – IEEE 802.11

UNIT- 3 ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC WIRELESS NETWORKS 9

Issues in designing a routing and Transport Layer protocol for Ad hoc networks – proactive routing, reactive routing (on – demand), hybrid routing – Classification of Transport Layer solutions – TCP over Ad hoc networks.

UNIT-4 WIRELESS SENSOR NETWORKS (WSNS) AND MAC PROTOCOLS 9

Single node architecture: hardware and software components of a sensor node – WSN Network architecture: typical network architectures – data relaying and aggregation strategies – MAC layer protocols: self – organizing, Hybrid TDMA/FDMA and CSMA based MAC – IEEE 802.15.4 – Case study: Wireless Sensor Network in Sustainable Agriculture

UNIT- 5 WSN ROUTING, LOCALIZATION & QOS 9

Issues in WSN routing – OLSR – Localization – Indoor and Sensor Network Localization – absolute and relative localization, triangulation – QOS in WSN – Energy Efficient Design – Synchronization – Transport Layer Issues – Case study: WBAN revisited.

THEORY	45	TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	----------	---	--	-----------	---	--	-------	----

BOOK REFERENCES C. Siva Ram Murthy, and B. S. Manoj, "Ad hoc Wireless Networks: Architectures and Protocols", 1 Prentice Hall Professional Technical Reference. First Edition. 2008. Kazem Sohraby, Daniel Minoli, &TaiebZnati, "Wireless Sensor Networks-Technology, Protocols, 2 and Applications", John Wiley, 2007. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and 3 Applications", World Scientific Publishing Company, 2006 4 Feng Zhao and LeonidesGuibas, "Wireless Sensor Networks", Elsevier Publication – 2002. 5 Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003 C. Siva Ram Murthy, and B. S. Manoj, "Ad hoc Wireless Networks: Architectures and Protocols", Prentice Hall Professional Technical Reference. First Edition. 2008.

OTE	OTHER REFERENCES					
1	https://www.youtube.com/watch?v=qU49jUvxW00					
2	https://www.geeksforgeeks.org/responsibilities-and-design-issues-of-mac-protocol/					
3	https://snscourseware.org/snscenew/files/1570819850.pdf					

Semester	Programme	Course Code	Course Name	L	Т	P	C
VI	B.E ECE	20EC6E8	VLSI SIGNAL PROCESSING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
Afte	After Successful completion of the course, the students should be able to							
CO1	Explain pipeline based architectures in the design FIR and IIR systems	K2	1					
CO2	Demonstrate clocking issues and asynchronous system	K2	2					
CO3	Design architectures for DSP algorithms	K6	3					
CO4	Improve the speed of digital system through transformation techniques	K6	4					
CO5	Minimize the design in terms of area, delay and power	K6	5					

PRE-REQUISITE DIGITAL SIGNAL PROCESSING & VLSI DESIGN

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)									PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		2	1	1		2	2	3	3		3	3	
CO2			2	1	1		2	2	3	3		3	3	2
CO3	1	2		1	1		2	2	3	3		3	3	1
CO4	1	2		2			2	2	3	3		3	2	
CO5				2			2	2	3	3		3	1	

COURSE ASSESSMENT METHODS						
DIRECT	DIRECT 1 Continuous Assessment Tests					
	2	Seminar				
	3	End Semester Examinations				
INDIRECT	1	Course Exit Survey				

	COURSE CONTENT							
Topic - 1	PIPELINING AND PARALLEL PROCESSING	9						
Introduction, Pipelining of FIR Digital Filters, Parallel Processing. Pipelining and Parallel Process for Low Power. Retiming: Introduction, Definition and Properties, Solving System of Inequali Retiming Techniques.								
Topic - 2	UNFOLDING AND FOLDING							
Introduction an Algorithms for Unfolding, Properties of Unfolding, Critical Path, Unfolding Retiming Application of Unfolding. Folding: Introduction to Folding Transformation, Regimentation Techniques, Register Minimization in Folded Architectures, Folding in Multi-Systems.								
Topic - 3	SYSTOLIC ARCHITECTURE DESIGN 9							
Topic - 3	SISTULIC ARCHITECTURE DESIGN	9						
Introduction, Vector, Ma	Systolic Array Design Methodology, FIR Systolic Arrays, Selection of Schetrix Multiplication and 2D Systolic Array Design, Systolic Design for ons Containing Delays.	eduling						
Introduction, Vector, Ma	Systolic Array Design Methodology, FIR Systolic Arrays, Selection of Schotrix Multiplication and 2D Systolic Array Design, Systolic Design for	eduling						
Introduction, Vector, Ma Representation Topic - 4 Introduction,	Systolic Array Design Methodology, FIR Systolic Arrays, Selection of Schotrix Multiplication and 2D Systolic Array Design, Systolic Design for ons Containing Delays.	eduling Space						
Introduction, Vector, Ma Representation Topic - 4 Introduction,	Systolic Array Design Methodology, FIR Systolic Arrays, Selection of Schotrix Multiplication and 2D Systolic Array Design, Systolic Design for ons Containing Delays. FAST CONVOLUTION Cook, Toom Algorithm, Winogard Algorithm, Iterated Convolution,	eduling Space						

BC	OOK REFERENCES
1	Keshab K. Parhi. VLSI Digital Signal Processing Systems, Wiley-Inter Sciences, 1999
2	Mohammed Ismail, Terri, Fiez, Analog VLSI Signal and Information Processing, McGraw Hill, 1994.
3	Kung. S.Y., H.J. While house T.Kailath, VLSI and Modern singal processing, Prentice Hall, 1985.
4	Jose E. France, YannisTsividls, Design of Analog Digital VLSI Circuits for Telecommunications and Signal Processing' Prentice Hall, 1994

PRACTICAL

O'	OTHER REFERENCES							
1	http://ece.umn.edu/users/parhi/SLIDES/chap2.pdf							
2	https://onlinecourses.nptel.ac.in/noc20_ee44/preview							
3	https://www.oreilly.com/library/view/vlsi-digital-signal/9780471241867/sec-1.1.html							
4	https://books.google.co.in/books?id=APFRHFkMqG8C&printsec=frontcover&source=gbs_ge_summa ry_r&cad=0#v=onepage&q&f=false							
5	https://www.digimat.in/nptel/courses/video/108105157/L01.html							

TUTORIAL

THEORY

45

TOTAL

45

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. ECE	20ITCE6	CRYPTOGRAPHY AND NETWORK SECURITY	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
At	After Successful completion of the course, the students should be able to									
CO1	nalyze the basic concepts of network security K4 1									
CO2	Identify the types of symmetric ciphers and its principles K3 2									
CO3	Classify the types of Asymmetric ciphers and its principles	K2	3							
CO4	Develop Algorithms for data integration	K6	4							
CO5	Explain the privacy issues and Use the procedures in internet security	K5	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs		Programme Learning Outcomes (POs)											PS	PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3						2	2	3	3		3			
CO2	3	2	3	3			2	2	3	3		3	2	2	
CO3	3	2	2	2			2	2	3	3		3	2		
CO4	3	3	3	3			2	2	3	3		3	2	2	
CO5	3	3	2			3	2	2	3	3		3			

		COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests						
	2 Assignment							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

				CO	LIDGE C	ONITENIT				
Tonio 1				CO		ONTENT				
Topic - 1	_					DUCTION				9
•	Computer security concepts - OSI security architecture - security attacks service mechanism - model for								el for	
network sect	network security – classical encryption techniques – Block cipher principles.									
Topic - 2	Topic - 2 SYMMETRIC CIPHERS									9
Data encryp	tion st	andar	d – block cipher	ope	rations – c	cipher block chair	ning r	node – a	dvanced encr	yption
standard – de	ouble I	DES -	triple DES – ro	ound	function -	- key expansion				
Topic - 3			ASYMMETRI	$(\mathbf{C} \ \mathbf{C})$	IPHERS	AND KEY MAN	VAGE	CMENT		9
encryption-E			ition – public ko operation-elect	•		e – symmetric ke k	y dist	ribution	using asymm	etric
_			•	•		•	y dist	Hoution	using asymm	eurc
_			CRYPTOGRA	PHI	C DATA	INTEGRITY A	LGO	RITHM	S	9
Countagraph	ia haak	funa	tions onnlicat	ion	two simn	le hech functions	rog	uiramant	to and coounity	y book
						le hash functions algorithm (SHA				y masm
		•	ital principle ar	-		•	, 51		message	
Topic - 5										
Transport le	Transport level security – web security issues – secure socket layer (SSL) – transport layer security (
_	ΓLS) – HTTPS – Secure shell – pretty good privacy (PGP) – firewalls – IP security-E commerce									
						I == 1 a== a : =				
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45

BC	OOK REFERENCES
1	William Stallings, Cryptography and Network security Principles and Practices, 5th edition, Pearson Education, 2010
2	William Stallings, Network security essentials $\tilde{A}\phi$?? application and standards, Prentice Hall of India , 2010
3	Charles P.Fleeger, Shari Lawrence P.Fleeger, Security in computing, Prentice Hall of India, 2009
4	W. Mao, Modern Cryptography â?? Theory and Practice, Pearson Education, 2007
5	Wade Trappe, Lawrence C Washington, Introduction to Cryptography with coding theory, Pearson Education, 2007

Ol	THER REFERENCES
1	https://www.notesforgeeks.in/2021/07/cs8792-cryptography-and-network-security-syllabus-2017-regulation.html
2	https://www.studocu.com/in/document/anna-university/cryptography-and-network-security/cs8792-cryptography-and-network-security/8876690
3	https://cse-r17.blogspot.com/2020/09/cs8792-cryptography-and-network.html
4	https://padeepz.net/cs6701-syllabus-cryptography-and-network-security-regulation-2013-anna-university/
5	https://www.rejinpaul.com/2016/07/cs6701-cryptography-and-network-security-syllabus-notesquestion-bank-with-answers.html

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.E. ECE	20EC6E10	REMOTE SENSING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
Afte	After Successful completion of the course, the students should be able to									
CO1	Inderstand the foundations of remote sensing K2 1									
CO2	Explain the different types of remote sensing systems and their characteristics in terms of resolutions									
CO3	Identify the various sensing and imaging techniques	К3	3							
CO4	Perform the appropriate satellite image analysis for specific Applications	К3	4							
CO5	Classify the types of Radar Sensing System for real time applications	К3	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PS	PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1						1	3	3		3	2	
CO2	2	1						1	3	3		3	2	1
CO3	3	2	1	1	2	1		1	3	3		3	2	
CO4	3	2	1	1	2	1	1	1	3	3		3	3	1
CO5	3	2	1	1	2	3	2	1	3	3		3	2	

		COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests						
	2 Assignment							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

CO	TIR	SE	CON	NTE	JT

Topic - 1

CONCEPTS AND FOUNDATIONS OF REMOTE SENSING

9

Introduction, Energy Sources and Radiation Principles, Energy Interactions in the Atmosphere, Physical basis of Signatures of Earth features, Characteristics of Remote Sensing Systems, Global Navigation Satellite Systems(GNSS), An overview of Data Recaption and Data products, Geographic Information Systems(GIS).

Topic - 2 EARTH OBSERVATION SYSTEMS (EOS) AND PLATFORMS

9

Introduction, Classification of EOS, 1) Infrared-Visible optical sensors (IVOS): Photographic cameras, Television Cameras, Opto-mechanical Scanners, Push-broom Cameras, Multispectral and Hyper spectral imagers. 2) Microwave EOS: Passive microwave sensors, Active microwave sensors, Synthetic Aperture Radars, Ground Penetrating Radars. 3) Principles of Satellite Motion: Types of orbits, Orbit perturbations, Space craft Elements and GNSS

Topic - 3

DATA RECEPTION AND PROCESSING

9

Introduction, Data formats, Data acquisition and onboard data handling, Data reception system, Data preprocessing — Radiometric and Geometric rectifications, Referencing Scheme, Data products generation, Data products Output media, Data Analysis and Quality Assessment, Special processing, digital and visual interpretation.

Topic - 4 | APPLICATIONS OF EOS IN EARTH RESOURCES MANAGEMENT

9

Agriculture and Soils, Forestry, Geology, Land Cover—Land use Mapping, Water resources, Snow and Glaciers, Urban studies, Coastal zone management and marine fisheries, Desertification, Archaeology.

Topic - 5

EOS IMAGE CLASSIFICATION AND SPATIAL DATA MODELLING AND MANAGEMENT

9

Introduction, Supervised and unsupervised classification concepts and methods, Change detection applications, Geographic information systems—Spatial data types, Data preparation and management, GIS working environment, Spatial data infrastructure.

THEORY 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60

BOOK REFERENCES

- George Joseph & C. Jeganathan, "Fundamentals of Remote Sensing", 3rdEdition, Universities Press (india) Pvt.Ltd, Hyderabad,2018.
- Thomas M. Lillesand, Ralph W.Kiefer, "Remote Sensing And Image Interpretation", 7th Edition, JohnWiley, NewDelhi,2015.
- Campbell, J. B &Randolph H.Wayne, "Introduction to Remote sensing",5thEdition,Guilford Press, USA,2011.

O	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=N49PzLDUIFQ						
2	https://www.youtube.com/watch?v=xIsUP1Ds5Pg						
3	https://www.youtube.com/watch?v=EYQsXs1Jr0Y						
4	https://www.youtube.com/watch?v=u2_My_56hPQ						
5	https://www.youtube.com/watch?v=YGOxPPSfduY						

Semester	Programme	Course Code	Course Name	L	Т	P	С
VI	B.EECE	20EC6E7	SATELLITE COMMUNICATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered						
CO1	Identify and explain the orbital parameters, types of orbit and geo-stationary satellite launching method.	К3	1						
CO2	Determine the carrier to noise density ratio, link power budget, system noise in satellite link design	K5	2						
CO3	Summarize the equivalent isotropic radiated power, antenna noise, saturation flux density and Inter modulation noise for satellite earth segment	K2	3						
CO4	Summarize the equivalent isotropic radiated power, antenna noise, saturation flux density and Inter modulation noise for satellite earth segment	K2	4						
CO5	Explain the launching procedures, payloads and functions of Chandrayan-1 and Mangalyaan satellites	K2	5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		1			1	3	3		3	2	2
CO2	3	1	1		1			1	3	3		3	1	2
CO3	3	2	2			1		1	3	3		3	1	1
CO4	2		1		1			1	3	3		3	1	
CO5	2	2	2		2	1		1	3	3		3		2

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT

Topic - 1 SATELLITE ORBITS

9

Kepler"s Laws – Newton"s Law – orbital parameters – orbital perturbation – station keeping – geo stationary and non-Geo-stationary orbits – Antenna Look angle – Limits of visibility – eclipse – Sub satellite point – Sun transit outage – Launching Procedure – Launch Vehicles and propulsion

Topic - 2 SPACE SEGMENT AND SATELLITE LINK DESIGN

9

Spacecraft Technology – Structure – Primary power – Attitude Control – Station Keeping – Thermal control – Propulsion Subsystem – Telemetry – Tracking and command (TTC) – Transponders and supporting subsystem – Satellite uplink and downlink Analysis and Design – Link power budget equation – E/N calculation – performance impairments – system noise – inter modulation and interference – Propagation Characteristics and Frequency consideration – System reliability and design lifetime

Topic - 3 EARTH SEGMENT

9

Introduction – Receive – Only home TV systems – Outdoor unit – Indoor unit for analog (FM) TV – Master antenna TV System – Community antenna TV System – Transmit – Receive earth stations – Equivalent isotropic radiated power – System noise – Antenna noise – Carrier to Noise ratio – Uplink – Saturation flux density – Input back off – The earth station – HPA – Downlink – Output back off – Satellite TWTA output – Effects of rain – Inter modulation noise.

Topic - 4 SATELLITE ACCESS

9

Modulation and Multiplexing: Voice, Data, Video – Analog-digital transmission system – Multiple Access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum Communication

Topic - 5 SATELLITE APPLICATIONS

9

INTELSAT Series – INSAT – VSAT – Mobile satellite services: GPS – INMARSAT – Satellite Navigational System – Direct to home Broadcast (DTH) – Worldspace services – Business TV (BTV) – GRAMSAT. Case Studies: Chandrayaan -I – Chandrayaan- II – Mangalyaan (MOM)

IEORY 45 TUTORIAL 0	PRACTICAL 0	TOTAL 45
---------------------------	-------------	----------

- 1 Dennis Roddy, "Satellite Communication", Mc Graw Hill International, 4th Edition 2016
- Wilbur L.Pritchard, Hendri G.Suyderhoud, Robert A.Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, Twelfth Impression 2013.
- 3 | Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986
- David Tse and Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005
- 5 Bruce R.Elbert, "The Satellite Communication Application", Hand Book, Artech House Bostan London, 1997
- 6 Tri T.Ha, "Digital Satellite Communication", Mc Graw Hill Education, 2nd Edition 200

OI	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=8D7afGk_OOg						
2	https://www.youtube.com/watch?v=Hdc4IQIbmQQ						
3	https://www.youtube.com/watch?v=_oDZeKTp99I						
4	https://www.youtube.com/watch?v=951kYJpozrk						
5	https://www.youtube.com/watch?v=PJvK9kGxUKE						

Semester	Programme	Course Code	Course Name	L	Т	P	C
VI	B.E. ECE	20ECCE1	DIGITAL IMAGE PROCESSING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Afte	After Successful completion of the course, the students should be able to R Le								
CO1	Explain the fundamental concepts of a digital image processing. K2 1								
CO2	Compare various Image Transform Techniques. K3 2								
CO3	Apply enhancement and restoration algorithms for image analysis. K3 3								
CO4	Choose appropriate segmentation algorithms for given application. K4 4								
CO5	Compare various Image compression techniques.	K5	5						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2						1	3	3		3	2	
CO2	1		3					1	3	3		3	2	
CO3	2		1			1		1	3	3		3	2	
CO4	1	2	3					1	3	3		3	2	
CO5	1	2	3					1	3	3		3	2	

	COURSE ASSESSMENT METHODS									
DIRECT	1	1 Continuous Assessment Tests								
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT											
Topic - 1 DIGITAL IMAGE FUNDAMENTALS											
Elements of visual perception – Image sensing and acquisition – Image Formation Model, Image Sampling and Quantization, Representation of Digital Images, Spatial and Gray level Resolution Zooming and Shrinking of Digital Images, Basic relationship between pixels											
Topic - 2	IMAGE TRANSFORMS	9									
1D and 2D image transforms - Separable Transforms - One dimensional Fourier Transform - DFT - Two-dimensional Fourier Transform-Discrete Cosine Transform-Walsh-Hadamard Transform - Wavelet transform - discrete and continuous - Haar transform- Properties.											
Topic - 3	IMAGE ENHANCEMENT AND RESTORATION	9									

Image Enhancement: Spatial Domain Methods. Image subtraction-Image averaging- Spatial filtering - Smoothing, Sharpening filters-First and Second Derivatives-Histogram-Histogram-Equalization Frequency Domain Methods-Filtering-Smoothing and Sharpening-Butterworthfilter

Image Restoration: Model of image Degradation / Restoration process.

Topic - 4 IMAGE SEGMENTATION AND REPRESENTATION 9

Detection of discontinuities - Point, Line and Edge detection - Gradient operators - Edge linking -Graph theoretic technique – Thresholding – global and adaptive –Region - based segmentation. Boundary representation – chain codes - Polygonal approximation–Signatures–skeletons.

IMAGE COMPRESSION 9 Topic - 5

Introduction to image compression - Lossy and Lossless compression-Sequential and Progressive Compression - Rate / Distortion optimization - compression metrics - Huffman c o d i n g-Run Length Coding – Predictive coding – DPCM - Transform coding – Vector quantization-Image compression standards.

THEORY 45 **TUTORIAL PRACTICAL TOTAL** 45

BOOK REFERENCES R.C.Gonzalez, R.E. Woods, "Digital ImageProcessing", Pearson Educationl, 4th Edition, 2017. 2 AnilK.Jain, "FundamentalsofDigitalImageProcessing" Pearson Education, 1stedition, 2015. David Salomon, ``Data Compression", Springer Verlag New York Inc., 4th Edition, 2006.

O'	THER REFERENCES
1	https://www.youtube.com/watch?v=Lgdr9WLto4A&list=PL1CE5B4FFFA997E5D
2	https://www.youtube.com/watch?v=FtEShPAFpek&list=PL_mruqjnuVd87sjSDVS9wuit9CSpgIIfx
3	https://www.youtube.com/watch?v=UWQuMnWcmwc
4	https://www.youtube.com/watch?v=W1cTpqM9DaU
5	https://www.youtube.com/watch?v=8kcvyoHsXrw

Semester	Programme	Course Code	Course Name	L	Т	P	С
		20ECO01	TELEVISION & VIDEO ENGINEERING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
Afte	After Successful completion of the course, the students should be able to										
CO1	Compare the Digital TV transmission standards - DVB-T, DVB-S,DVB-C, ATSC, ISDB-T, ISDTV, DTMB and Ultrahigh-definition television.	K2	1								
CO2	Compare and contrast the performance of video compression techniques MPEG-1 - MPEG-2 - MPEG-4 and H264.	К3	2								
CO3	Explain theprinciples of digital modulation and multiplexing like phase shift modulation techniques, quadrature amplitude modulation and OFDM.	К3	3								
CO4	Illustrate the fundamentals of HDTV evolution, transmission and reception of High Definition TV signal.	K4	4								
CO5	Explain the working principle of LEDTV, 3DTV, EDTV, IPTV and Smart TV.	K5	5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1				1	3	3		3	2	
CO2	3	2	3	1				1	3	3		3	2	
CO3	2	2	1	2				1	3	3		3	2	1
CO4	3	1	1	2				1	3	3		3	1	
CO5	1	3	3	1				1	3	3		3	1	

		COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests										
	2 Assignment										
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT												
Topic - 1		FUNI	AM	ENTAL	S OF TELEVIS	ION			9				
Aspect ratio-Digital television signal -Digital television standards - DVB-T, DVB-S,DVB-C, AT ISDB-T, ISDTV, DTMB and Ultrahigh-definition television.													
Topic - 2		AU	J DI C	AND V	VIDEO CODINO	3			9				
encoding sta	Audio and video coding - Source coding- Signal sampling - The quantization process - Video encoding standards - MPEG-1 - MPEG-2 - MPEG-4. Channel coding - Cyclic codes - Convolutiona codes - Error correction in digital television standards.												
Topic - 3		Т	'RAN	ISMISS	ION SYSTEMS				9				
		cs of digital modulati tion (QAM) - OFDM				echni	ques - (Quadrature					
Topic - 4			HIC	SH DEF	INITION TV				9				
		and role of Grand rt – Transmission – H											
Topic - 5													
	Domestic Broadcast System - Cable TV - Cable Signal Sources- Projection television-Flat panel display TV receivers - LCD and Plasma screen receivers - LEDTV, 3DTV, EDTV, IPTV - Smart TV.												
THEORY	45	TUTORIAL	15		PRACTICAL	0		TOTAL	60				

BC	OOK REFERENCES
1	Marcelo S. Alencar, "Digital Television Systems" Cambridge University Press, 2010.
2	Herve Benoit, "Digital Television: Satellite, Cable, Terrestrial, IPTV, MobileTV in the DVB Framework", Focal Press; 3 edition, 2008.
3	Iain E. G. Richardson, "H.264 and MPEG-4 and Video compression video coding for Next-generation Multimedia", John Wiley & Sons Ltd., 2003.

O'	THER REFERENCES
1	NPTEL Video https://nptel.ac.in/courses/117102059/,Lecture - 26 TV Transmission, Prof.Surendra
1	Prasad, Department of Electrical Engineering ,IIT Delhi
2	NPTEL Video https://nptel.ac.in/courses/117/105/117105131/ Digital TV, Prof.Kalyan Kumar
	Bandyopadhyay, IIT Kharagpur
3	https://youtu.be/fy0sXbrkMew
4	https://www.youtube.com/watch?v=40eNsj9MGlU
5	https://www.youtube.com/watch?v=27q92epxLqk

Semester	Programme	Course Code	Course Name	L	Т	P	С
		20ECO02	SENSORS AND TRANSDUCERS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
Afte	After Successful completion of the course, the students should be able to										
CO1	Compare the Digital TV transmission standards - DVB-T, DVB-S,DVB-C, ATSC, ISDB-T, ISDTV, DTMB and Ultrahigh-definition television.	K2	1								
CO2	Compare and contrast the performance of video compression techniques MPEG-1 - MPEG-2 - MPEG-4 and H264.	К3	2								
CO3	Explain theprinciples of digital modulation and multiplexing like phase shift modulation techniques, quadrature amplitude modulation and OFDM.	К3	3								
CO4	Illustrate the fundamentals of HDTV evolution, transmission and reception of High Definition TV signal.	K4	4								
CO5	Explain the working principle of LEDTV, 3DTV, EDTV, IPTV and Smart TV.	K5	5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1				1	3	3		3	2	
CO2	3	2	3	1				1	3	3		3	2	
CO3	2	2	1	2				1	3	3		3	2	1
CO4	3	1	1	2				1	3	3		3	1	
CO5	1	3	3	1				1	3	3		3	1	

	COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests										
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT	
Topic-1	INTRODUCTION	9

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types.

Topic-2 MOTION, PROXIMITY AND RANGING SENSORS 9

Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer., GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

Topic-3 FORCE, MAGNETIC AND HEADING SENSORS 9

Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto resistive – Hall Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers.

Topic-4 OPTICAL, PRESSURE AND TEMPERATURE SENSORS 9

Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors - Smart Sensors - Film sensor, MEMS & Nano Sensors, LASER sensors.

Topic-5 SIGNAL CONDITIONING AND DAQ SYSTEMS 9

 $Amplification-Filtering-Sample\ and\ Hold\ circuits-Data\ Acquisition:\ Single\ channel\ and\ multi\ channel\ data\ acquisition-Data\ logging\ -\ applications\ -\ Automobile,\ Aerospace,\ Home\ appliances,\ Manufacturing,\ Environmental\ monitoring.$

BC	OOK REFERENCES
1	Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.
2	John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.
3	Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

O'	OTHER REFERENCES									
1	https://nptel.ac.in/courses/106/105/106105034/									
2	https://www.youtube.com/watch?v=6XTYoZymbwE									
3	https://www.youtube.com/watch?v=MP6VlAE_7WY									

Semester	Programme	Course Code	Course Name	L	Т	P	С
		20ECO03	TELECOMMUNICATION SWITCHING SYSTEMS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Design Switching systems for given requirements and configurations	K2	1								
CO2	Analyze the processes and performance of a digital telephone switching systems	К3	2								
CO3	Perform network synchronization and network management	K2	3								
CO4	Analyze various digital subscriber access systems	К3	4								
CO5	Apply Traffic theory to understand the characteristics of the telephone systems	K2	5								

PRE-REQUISITE	Nil
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	3		2		1	3	3		3		
CO2	3	2	2	2				1	3	3		3	2	
CO3	3	1	3	3		2		1	3	3		3		1
CO4	2	2	3	2		2		1	3	3		3		
CO5	2	1	2	2		2		1	3	3		3	3	

	COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests										
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

4	~	^ 1	T TI	n	a		~	\mathbf{a}		1		TH	п
L				к	•	н.	\mathbf{C}		1	 н.	IN	М	

Topic - 1 EVOLUTION OF SWITCHING SYSTEMS

9

9

Brief Outline of manual switching system, trunking, Strowger step by step system, and Crossbar switching Frequency division multiplexing - Time division multiplexing, message switching, circuit switching - packet switching Electronic switching, digital switching, control of switching systems

Topic - 2 DIGITAL SWITCHING

Switching Functions- Space Division Switching- Time Division Switching- two-dimensional Switching- STS Switching, TST Switching - No.4 ESS Toll Switch- Digital Cross-Connect Systems- Digital Switching in an Analog Environment Elements of SS7 signaling. Timing- Timing Recovery: Phase-Locked Loop, Clock Instability, Jitter Measurements, Systematic Jitter- Timing Inaccuracies- Slips.

Topic - 3 NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT

ISDN – ISDN Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol – High Data Rate Digital Subscriber Loops – Asymmetric Digital Subscriber Line, VDSL– Digital Loop Carrier Systems – Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next Generation Digital Loop Carrier – Fiber in the Loop – Hybrid Fiber Coax Systems – Voice band Modems – Local Microwave Distribution Service – Digital Satellite Services

Topic - 4 DIGITAL SUBSCRIBER ACCESS 9

Traffic Characterization – Arrival Distributions, Holding Time Distributions – GoS – Lost–Call Systems – Queuing Systems – Network Blocking Probabilities – End–to–End Blocking Probabilities, Overflow Traffic – Delay Systems– Erlang B system – Exponential service Times, Constant Service Times, Finite Queues, Tandem Queues.

Topic - 5 TELECOMMUNICATION TRAFFIC ANALYSIS 9

Integration of Voice and Data-Parameters relating to digitized Voice and Data-History of VoIP - Benefits and Challenges of VoIP over landline phones- An Integrated TDM Frame-Fixed Boundary Integration-Movable boundary scheme-VoIP Technologies-IP multimedia Systems (IMS)- skype networks.

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

- 1 J. Bellamy, "Digital Telephony", 3rd Edition, Wiley student edition, 2011.
- 2 JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson Education, 2007
- 3 Viswanathan. T., "Telecommunication Switching System and Networks", PHI Ltd., 2006.
- 4 R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000.
- 5 W. Stalling, "Data and Computer Communications", 10th Edition, Pearson, 2013
- 6 T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Interscience, 1994.

OI	OTHER REFERENCES								
1	http://iete-elan.ac.in/SolnQPJun2013/AE64.pd								
2	http://www.netlab.tkk.fi/opetus/s38120/k02/LecturesEn/120L2-1e.pdf								
3	https://www.youtube.com/watch?v=bPoojxMTh9Y								
4	https://www.youtube.com/watch?v=aDGDBjnC7r0								

Semester	Programme	Course Code	Course Name	L	Т	P	С
		20ECO04	WIRELESS COMMUNICATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)											
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered									
CO1	Assess and select the appropriate multiple accessing methods and propagation path loss model depending on channel model	K2	1									
CO2	Apply the innovative ideas in the field of wireless communication, in particular how to communicate effectively and efficiently in wireless cellular communication.	K3	2									
CO3	Illustrating the concepts using examples from several modern wireless systems as well as new research developments.	K2	3									
CO4	Analyze the mathematical framework for design of wireless systems developed based on suitable equalization and diversity techniques	K4	4									
CO5	Apply the innovative ideas to improve the existing technology in the field of digital communication through fading multipath channels and improving capacity in Wireless systems	K3	5									

PRE-REQUISITE

Digital Communication

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													Os	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1		2	3				1	3	3		3	1		
CO2	2	1		3			2	1	3	3		3		2	
CO3	1		2	2				1	3	3		3	1		
CO4	1	2		2			2	1	3	3		3	1		
CO5	1	3		2		2		1	3	3		3		2	

		COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests										
	2	Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

CO	URSE	CON	TEN	\mathbf{T}
\mathbf{v}		COL		

Topic - 1 PROPAGATION AND MULTIPLE ACCESS TECHNIQUES

9

Fading - Multipath propagation mechanisms - Propagation Models: Free space model, Two ray ground reflection model, Macro cell and Micro cell propagation models. Multiple Access Techniques: FDMA, CDMA, TDMA, SDMA.

Topic - 2 CELLULAR MOBILE WIRELESS SYSTEMS

9

Cellular Systems: Structure - Cell Cluster - Frequency reuse - Channel Interference - Cell splitting and sectoring - Channel Assignment schemes: Fixed, Dynamic and Hybrid - Network Architecture - Mobility Management - Location Management - Resource Management: Microcell Concept

Topic - 3 DIGITAL SIGNALING FOR FADING CHANNELS

9

Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR

Topic - 4 EQUALIZATION AND DIVERSITY TECHNIQUES

9

Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macro diversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver.

Topic - 5 MULTIPLE ANTENNA TECHNIQUES

9

MIMO systems – spatial multiplexing -System model -Pre-coding – Beam forming – transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
--------	----	----------	---	-----------	---	-------	----

- 1 Cory Beard and William Stallings, "Wireless Communication Networks and Systems" Pearson, 2015
- 2 | ITI Saha Misra, "Wireless Communication and Networks: 3G and beyond", McGraw Hil Education Pvt Ltd., Second edition, 2013.
- 3 K. Daniel Wong, "Fundamentals of Wireless Communication Engineering Technologies" Wiley, 2012
- David Tse and Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005
- T.S.Rappaport, Wireless Communications: Principles and Practice, Second Edition, Pearson Education/ Prentice Hall of India, Third Indian Reprint 2003.
- 6 Mischa Schwartz, "Mobile Wireless Communications", Cambridge University Press, 2005

O	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=TP8YRb3VH7M								
2	https://www.youtube.com/watch?v=wu8kMqvrfSc								
3	https://www.youtube.com/watch?v=xFe76sWQf-4								
4	https://www.youtube.com/watch?v=gDZSJN9OPcI								
5	https://www.youtube.com/watch?v=qKJGRjM9Yck								

Semester	Programme	Course Code	Course Name	L	Т	P	C
		20EC6T2	VLSI DESIGN	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)											
Afte	After Successful completion of the course, the students should be able to											
CO1	Develop digital logic circuits and VLSI systems using Verilog Hardware Description Language Programming	К3	1									
CO2	Illustrate the components in the logic synthesis-based design flow	К3	2									
CO3	Elaborate the characteristics of MOS transistor and techniques used for VLSI fabrication	K2	3									
CO4	Make use of layout design rules to draw layout of logic functions and to design circuits using various logic styles	К3	4									
CO5	Apply various testing techniques/algorithms to test circuits	К3	5									

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs			PSOs												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2		1			1	3	3		3	1	3	
CO2	3	2	2		1			1	3	3		3	1	3	
CO3	3				1			1	3	3		3		2	
CO4	3	2	2		1			1	3	3		3	1	3	
CO5	3	2						1	3	3		3		1	

COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2 Assignment							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE CONTENT									
Topic - 1			,	VERIL	OG HDL				9 +3
Data flow Modelling- Behavioural modelling – Structured Procedures- Blocking and non blocking statements- delay control- event control, conditional statements- multiway branching-loops- Switch level modelling - Tasks and Function									
Topic - 2		LOGIC	SYN	THESI	S AND RTL DE	SIGN	1		9+3
Logic Synthesis- Impact of Logic Synthesis- Verilog HDL Synthesis- Synthesis Design Flow-Modelling Tips for Logic Synthesis- RTL Design- 4-bit full adder subtractor- ALU Design – Booth Multiplication- GCD Computation.									
Topic - 3			M	OS TRA	ANSISTOR				9+3
	CMOS Logic- MOS Transistor Theory- Long Channel I-V characteristics- C-V characteristics- Nonideal I-V effects DC characteristics Power dissipation – Switching Characteristics								
Topic - 4			MO	OS FAB	RICATION				9+3
An overview of silicon semiconductor technology - Basic CMOS technology: N well- P well, Twin tub and SOI Process- Latch up and prevention- Layout Design rules- Stick diagram- Layout diagram for basic logic gates Introduction to Static CMOS- Pseudo nMOS logic -Dynamic CMOS-Cascade Voltage Switch Logic.								ım- Layout d	iagram
voitage Swi									
Topic - 5			(CMOS T	TESTING				9+3
Topic - 5 Introduction Fault Model	ls observa	g- Logic Verifica ability, controllab nd Boolean Differ	ion P	rinciple: -Fault	s- Test Vectors-				ples
Topic - 5 Introduction Fault Model	ls observa	ability, controllab	tion P ility ence N	rinciple: -Fault	s- Test Vectors-				ples
Topic - 5 Introduction Fault Model BIST- D-Alg THEORY	ls observa gorithm ar	ability, controllability, controllability, controllability and Boolean Differ	tion P ility ence N	rinciple: -Fault	s- Test Vectors-2 coverage- DFT-2	Ad-H		ting- Scan D	ples Design-
Topic - 5 Introduction Fault Model BIST- D-Alg THEORY BOOK REF	ds observa gorithm ar 45 FERENCI este & Day	ability, controllability, controllability, controllability and Boolean Differ	tion Phility ence M	Principle: —Fault of Method	s- Test Vectors- coverage- DFT-A	Ad-Ho	oc Tes	TOTAL	ples- Design

Palnitkar Samir, "Verilog HDL: Guide to Digital Design and synthesis", 2nd Edition, Pearson Education, New Delhi, 2017.

O'	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=PJGvZSlsLKs						
2	https://www.youtube.com/watch?v=sIDe76QFG2g						
3	https://www.youtube.com/watch?v=6OZL1689pi0						
4	https://www.youtube.com/watch?v=sV2xT-WCSSI						
5	https://www.youtube.com/watch?v=YpbtAwmYCcI						

Semester	Programme	Course Code	Course Name	L	Т	P	C
		20EC5E2	OPTO ELECTRONICS DEVICES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Understand the basics of solid state physics.	K2	1						
CO2	Design and implement display devices.	K6	2						
CO3	Demonstrate and articulate optoelectronic detection devices	K2	3						
CO4	Analyze the various optoelectronic modulators.	K4	4						
CO5	Determine optoelectronic integrated circuits.	K5	5						

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	3		2				1	3	3		3		3	
CO2	3	2	2	2				1	3	3		3	2		
CO3	3	3	3	2				1	3	3		3			
CO4	2		2					1	3	3		3	2	2	
CO5	2	2	3	2				1	3	3		3			

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2 Assignment									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT Topic - 1 ELEMENTS OF LIGHT AND SOLID STATE PHYSICS 9 Wave nature of light, Polarization, Interference, Diffraction, Light Source, review of Quantum Mechanical concept, Review of Solid State Physics, Review of Semiconductor Physics and Semiconductor Junction Device. DISPLAY DEVICES AND LASERS 9 Topic - 2 Introduction, Photo Luminescence, Cathode Luminescence, Electro Luminescence, Injection Luminescence, Injection Luminescence, LED, Plasma Display, Liquid Crystal Displays, Numeric Displays, Laser Emission, Absorption, Radiation, Population Inversion, Optical Feedback, Threshold Condition, Laser Modes, Classes of Lasers, Mode Locking, laser applications. 9 OPTICAL DETECTION DEVICES Topic - 3 Photo detector, Thermal detector, Photo Devices, Photo Conductors, Photo diodes, Detector Performance. 9 Topic - 4 OPTOELECTRONIC MODULATOR Introduction, Analog and Digital Modulation, Electro-optic modulators, Magneto Optic Devices, Acoustoptic devices, Optical, Switching and Logic Devices. Topic - 5 OPTOELECTRONIC INTEGRATED CIRCUITS 9 Introduction, hybrid and Monolithic Integration, Application of Opto Electronic Integrated Circuits, Integrated transmitters and Receivers, Guided wave devices. THEORY 45 **TUTORIAL** PRACTICAL **TOTAL** 0 45

BC	OOK REFERENCES
1	Pallab Bhattacharya "Semiconductor Opto Electronic Devices", Prentice Hall of India Pvt., Ltd., New Delhi, 2006.
2	Jasprit Singh, "Opto Electronics – As Introduction to Materials and Devices", Mc Graw-Hill International Edition, 1998
3	J. Wilson and J.Hawkes, "Opto Electronics – An Introduction", Prentice Hall, 1995
4	S C Gupta, Opto Electronic Devices and Systems, Prentice Hal of India, 2005.

CO	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=J6ES-sW8Eig							
2	https://www.youtube.com/watch?v=mtAcrB9JrhA							
3	https://www.youtube.com/watch?v=WWjldCmRteg							
4	https://www.youtube.com/watch?v=K6ewdRw329s							
5	https://www.youtube.com/watch?v=m1gCBJ8jshU							

Semester	Programme	Course Code	Course Name	L	Т	P	С
		20EC5E5	MEDICAL ELECTRONICS	3	0	0	3

COURSE LEARNING OUTCOMES (COs)								
Afte	After Successful completion of the course, the students should be able to							
CO1	Analyze the concepts of Electro-Physiology and Bio-Potential Recording	K4	1					
CO2	Demonstrate Bio medical and non electrical parameter measurement	K2	2					
CO3	Apply the concepts of Assist Devices in medical treatment	К3	3					
CO4	Examine the concepts of Biotelemetry and physical medicine	K4	4					
CO5	Describe the recent trends in Medical Instrumentation	K2	5					

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1			2	2	3	3		3	1	
CO2	3	2	3	1			2	2	3	3		3	1	
CO3	2	2	1	2			2	2	3	3		3	1	
CO4	3	1	1	2			2	2	3	3		3	1	
CO5	1	3	3	1			2	2	3	3		3	1	

COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests							
	2	Seminar							
	3	End Semester Examinations							
INDIRECT	1	Course End Survey							

				COU	RSE CO	ONTENT				
Topic - 1	E	ELEC	CTRO-PHYSIC	LOC	GY ANI	BIO-POTENT	IAL l	RECOI	RDING	9
The Origin of Bio-potentials; bio potential electrodes, biological amplifiers, ECG, EEG, EMG, I systems and recording methods-typical waveform and signal characteristics.									3, lead	
Topic - 2 BIO- CHEMICAL AND NON ELECTRICAL PARAMETER MEASUREMENT									9	
PH, PO2, PCO2, Electrophoresis, colorimeter, Auto analyzer, Blood flow meter, Cardiac output, respiratory measurement, Blood pressure, Temperature.										
Topic - 3				A	ASSIST	DEVICES				9
Cardiac pace	maker	s, DO	C Defibrillator, I	Dialy	zer, Hea	rt lung machine.				
Topic - 4			PHYSICAL	ME	DICINI	E AND BIOTEL	EME	TRY		9
			e, ultrasonic and elements and it			type and their ap	plica	tions, S	Surgical Diat	hermy,
Topic - 5		F	RECENT TRE	NDS 1	IN MED	DICAL INSTRU	MEN	TATIO	ON	9
• •	Thermograph, Endoscopy Unit, Lasers in medicine, Electrical safety in medical Equipment Patien monitoring system.							Patient		
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45

BC	BOOK REFERENCES								
1	Leislie Cromwell, Bio medical Instrumentation and Measurement, PHI, 2007								
2	David Prutchi and Michael Norris, Design and Development of Medical Electronic Instrumentation: A Practical perspective of the design construction and test of Medical Device, 2004.								
3	RS Khandpur, Hand book of Bio medical Instrumentation, Tata McGraw-Hill,200								

O'	OTHER REFERENCES							
1	nttps://www.youtube.com/watch?v=O0CHWFc-gO8							
2	https://youtu.be/QnLRl96fqf4							
3	https://www.youtube.com/watch?v=T_iYsVohkz4							
4	https://www.youtube.com/watch?v=O8dJ77Xz_IQ							
5	https://www.youtube.com/watch?v=-633zoLcHHo							

Semester	Programme	Course Code	Course Name	L	Т	P	С
		20EC7T3	FIBER OPTIC COMMUNICATIONS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Analyze the behaviour of different optical medium (fibers) and performance of signal Propagation	K4	1							
CO2	Analyze the issues in propagation of optical signals resulting from signal degradation mechanism of optical fiber media	K4	2							
соз	Analyze the performance of light sources and apply the concept for choice of light sources for agiven optical link	K4	3							
CO4	Apply the concept of working of optical receivers and identify the type of receiver for differentoptical links	К3	4							
CO5	Assess the power loss and signal dispersive nature of optical media and apply the result to identifyappropriate transmitter, receiver, on line	K5	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3			2	2	3	3		3	2	1
CO2	3	2	2	3			2	2	3	3		3	1	2
CO3	3	2	2	1			2	2	3	3		3	2	3
CO4	1	3	2	1			2	2	3	3		3	2	2
CO5	3	2	3	1			2	2	3	3		3	1	1

COURSE ASSESSMENT METHODS										
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2 Seminar									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT									
Topic - 1	INTRODUCTION TO OPTICAL FIBERS	9+3								

Evolution of fiber optic system- Element of an Optical Fiber Transmission link- Ray Optics-Optical Fiber Modes and Configurations. Mode theory of Circular Waveguides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes Single-Mode Fibers

Topic - 2 SIGNAL DEGRADATION OPTICAL FIBERS 9 +3

Attenuation, Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Waveguides-Information Capacity determination. Group Delay-Material Dispersion, Waveguide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling, Design Optimization of SM fibers. RI profile and cut-off wavelength.

Topic - 3 FIBER OPTICAL SOURCES AND COUPLING 9+3

Direct and indirect Band gap materials LED structures Light source materials Quantum efficiency and LED power, Modulation of a LED, lasers Diodes Modes and Threshold condition Rate equations External Quantum efficiency Resonant frequencies

Topic - 4 FIBER OPTICAL RECEIVERS 9 +3

PIN and APD diodes, Photo detector noise, SNR, Detector Response time, Avalanche Multiplication Noise Comparison of Photo detectors, Fundamental Receiver Operation, preamplifiers, Error Sources, Receiver Configuration, Probability of Error. Quantum Limit.

Topic - 5 DIGITAL TRANSMISSION SYSTEM AND MEASUREMENTS 9 +3

Point to Point links System considerations, Power budget, time budget-bandwidth budget calculations, Noise Effects on System Performance-Principles and operation of WDM, Solitons -EDFA - Basic on concepts of SONET/SDH Network. Principles of OTDR, Attenuation and dispersion, Field Measurements.

THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
--------	----	--	----------	----	--	-----------	---	--	-------	----

BOOK REFERENCES 1 Gerd Keiser, Optical Fiber Communication, McGraw-Hill International, Singapore, 5th edition. 2013 2 J.Gower, Optical Communication System, Prentice Hall of India, 2001. Copy right 2002 3 J.H. Franz, V.K. Jain, Optical Communication-Components and Systems, Narosa Publishing House, 2000 4 J.Senior, Optical Communication, Principles and Practice, Prentice Hall of India, Third edition published 2009.

CO	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=pavBq7HIoIE								
2	https://www.youtube.com/watch?v=EreQPmHANmg								
3	https://www.youtube.com/watch?v=Pb2CrmCgmkQ								
4	https://www.youtube.com/results?search_query=FIBER+OPTICAL+RECEIVERS								
5	https://www.youtube.com/watch?v=rOZOa8MHll8								

Semester	Programme	Course Code	Course Name		Т	P	С
		20EC6E3	FUNDAMENTALS OF NANO ELECTRONICS		0	0	3

	COURSE LEARNING OUTCOMES (COs)						
Afte	After Successful completion of the course, the students should be able to						
CO1	Illustrate nano electronics device architectures and interface engineering at atomic level.	K1	1				
CO2	Discuss the types of nano-materials and fabrication methods of nanostructures.	K2	2				
CO3	Explain electron transport in nanostructures using quantum mechanics theory.	К3	3				
CO4	Illustrate nano electronic devices constructed using tunnelling mechanism.	K4	4				
CO5	Explain nano MOSFETs with its shrink down approaches and nano devices like Single Electron Transistors, Carbon nano tube transistors, Semiconductor nano wire SETs and FETs-Molecular SETs and molecular electronics-Quantum dot cellular automata.	K5	5				

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)							PSOs						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2					2	1	3	3		3		
CO2		2	2		2			1	3	3		3	2	
CO3				2			2	1	3	3		3	2	
CO4	2		2		2			1	3	3		3	2	
CO5	2	2			2		2	1	3	3		3		

COURSE ASSESSMENT METHODS						
DIRECT	DIRECT 1 Continuous Assessment Tests					
	2	Assignment				
	3	End Semester Examinations				
INDIRECT	1	Course Exit Survey				

α			00		TEN
	ШK	SE		NTE	N.I.

Topic - 1 PHYSICS OF NANOELECTRONICS

9

The changing landscape of micro / nano electronics-The region of nanostructures-Beyond CMOS-More than Moore-Classical particles, classical waves-Wave-particle duality, Heisenberg uncertainty principle Electrons behaving as waves (Schrödinger equation)- Scattering and bound states-Atoms to crystals- bands and bonds.

Topic - 2 MATERIALS AND FABRICATION OF NANOSTRUCTURES

9

Semiconductors - Semiconductor hetero structures - Lattice-matched hetero structures - Pseudomorphic hetero structures - Organic semiconductors - Carbon nano materials - NanolithographyEtching-Other means for fabrication of nanostructures and nano devices.

Topic - 3 | ELECTRON TRANSPORT IN NANOSTRUCTURES

9

Time scales of the electrons in solids-length scales of the electrons in solids-Statistics of the electrons in solids and nanostructures: Classical-Statistics of the electrons in solids and nanostructures: Fermi-The density of states of electrons in nanostructures-Classical transport: classical resistance and conductance Quantum ballistic transport: quantum Resistance and conductance-Transport of spin, spintronic devices and applications.

Topic - 4 TUNNELING DEVICES

9

Tunnelling through a potential barrier-Potential energy profiles for material interfaces-Metal - insulator, metal - semiconductor-Metal - insulator - metal junctions-Tunnelling diode (TD) and Resonant tunnelling diode (RTD)- Three-terminal resonant tunnelling devices-Technology of RTD-Inverter and logic OR gates based on RTD.

Topic - 5 | SINGLE ELECTRON AND OTHER NANOELCTRONIC DEVICES

9

Coulomb blockade-Tunnel junction excited by a current source-Performance of the single-electron transistor-SET technology and Field effect transistors-Carbon nano tube transistors (FETs and SETs)-Semiconductor nano wire SETs and FETs-Molecular SETs and molecular electronics-Quantum dot cellular automata.

- Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge University Press, 2012.
- George W. Hanson, "Fundamentals of Nanoelectronics", Prentice Hall, 2007. 3. Karl Goser, Peter GlÖsekötter, Jan Dienstuhl, "Nanoelectronics and Nanosystems", Springer, 2004.

O'	OTHER REFERENCES					
1	https://nanohub.org/courses/FON2					
2	https://www.coursera.org/lecture/nanotechnology/introduction-to-nano-fabrication-tools-7jeWL					
3	https://videoportal.uni-freiburg.de/video/Quantum-Transport-in-Nanostructures/157da162206840382181e328a2bb1d4a					
4	https://www.youtube.com/watch?v=GJxHvOfwJnQ					
5	https://www.youtube.com/watch?v=asEvPyfFhF0					