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CONTROL SYSTEMS ENGINEERING

UNIT - I:

Introduction: Concept of control system, Classification of control systems - Open loop and
closed loop control systems, Differences, Examples of control systems- Effects of feedback,
Feedback Characteristics.

Transfer Function Representation: Block diagram algebra, Determining the Transfer function
from Block Diagrams, Signal flow graphs(SFG) - Reduction using Mason’s gain formula-
Transfer function of SFG’s.

UNIT - II:

Time Response Analysis: Standard test signals, Time response of first order systems,
Characteristic Equation of Feedback control systems, Transient response of second order
systems - Time domain specifications, Steady state response, Steady state errors and error
constants.PID controllers: Effects of proportional derivative, proportional integral systems on
steady state error.

UNIT - 1lI:

Stability Analysis in S-Domain: The concept of stability — Routh-Hurwitz’s stability criterion —
qualitative stability and conditional stability — Limitations of Routh-Hurwitz’s stability. Root
Locus Technique: Concept of root locus - Construction of root locus, Effects of adding poles
and zeros to G(s) H(s) on the root loci.

UNIT-IV:

Frequency Response Analysis: Introduction, Frequency domain specifications, Bode plot
diagrams-Determination of Phase margin and Gain margin, Stability analysis from Bode plots,
Polar plots.

UNIT - V:

State Space Analysis of Continuous Systems: Concepts of state, state variables and state
model, Derivation of state models from block diagrams, Diagonalization, Solving the time

invariant state equations, State Transition Matrix and it's properties, Concepts of
Controllability and Observability.
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UNIT-I
INTRODUCTION

A control system manages commands, directs or regulates the behavior of other devices or
systems using control loops. It can range from a single home heating controller using a
thermostat controlling a domestic boiler to large Industrial control systems which are used
for controlling processes or machines. A control system is a system, which provides the
desired response by controlling the output. The following figure shows the simple block

diagram of a control system.

Input Control

Qutput
System 4

Examples - Traffic lights control system, washing machine

Traffic lights control system is an example of control system. Here, a sequence of input signal
is applied to this control system and the output is one of the three lights that will be on for
some duration of time. During this time, the other two lights will be off. Based on the traffic
study at a particular junction, the on and off times of the lights can be determined.
Accordingly, the input signal controls the output. So, the traffic lights control system operates

on time basis.

Classification of Control Systems

Based on some parameters, we can classify the control systems into the following ways.

Continuous time and Discrete-time Control Systems

« Control Systems can be classified as continuous time control systems and discrete time

control systems based on the type of the signal used.
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« In continuous time control systems, all the signals are continuous in time. But, in

discrete time control systems, there exists one or more discrete time signals.

SISO and MIMO Control Systems

+ Control Systems can be classified as SISO control systems and MIMO control systems

based on the number of inputs and outputs present.

+ SISO (Single Input and Single Output) control systems have one input and one output.
Whereas, MIMO (Multiple Inputs and Multiple Outputs) control systems have more
than one input and more than one output.

Open Loop and Closed Loop Control Systems

Control Systems can be classified as open loop control systems and closed loop control systems based
on the feedback path.

In open loop control systems, output is not fed-back to the input. So, the control action is independent

of the desired output.

The following figure shows the block diagram of the open loop control system.

Actuating
Input Signal Output
——»| Controller »f Plant |

Here, an input is applied to a controller and it produces an actuating signal or controlling
signal. This signal is given as an input to a plant or process which is to be controlled. So, the
plant produces an output, which is controlled. The traffic lights control system which we

discussed earlier is an example of an open loop control system.

In closed loop control systems, output is fed back to the input. So, the control action is dependent on

the desired output.

The following figure shows the block diagram of negative feedback closed loop control system.
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Error _
Detector Ag:iu ?11:;?9

9 Qutput
Controllerj—» Plant >

Feedback »

Elements
Feedback
Signal

The error detector produces an error signal, which is the difference between the input and

the feedback signal. This feedback signal is obtained from the block (feedback elements) by

considering the output of the overall system as an input to this block. Instead of the direct

input, the error signal is applied as an input to a controller.

So, the controller produces an actuating signal which controls the plant. In this combination,

the output of the control system is adjusted automatically till we get the desired response.

Hence, the closed loop control systems are also called the automatic control systems. Traffic

lights control system having sensor at the input is an example of a closed loop control system.

The differences between the open loop and the closed loop control systems are mentioned in

the following table.
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If either the output or some part of the output is

returned to the input side and utilized as

part of the system input, then it is known as feedback. Feedback plays an important role in
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order to improve the performance of the control systems. In this chapter, let us discuss the
types of feedback & effects of feedback.

Types of Feedback

There are two types of feedback -

+ Positive feedback
+ Negative feedback
Positive Feedback

The positive feedback adds the reference input, R(s)R(s) and feedback output. The following figure
shows the block diagram of positive feedback control system

R{s) (=)
=

4

he concept of transfer function will be discussed in later chapters. For the time being, consider the

transfer function of positive feedback control system is,

= % { Brouanch 1]

Where,

+ Tis the transfer function or overall gain of positive feedback control system.
+ Gisthe open loop gain, which is function of frequency.

« His the gain of feedback path, which is function of frequency.

Negative Feedback

Negative feedback reduces the error between the reference input, R(s)R(s) and system

output. The following figure shows the block diagram of the negative feedback control
system.
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R(s) + C(s)

Transfer function of negative feedback control system is,

F= ﬁ {Equation 2

Where,

« Tis the transfer function or overall gain of negative feedback control system.
« Gisthe open loop gain, which is function of frequency.
+ His the gain of feedback path, which is function of frequency.

The derivation of the above transfer function is present in later chapters. Effects

of Feedback

Let us now understand the effects of feedback.

Effect of Feedback on Overall Gain

« From Equation 2, we can say that the overall gain of negative feedback closed loop control
system is the ratio of 'G' and (1+GH). So, the overall gain may increase or decrease depending

on the value of (1+GH).

+ If the value of (1+GH) is less than 1, then the overall gain increases. In this case, 'GH' value is

negative because the gain of the feedback path is negative.

+ If the value of (1+GH) is greater than 1, then the overall gain decreases. In this case, 'GH' value

is positive because the gain of the feedback path is positive.
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In general, 'G' and 'H' are functions of frequency. So, the feedback will increase the overall gain

of the system in one frequency range and decrease in the other frequency range.

Effect of Feedback on Sensitivity

Sensitivity of the overall gain of negative feedback closed loop control system (T) to the variation in

open loop gain (G) is defined as
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So, we got the sensitivity of the overall gain of closed loop control system as the reciprocal of

(1+GH). So, Sensitivity may increase or decrease depending on the value of (1+GH).

+ Ifthe value of (1+GH) is less than 1, then sensitivity increases. In this case, 'GH' value is negative

because the gain of feedback path is negative.

+ If the value of (1+GH) is greater than 1, then sensitivity decreases. In this case, 'GH' value is

positive because the gain of feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, feedback will increase the sensitivity of
the system gain in one frequency range and decrease in the other frequency range.
Therefore, we have to choose the values of 'GH' in such a way that the system is insensitive

or less sensitive to parameter variations.

Effect of Feedback on Stability

+ Asystem is said to be stable, if its output is under control. Otherwise, it is said to be unstable.
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+ In Equation 2, if the denominator value is zero (i.e., GH = -1), then the output of the control

system will be infinite. So, the control system becomes unstable.
Therefore, we have to properly choose the feedback in order to make the control system stable.
Effect of Feedback on Noise
To know the effect of feedback on noise, let us compare the transfer function relations with and

without feedback due to noise signal alone.

Consider an open loop control system with noise signal as shown below.
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The closed loop transfer function due to noise signal alone is

Cis) Gy _
N(s) = 1+G.G.H {Equation 8)

It is obtained by making the other input R(s) equal to zero.

Compare Equation 7 and Equation 2,

In the dosed loop control system, the gain due to noise signal is decreased by a
factor of (1 + GoGyH) provided that the term (1 + G,GyH) is greater than
one,

The control systems can be represented with a set of mathematical equations known as
mathematical model. These models are useful for analysis and design of control systems.

Analysis of control system means finding the output when we know the input and
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mathematical model. Design of control system means finding the mathematical model when

we know the input and the output.

The following mathematical models are mostly used.

. Differential equation model
. Transfer function model

+  State space model
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TRANSFER FUNCTION REPRESENTATION
Block Diagrams

Block diagrams consist of a single block or a combination of blocks. These are used to represent the
control systems in pictorial form.

Basic Elements of Block Diagram
The basic elements of a block diagram are a block, the summing point and the take-off point.

Let us consider the block diagram of a closed loop control system as shown in the following
figure to identify these elements.

Summing point Take-off point
H(s) p—

The above block diagram consists of two blocks having transfer functions G(s) and H(s). It is

also having one summing point and one take-off point. Arrows indicate the direction of the
flow of signals. Let us now discuss these elements one by one.

Block

The transfer function of a component is represented by a block. Block has single input and single
output.

The following figure shows a block having input X(s), output Y(s) and the transfer function G(s).
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X(s) Y(s)
Tranzfer Function, G(s) = _;l_z

= Yis) = Gis)Xis)
Summing Point

The summing point is represented with a circle having cross (X) inside it. It has two or more
inputs and single output. It produces the algebraic sum of the inputs. It also performs the
summation or subtraction or combination of summation and subtraction of the inputs based

on the polarity of the inputs. Let us see these three operations one by one.

The following figure shows the summing point with two inputs (A, B) and one output (Y).

Here, the inputs A and B have a positive sign. So, the summing point produces the output, Y
assumof AandBi.e.=A +B.

B

The following figure shows the summing point with two inputs (A, B) and one output (Y). Here,
the inputs A and B are having opposite signs, i.e., A is having positive sign and B is having

negative sign. So, the summing point produces the output Y as the difference of Aand B i.e

Y=A+(-B)=A-B.
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B

The following figure shows the summing point with three inputs (A, B, C) and one output (Y).

Here, the inputs A and B are having positive signs and C is having a negative sign. So, the
summing point produces the outputYasY=A+B+ (-C)=A+B-C.

c

Take-off Point

The take-off point is a point from which the same input signal can be passed through more
than one branch. That means with the help of take-off point, we can apply the same input to

one or more blocks, summing points.In the following figure, the take-off point is used to
connect the same input, R(s) to two more blocks.
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Take-off point
R J e e |
L (s e
C.(s)
— 7| G(s) >

In the following figure, the take-off point is used to connect the output C(s), as one of the inputs to

the summing point.

Take-off point

R(s) + G(s) T C(sl

Block diagram algebra is nothing but the algebra involved with the basic elements of the block

diagram. This algebra deals with the pictorial representation of algebraic equations.

Basic Connections for Blocks

There are three basic types of connections between two blocks.

Series Connection

Series connection is also called cascade connection. In the following figure, two blocks having

transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in series.
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That means we can represent the series connection of two blocks with a single block. The

transfer function of this single block is the product of the transfer functions of those two
blocks. The equivalent block diagram is shown below.

X(s) Y(s)

—_— G (5)G2(s) |—

Similarly, you can represent series connection of ‘n’ blocks with a single block. The transfer function
of this single block is the product of the transfer functions of all those ‘n’ blocks.

Parallel Connection

The blocks which are connected in parallel will have the same input. In the following figure, two
blocks having transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in parallel.

The outputs of these two blocks are connected to the summing point.
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X(=) I = = ¥, ()
+ Y(s)
L
] G:(s) | |
V. (=)

Y(s) = Yi(s) + Ya(s)
Yi(s) = G1(s)X(s) and Ya[s) = Ga{s) X (5]
» Y(s) = G1{s)X(s) + Gals) X(s) = {G1(s) + Gals) } X(5)
G(s) = Gy(s) + Gals)

That means we can represent the parallel connection of two blocks with a single block. The
transfer function of this single block is the sum of the transfer functions of those two blocks.

The equivalent block diagram is shown below.

X(s) Y(s)
—¥ Gy(5) | Gy (5) P>

Similarly, you can represent parallel connection of ‘n” blocks with a single block. The transfer
function of this single block is the algebraic sum of the transfer functions of all those ‘n’
blocks.

Feedback Connection

As we discussed in previous chapters, there are two types of feedback — positive feedback and

negative feedback. The following figure shows negative feedback control system. Here,
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two blocks having transfer functions G(s)G(s) and H(s)H(s) form a closed loop.
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Therefore, the negative feedback closed loop transfer function is :

e

1+ F =)

This means we can represent the negative feedback connection of two blocks with a single
block. The transfer function of this single block is the closed loop transfer function of the negative

feedback. The equivalent block diagram is shown below.

X(s) G(s) Y(s)
™ -
1+ G(s)H(s)

Similarly, you can represent the positive feedback connection of two blocks with a single
block. The transfer function of this single block is the closed loop transfer function of the

positive feedback, i.e.,
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Block Diagram Algebra for Summing Points

There are two possibilities of shifting summing points with respect to blocks -

+ Shifting summing point after the block
+ Shifting summing point before the block
Let us now see what kind of arrangements need to be done in the above two cases one by one.

Shifting the Summing Point before a Block to after a Block

Consider the block diagram shown in the following figure. Here, the summing point is present before
the block.

R(s) + R(s)+X(s) '| &(s) | Y(sl

e

X(s)

FUTINTE  =onh ek e Bipots ji:ﬁ_s-} arg AiE!
Ris) + X(s)}.
The output of Summing point is 2= (=)}
G T Frout to the block &e) s {5y + Aleil and e suutolitis -
Vs = £24=) [His} b Alst)

= Fis) = (AR - D el X ] f Enpuiz oo 1
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R G R -+
(s) S (s)R(s) ?(SIL

-+

X(s)
Culpul of the blocls G0 s) = Gl RB{s),
The outout oF the summing point s

Yig) = LNe)H{s) — X&) Cequiation 27

Compare Equation 1 and Equation 2.

The first term ‘G(s)R(s)“G(s)R(s)" is same in both the equations. But, there is difference in the
second term. In order to get the second term also same, we require one more block G(s)G(s).
It is having the input X(s)X(s) and the output of this block is given as input to summing point

instead of X(s)X(s). This block diagram is shown in the following figure.
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R(s) G(s)R(s) + Y(s)
— G(=s) - -
+
G(s)X(s)
G(s) I
X(s)
Shifdng Summing Palnt Befors the Block
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LT s Gressn T &Tiar the Do,
R{=) G(s)R(s) + ¥Y(s)
— Gi(=s) .
-+
(=)

Output of this block diagram is -

Y(s) = G(s)R(s) + X(s) (Equation 3)

Mow, shift the summing point before the block. This block diagram is shown in
the following figure.

R R X
(s) + (s)+X(s) J Gs) Y(Sl

1

X(s)
Output of this block diagram is -

Y(5) = G(s)R(s) + G(s) X (s) (Equation 4)

Compare Equation 3 and Equation 4,
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The first term ‘G(s)R(s)" is same in both equations. But, there is difference in the second term.
In order to get the second term also same, we require one more block 1/G(s). It is having the

input X(s) and the output of this block is given as input to summing point instead of X(s). This
block diagram is shown in the following figure.

R(s) + /o RO+ {ﬁ;lfiﬂ__ e Y(s)

+

i B
G(s)

X(s)
Block Diagram Algebra for Take-off Points

There are two possibilities of shifting the take-off points with respect to blocks -

« Shifting take-off point after the block

« Shifting take-off point before the block

Let us now see what kind of arrangements is to be done in the above two cases, one by one.

Shifting a Take-off Point form a Position before a Block to a position after the Block

Consider the block diagram shown in the following figure. In this case, the take-off point is present
before the block.
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R(s) 6(s) Y(sl

X(s)

rere, Xis) — Ais) anc Yis) = Gis)ll(s)
When you shift the take-off point after the block, the output Y(s) will be same. But, there is difference

in X(s) value. So, in order to get the same X(s) value, we require one more block 1/G(s). It is having the

input Y(s) and the output is X(s) this block diagram is shown in the following figure.

R(s) Y(s)
—| G(s) 1 -
1
G(s)
X(s)

Shifting Take-off Point from a Position after a Block to a position before the Block

Consider the block diagram shown in the following figure. Here, the take-off point is present after
the block.
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R(s) Y(s)

X(s)
Here, X(s) = ¥{s) = G(s)fi(s)
When you shift the take-off point before the block, the output Y(s) will be same. But, there is
difference in X(s) value. So, in order to get same X(s) value, we require one more block G(s) It

is having the input R(s) and the output is X(s). This block diagram is shown in the following

figure.

Y
Ris) » G(s) {53-

G(s)

1

X(s)

The concepts discussed in the previous chapter are helpful for reducing (simplifying) the block

diagrams.

Block Diagram Reduction Rules

Follow these rules for simplifying (reducing) the block diagram, which is having many blocks, summing

points and take-off points.

Rule 1 - Check for the blocks connected in series and simplify.
+ Rule 2 - Check for the blocks connected in parallel and simplify.
Rule 3 - Check for the blocks connected in feedback loop and simplify.
Rule 4 - If there is difficulty with take-off point while simplifying, shift it towards right.
Rule 5 - If there is difficulty with summing point while simplifying, shift it towards left.
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+ Rule 6 - Repeat the above steps till you get the simplified form, i.e., single block. Note — The
transfer function present in this single block is the transfer function of the overall block

diagram.

Note - Follow these steps in order to calculate the transfer function of the block diagram having
multiple inputs.

« Step 1 - Find the transfer function of block diagram by considering one input at a time and
make the remaining inputs as zero.

« Step 2 - Repeat step 1 for remaining inputs.
+ Step 3 - Get the overall transfer function by adding all those transfer functions.

The block diagram reduction process takes more time for complicated systems because; we
have to draw the (partially simplified) block diagram after each step. So, to overcome this
drawback, use signal flow graphs (representation).

*Block Diagram Reduction- Summary
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(h) Moving a pickoff point forward of a summation
Examples:

1.Consider the block diagram shown in the following figure. Let us simplify (reduce) this
block diagram using the block diagram reduction rules.
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R(s) GG + Y(s)
i1ira
e — (e + Gy )
4_"@ 1+ GyGoH, (& +)Cs
4
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R(s) GGG 6+ 6D Y(s)
+ (1+ GG H {1+ (63 + Gy)GsH3)
+

Step 6 — Ls=e Rule = for blodds connected in feedback [oop. The modified block
diagram is shown in the following figure. This iz the simplified Black diagram
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Therefors, the transfer funcoon of the svstem s
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2.Determine the transfer function Y(s)/R(s).
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3. Determine the transfer function Y2(s)/Ri(s).
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Signal flow graph is a graphical representation of algebraic equations. In this chapter, let us
discuss the basic concepts related signal flow graph and also learn how to draw signal flow

graphs.

Basic Elements of Signal Flow Graph

Nodes and branches are the basic elements of signal flow graph.
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Node

Node is a point which represents either a variable or a signal. There are three types of nodes —

input node, output node and mixed node.

+ Input Node - It is a node, which has only outgoing branches.
+ Output Node - It is a node, which has only incoming branches.

+ Mixed Node - It is a node, which has both incoming and outgoing branches. Example

Let us consider the following signal flow graph to identify these nodes.

The nodes present in this signal flow graph are Yy, Yo ¥ 00d va,
-y and ¥q are the input node and output nede respectvely,

Ve AN ye are miked nodes.
Branch

Branch is a line segment which joins two nodes. It has both gain and direction. For example,
there are four branches in the above signal flow graph. These branches have gains of a, b, ¢
and -d.

Construction of Signal Flow Graph

Let us construct a signal flow graph by considering the following algebraic equations -
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Y2 = a1al1 + Q42
Ya = az3ya + asalYs
Y4 = Q34Ys
Y5 = a45Ys + A3cY3
Ys = Asels

There will be six nodes (v, va, ¥3, ¥4, ¥g and vg) and eight branches in this
signal low graph. The gains of the branches are aq5, as3, 834, 845, a5g, 842, 953

and asc.

To get the overall signal flow graph, draw the signal flow graph for each
equation, then combine all these signal flow graphs and then follow the steps
given below —

Step 1 — Signal flow graph for ys = a1ay; +ag9yy is shown in the following
figure.
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Y1 ¥z ¥3 ¥Ya Y5 Ve

Step 4 — Zigral Tow araph Tor ys — agsys — assye is shown in the folowing

figure,

PET

Y1 Yz Y3 Y4 ¥s Ye

Step 5 — Signal flow graph for 4s = agplts is shown in the following figure,

54

° . . . e

¥Yi Y2 ¥s3 ¥a ¥s Yea

Sten 6 — Sianal flow arank of oversll swetem is shown n the following fioure,
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Conversion of Block Diagrams into Signal Flow Graphs

Follow these steps for converting a block diagram into its equivalent signal flow graph.

+ Represent all the signals, variables, summing points and take-off points of block diagram as

nodes in signal flow graph.
« Represent the blocks of block diagram as branches in signal flow graph.

« Represent the transfer functions inside the blocks of block diagram as gains of the branches in

signal flow graph.

« Connect the nodes as per the block diagram. If there is connection between two nodes (but
there is no block in between), then represent the gain of the branch as one. For example,
between summing points, between summing point and takeoff point, between input and

summing point, between take-off point and output.

Example

Let us convert the following block diagram into its equivalent signal flow graph.
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Represent the input signal R(s) and output signal C(s) of block diagram as input node R(s) and

output node C(s) of signal flow graph.

Just for reference, the remaining nodes (yi1 to ys) are labeled in the block diagram. There are
nine nodes other than input and output nodes. That is four nodes for four summing points,

four nodes for four take-off points and one node for the variable between blocks Giand G,.

The following figure shows the equivalent signal flow graph.
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Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in a signal flow
graph. The gain between the input and the output nodes of a signal flow graph is nothing but the

transfer function of the system. It can be calculated by using Mason’s gain formula.

Mason’s gain formula is

_C(s) _ ZE,PA

=R — A

Where,
« C(s) is the output node
« R(s) is the input node
-+ T is the transfer function or gain between R(s) and C(s)
« pi is the ith forward path gain

A=1-(sum of all individual loop gains) +(sum of gain products of all possible two
nontouching loops)-(sum of gain products of all possible three nontouching loops) +....

A\ is obtained from A by removing the loops which are touching the it forward path.

Consider the following signal flow graph in order to understand the basic terminology involved

here.
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Loop
The path that starts from one node and ends at the same node is known as a loop. Hence, it is

a closed path.
FERIMPIAG — fn =W b g AN R — i —F e
It 5 antained by celdenrn the paoduct of dl. wawh peins of @ bep.
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Calculation of Transfer Function using Mason’s Gain Formula

Let us consider the same signal flow graph for finding transfer function.
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Number of forward paths, N = 2.

First forward path is - y1—y2—Yy3—y4—Yy5—Ye.

First forward path gain, pi=abcde

Second forward path is - Y1 —>y2—y3—y5—Y6

Second forward path gain, p2=abge O Number of individual loops, L = 5.
Lacps Ak - ja—bigs e BB BRI R
e = @r — g Al e — g

Loop gang arz: - & — &, b — ab b —add S odiono iy — f

Number of two non-touching loops = 2.

First non-touching loops pair is - y2—Yy3—Yy2, y4—Yy5—Yy4.
Gain product of first non-touching loops pair 1'1*=bjdi
Second non-touching loops pair is - y2—Yy3—Yy2, y5—Ys5.

Gain product of second non-touching loops pair is 1'1°=bjf

Higher number of (more than two) non-touching loops are not present in this signal flow graph.We

know,
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Mumber of forward paths, B i
B Eoat forsrartd patiiis - g —F Y3 - T R B — Be —F B
o Frsh forwisnd path gain, gy = efeds
R T e R e R R I L TR
= Suchnd forward path ga = chee.

e ddumnbaer of Pallvilosd oope, L= 5,

itd

Lonps Are - F B W 38 Us Y Ise B 0 Da b ¥,
Ys = Y5 — Ys and Yy — Ys.
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Therefore, the transfer function is -

(abede) + (abge)

i == ij+3"ﬁﬁ

C(s)
~ 1— (bj 4+ gh +cdh +di + f) + bjdi +bjf
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Example-1: Determine the transfer function C(s)/R(s).

G4 1 C(s)

PA
T(s)= z Kk
A

o [=GGGG, A;=1 TherewznoP, or A, or more.

o Y L=-GGH+GGH,-GGH,

e Y 1,=-GGGGHH,

.A:LZQ+EQ:H@@ﬁ—%@%+@@HﬁQ%Q®ﬁH2
P GG,GG,

iT(S)Z;‘l: _— - < - e
A 14GGH -GGH,+GG,H,+GGGGHH,
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Example-2: Determine the transfer function C(s)/R(s).

is g 4
M =GOGGLGEE b =1
M =G b =[G d -G H -GOGGE -G GGH [+ G AGH,

=1+GH +6.H +66G6H+66GH +EHGH
h=l-|-G 8 -GH -GGEEH -6G6H -G ]
+ GHGH, +GHGH +GHGH 16,06 66,8 46 HGG6GH |
-G HGHGH
Del4G H +GH, +G.GGG H 16 6GH, +GA
HERGH +GHGH +GHGH, +GHOGGH +GAGHGRH,
Ho .G .,

TW_EM_EQ+M¢_ﬁiﬁﬁﬁ&&ﬁ+ﬁ&ﬁﬂ+&ﬁ+ﬁm+ﬁﬁ&@ﬂ+ﬁﬁﬁ&+ﬁﬁﬁﬂ|
T i
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Example-3: Determine the transfer function C(s)/R(s).

1 :
— - — —

[ k 7 4 = 1 " _.-""IEI::‘-H“'\ :_-_- 3 e " i
- 5 = i ™ - * = 5 T
TR i
e e S - i

i I .

M= GG GG, A=l

M= A, —1
M, - GG, A, —11G,
M, =-1 A, =146,
M, = GG Ay=1

Rt G G GGG L GiGy = LGy Gy 6 G g Gy o G

C R G GG G — (DR F G = GGG

a)
M = =G = G G G LG
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UNIT-II

TIME RESPONSE ANALYSIS

We can analyze the response of the control systems in both the time domain and the
frequency domain. We will discuss frequency response analysis of control systems in later

chapters. Let us now discuss about the time response analysis of control systems.

What is Time Response?

If the output of control system for an input varies with respect to time, then it is called the time

response of the control system. The time response consists of two parts.

« Transient response
+ Steady state response

The response of control system in time domain is shown in the following figure.
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g
0 < - > t

Transient Steady
State state

Here, both the transient and the steady states are indicated in the figure, The

responses corresponding to these states are known as transient and steady
state responses,

Mathematically, we can write the time response c(t) as
c(t) = e (t) + css(t)

Where,

+  Cir(t) is the transient response
+  Cs(t) is the steady state response

Transient Response

After applying input to the control system, output takes certain time to reach steady state.
So, the output will be in transient state till it goes to a steady state. Therefore, the response

of the control system during the transient state is known as transient response.

The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is infinity and

practically, it is five times constant.

Mathematically, we can write it as
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Hm i [f) =10

t—00

Steady state Response

The part of the time response that remains even after the transient response has zero value
for large values of ‘t’ is known as steady state response. This means, the transient response
will be zero even during the steady state.

Example

Let us find the transient and steady state terms of the time response
T R |
e = i - Fe of the control system

5e~t
Here, the second term

will be zero as t denotes infinity. So, this is the transient term. And
the first term 10 remains even as t approaches infinity. So, this is the steady state term.

Standard Test Signals
The standard test signals are impulse, step, ramp and parabolic. These signals are used to know
the performance of the control systems using time response of the output.

Unit Impulse Signal
A unit impulse signal, §(t) is defined as
dit) =0 fort £ 0
M+,
=Tal f[l[l_ dit)dt = 1

The folowing Fgure shows wnicimoulze signal.

&(t) 4
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So, the unit impulse signal exists only at‘t’ is equal to zero. The area of this signal under small
interval of time around‘t’ is equal to zero is one. The value of unit impulse signal is zero for

all other values of‘t’.
Unit Step Signal
A unit step signal, u(t) is defined as
$5E = Nk 2o
= ﬁ;t <

Following figure shows unit step signal.

i}
r N

i

So, the unit step signal exists for all positive values of‘t” including zero. And its value is one during
this interval. The value of the unit step signal is zero for all negative values of‘t’.

Unit Ramp Signal
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A unit ramp signal, r (t) is defined as

=« 0
e caEnn wite unf rarep sigral, o8 in e of urt soep signal, wiT) as
T(t) = tult)

Folowing figure show s urit ramp signal.

r(t)
A

>
0 t

So, the unit ramp signal exists for all positive values oft’” including zero. And its value
increases linearly with respect tot’ during this interval. The value of unit ramp signal is zero for

all negative values of‘t’.

Unit Parabolic Signal

A unit parabolic signal, p(t) is defined as,

. gt
zith = . el

=iy o 0
We can write unit parabolic signal, p(t) in terms of the unit step signal, w(t) as,

2
plt) = Su(t)

The following figure shows the unit parabolic signal.
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p(t)

-

0 t
So, the unit parabolic signal exists for all the positive values of‘t’ including zero. And its value
increases non-linearly with respect to‘t’ during this interval. The value of the unit parabolic

signal is zero for all the negative values of‘t’.

In this chapter, let us discuss the time response of the first order system. Consider the
following block diagram of the closed loop control system. Here, an open loop transfer

function, 1/sT is connected with a unity negative feedback.



CONTROL SYSTEMS ENGINEERING

R(s) + 1 C(s)
sT
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Impulse Response of First Order System

Consider the unit impulse signal as an input to the first order system.
So, r(t)=6(t)

Apply Laplace transform on both the sides. R(s)

=1

- _r=_ " . . P j— I' i f’ h |
CEaE e T pyusben, (et = iﬂ;fi ) Fi#

Subsiioe, F20t = L Fre slove Biumda,

-F

N T U
Ly = ’g.,_ﬂ‘-!-_l. ! =5

Rearrange the above equation in one of the standard forms of Laplace transforms.
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The unit impulse response is shown in the following figure.

c(t)

1
Y

The unit impulse response, c(t) is an exponential decaying signal for positive values of ‘t’ and

it is zero for negative values of ‘t’.

Step Response of First Order System

Consider the unit step signal as an input to first order system.

So, r(t)=u(t)
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O |
Blay= .

- . , R r 4 'k -
Corsider the squation, &) = | gy | 868
Substicute, #ile] = 2 ¥ithe s wguaticn,

AT T T
Gid) = E—m-, A T fiT 411

&

= 1 _.ﬁliﬂ-"&':.} -~ 2
S VTV |

On both the sides, the denominator term is the same. So, they will get cancelled by each other.

Hence, equate the numerator terms.
1=A(sT+1)+Bs
By equating the constant terms on both the sides, you will get A =1.

Substitute, A = 1 and equate the coefficient of the s terms on both the sides.

0=T+B
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Substitute, A =1 and B = -T in partial fraction expansion of C(s)
ﬁfi};}:i._:—_:_ I
' e 41 o« ff'!';_rl_%j

11

Apply inverse Laplace transform on both the sides.
: ety
gii = (1 i) (£
Ed

The unit step response, c(t) has both the transient and the steady state terms.
The transient term in the unit step response is -

: g, T
oy fE) = a—-{:_i ¥ aaft )

The steadyv state term in the unit step response is —
ces(t) = 2e(t)

The following figure shows the unit step response

c(t)
&~

¥ Dacamanses

Y

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It is

gradually increasing from zero value and finally reaches to one in steady state. So, the steady
state value depends on the magnitude of the input.

Ramp Response of First Order System
Consider the unit ramp signal as an input to the first order system.

So, r(t)=t u(t)

Apply Laplace transform on both the sides.
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On both the sides, the denominator term is the same. So, they will get cancelled by each other.

Hence, equate the numerator terms.

L= &{pF 4 15 b BafaT 4 1 "

By equating the constant terms on both the sides, you will get A =1.
Substitute, A = 1 and equate the coefficient of the s terms on both the sides.
O0=T+B=B=-T

Similarly, substitute B = -T and equate the coefficient of s? terms on both the sides. You will get
C=T2

Substitute A =1, B = -T and C=T?in the partial fraction expansion of C(s).

fFfWHqLHE+_r—h -—-l.—.E '—if?:; )
N L LR R TS
. L T
-gntffg.;‘i-—a R i
e 3 o

Apply inverse Laplace transform on both the sides.
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D O TS S
o = [t-FomeH gy
1

The unit ramp response, c(t) has both the transient and the steady state terms. The

transient term in the unit ramp response is

eor(®) = Te (Fu(t)

The steady state term in the unit ramp response is —
cos(t) = (t — T)u(t)

The figure below is the unit ramp response:

The unit ramp response, c(t) follows the unit ramp input signal for all positive values of t. But,

there is a deviation of T units from the input signal.

Parabolic Response of First Order System

Consider the unit parabolic signal as an input to the first order system.
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Apply inverse Laplace transform on both the sides.

i =

;-*”Iu?

% o b e if*%—:'?:%jj wf¥)

The unit parabolic response, c(t) has both the transient and the steady state terms. The

transient term in the unit parabolic response is

Cun(t) = —T% (F)ugt)

The steady state term in the unit parabolic response is

-

B

- - i“:h
;kA— CTE T |t
a F

81, {3

: B

(]
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From these responses, we can conclude that the first order control systems are not stable
with the ramp and parabolic inputs because these responses go on increasing even at infinite
amount of time. The first order control systems are stable with impulse and step inputs
because these responses have bounded output. But, the impulse response doesn’t have
steady state term. So, the step signal is widely used in the time domain for analyzing the

control systems from their responses.

In this chapter, let us discuss the time response of second order system. Consider the
following block diagram of closed loop control system. Here, an open loop transfer function,

wn?/ s(s+26wn) is connected with a unity negative feedback.

R(s) + o2 C(s)
s(s+ 20w, )

We know that the transfer function of the closed loop control system having
unity negative feedback as

C'(s) G(s)

R(s) 14+G(s)

Bubatinte 645 = -iﬁm 1 s i wmsaiion,

£}

m—’ M = p % % = ﬁ - % - $

. ﬁ & £ el b u:_";,;,l !
k)

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the
second order and the system is said to be the second order system.
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The characteristic equation is -

g 3 n nld — 1
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+ The two roots are imaginary when 6 = 0.
+ The two roots are real and equal when § = 1.

+ The two roots are real but not equal when § > 1.
+ The two roots are complex conjugate when 0 < 6 < 1.

We can write C(s) equation as,

7 e % s

CHe = i
e = | — - $a
L E o SEiaw ol F

Where,

- C(s) is the Laplace transform of the output signal, c(t)
« R(s) is the Laplace transform of the input signal, r(t)

+ n is the natural frequency

- O is the damping ratio.

Follow these steps to get the response (output) of the second order system in the time domain.
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Step Response of Second Order System

Consider the unit step signal as an input to the second order system.Laplace transform of the

unit step signal is,
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So, the unit step response of the second order system is having damped oscillations (decreasing

amplitude) when ‘6’ lies between zero and one.

Case4:6>1
We can modify the denominator term of the transfer function as follows -
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Since it is over damped, the unit step response of the second order system when & > 1 will never
reach step input in the steady state.

Impulse Response of Second Orde r System

The impulse response of the second order system can be obtained by using any one of these two

methods.

+ Follow the procedure involved while deriving step response by considering the value of
R(s) as 1 instead of 1/s.
+ Do the differentiation of the step response.

The following table shows the impulse response of the second order system for 4 cases of the

damping ratio.
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In this chapter, let us discuss the time domain specifications of the second order system. The
step response of the second order system for the underdamped case is shown in the

following figure.

c(t)
r

! M
L0 i T W
______________ e s e D Sl i el
0.95 ! %\K‘_r’,f;

i
i
0.5 f---------- §

>
0 ta t, tp is t

All the time domain specifications are represented in this figure. The response up to the
settling time is known as transient response and the response after the settling time is known

as Steady state response.
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Delay Time
It is the time required for the response to reach half of its final value from the zero instant.

It is denoted by tdtd.

Consider the step response of the second order system for t > 0, when ‘¢’ lies between zero and

one.
S e T
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Rise Time

It is the time required for the response to rise from 0% to 100% of its final value. This is
applicable for the under-damped systems. For the over-damped systems, consider the

duration from 10% to 90% of the final value. Rise time is denoted by t..
Att=t1=0, c(t) =

We know that the final value of the step response is one. Therefore, at t=t2, the value of step response

is one. Substitute, these values in the following equation.
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From above equation, we can conclude that the rise time tr and the damped frequency wgq are inversely

LH.. {"h' —

proportional to each other.

Peak Time

It is the time required for the response to reach the peak value for the first time. It is denoted

by tp. At t=t, the first derivate of the response is zero.

We know the step response of second order system for under-damped case is
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From the above equation, we can conclude that the peak time tpand the damped

frequency wq are inversely proportional to each other.

Peak Overshoot
Peak overshoot My is defined as the deviation of the response at peak time from the final value of

response. It is also called the maximum overshoot.

Mathematically, we can write it as
Mp=c(tp) - c(0)

Where,c(tp) is the peak value of the response, c(e) is the final (steady state) value of the response.

At t=tp, the response c(t) is -
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From the above equation, we can conclude that the percentage of peak overshoot %Mp will decrease

if the damping ratio 6 increases.

Settling time
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It is the time required for the response to reach the steady state and stay within the specified
tolerance bands around the final value. In general, the tolerance bands are 2% and 5%. The
settling time is denoted by ts.

The settling time for 5% tolerance band is —

-
fp = —— T
i,
The settling time for 2% tolerance band is —
- 2
£, = = g
) .Eﬁ“.ﬂ-,q

Where, T is the time constant and is equal to 1/6wn.
« Both the settling time ts and the time constant t are inversely proportional to the

damping ratio 6.
+ Both the settling time ts and the time constant t are independent of the system gain.

That means even the system gain changes, the settling time ts and time constant t will

never change.

Example

Let us now find the time domain specifications of a control system having the closed loop
transfer function when the unit step signal is applied as an input to this control system. We
know that the standard form of the transfer function of the second order closed loop control

system as

1%
P 1 . )

By equating these two transfer functions, we will get the un-damped natural frequency wn as 2 rad/sec

and the damping ratio 6 as 0.5.

We know the formula for damped frequency wqas
A
=ty 4’1 — &

Wy = rnhﬁy.‘l_:—_z'iﬁ
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Substitute the above necessary values in the formula of each time domain specification and simplify

in order to get the values of time domain specifications for given transfer function.

The following table shows the formulae of time domain specifications, substitution of necessary values

and the final values
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The deviation of the output of control system from desired response during steady state is

known as steady state error. It is represented as €ss. We can find steady state error using the

final value theorem as follows.

Where,

E(s) is the Laplace transform of the error signal, e(t)

Let us discuss how to find steady state errors for unity feedback and non-unity feedback control

systems one by one.

Steady State Errors for Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having unity negative
feedback.

R(s) + G(s) T C(sl

Where,

a R(s) is the Laplace transform of the reference Input signal r(t)

2 C(s) is the Laplace transform of the output signal ¢(t)

We know the transfer function of the unity negative feedback doszed loop
control system as

C'(s) B G(s)

R(s) 14+G(s)
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The following table shows the steady state errors and the error constants for standard input signals

like unit step, unit ramp & unit parabolic signals.

InpLt sigral BrEIdY SN SV &, BT COmSrani
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Where, Kp, Kv and Ka are position error constant, velocity error constant and acceleration error
constant respectively.

Note - If any of the above input signals has the amplitude other than unity, then multiply
corresponding steady state error with that amplitude.
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Note - We can’t define the steady state error for the unit impulse signal because, it exists

only at origin. So, we can’t compare the impulse response with the unit impulse input as t
denotes infinity

Evkries
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We will get the overall steady state error, by adding the above three steady state errors.
€ss = Ess1+Ess2+Ess3
=es=0+0+1=1me;s=0+0+1=1
Therefore, we got the steady state error es as 1 for this example.
Steady State Errors for Non-Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having non unity negative
feedback.
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R(s) + C(s)

H(s) p—

We can find the steady state errors only for the unity feedback systems. So, we have to
convert the non-unity feedback system into unity feedback system. For this, include one unity

positive feedback path and one unity negative feedback path in the above block diagram. The
new block diagram looks like as shown below.

C(s)
G(s) L e

H(s) [«

Simplify the above block diagram by keeping the unity negative feedback as it is. The following is the
simplified block diagram
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R(s) + G(s) C(s)
|1+ GeHG) — 6(5) r—

This block diagram resembles the block diagram of the unity negative feedback closed loop
control system. Here, the single block is having the transfer function G(s) / [ 1+G(s)H(s)-G(s)]
instead of G(s).You can now calculate the steady state errors by using steady state error

formula given for the unity negative feedback systems.

Note - It is meaningless to find the steady state errors for unstable closed loop systems. So,
we have to calculate the steady state errors only for closed loop stable systems. This means
we need to check whether the control system is stable or not before finding the steady state

errors. In the next chapter, we will discuss the concepts-related stability.

The various types of controllers are used to improve the performance of control systems. In
this chapter, we will discuss the basic controllers such as the proportional, the derivative and

the integral controllers.

Proportional Controller

The proportional controller produces an output, which is proportional to error signal.
wlf)  if]
= wii) = & pafi]
2rpy LAslaie treraiETn a0 el the sidse -
Gis} — Ko Bis)

L)
B

Therefore, the transfer function of the proportional controller is KPKP. Where,

oy
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U(s) is the Laplace transform of the actuating signal u(t)
E(s) is the Laplace transform of the error signal e(t)
Kp is the proportionality constant

The block diagram of the unity negative feedback closed loop control system along with the

proportional controller is shown in the following figure.

R(s) + E(s)

U(s) C(s)
—| G(s) >

[

Derivative Controller

i

The derivative controller produces an output, which is derivative of the error signal.

aie]

2 3pks Lapl=re rersiornm an both ardes,
TTimt = MppeWia)

g

Ay

Fpw

Therefore, the transfer function of the derivative controller is Kps.

Where, KD is the derivative constant.

The block diagram of the unity negative feedback closed loop control system along with the derivative
controller is shown in the following figure.
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E(s) U(s)
R(s) + 5 o s G(S}l C(s)

The derivative controller is used to make the unstable control system into a stable one.

Integral Controller

The integral controller produces an output, which is integral of the error signal.
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Where, KIKI is the integral constant.
The block diagram of the unity negative feedback closed loop control system along with the integral

controller is shown in the following figure.

E U
R(s) + (s) i (s) o .C[si

The integral controller is used to decrease the steady state error.
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Let us now discuss about the combination of basic controllers.

Proportional Derivative (PD) Controller

The proportional derivative controller produces an output, which is the combination of the outputs

of proportional and derivative controllers.

Anphe Laclace ransfaem a0 hotn gides -

st = {#p + KT TF

Therefore, the transfer function of the proportional derivative controller is Kp+Kps. The
block diagram of the unity negative feedback closed loop control system along with the

proportional derivative controller is shown in the following figure.

U
R(s) + E(s) i (s) p— C(s)

The proportional derivative controller is used to improve the stability of control system without

affecting the steady state error.

Proportional Integral (Pl) Controller

The proportional integral controller produces an output, which is the combination of outputs

of the proportional and integral controllers.
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u(t) = Kpe(t) + K; / e(t)dt
Apply Laplace transform on both sides -

U(s) = (KP £ ﬁ) E(s)

5

Uls) _ K
E(s) B

Therefore, the transfer function of proportional integral controller is Kp +

E;

o
The block diagram of the unity negative feedback closed loop control system along with the

proportional integral controller is shown in the following figure.

R(s) +< E(s) x, | Y(s) C(s)
Kp = —| G(S) 8 >

The proportional integral controller is used to decrease the steady state error without affecting the
stability of the control system.
Proportional | ntegral Derivative (PID) Controller

The proportional integral derivative controller produces an output, which is the combination of

the outputs of proportional, integral and derivative controllers.
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The block diagram of the unity negative feedback closed loop control system along with the

proportional integral derivative controller is shown in the following figure.

E(s) u(s) C(s)

R(s) + ;
(s) Kp+ +Kps [—»| G(s)

q-:’qﬂ'-: —

UNIT - 11l
STABILITY ANALYSIS IN S-DOMAIN

Stability is an important concept. In this chapter, let us discuss the stability of system and types

of systems based on stability.

What is Stability?

A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable.

A stable system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.
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This is the response of first order control system for unit step input. This response has the
values between 0 and 1. So, it is bounded output. We know that the unit step signal has the
value of one for all positive values of t including zero. So, it is bounded input. Therefore, the

first order control system is stable since both the input and the output are bounded.

Types of Systems based on Stability

We can classify the systems based on stability as follows.

+ Absolutely stable system
+ Conditionally stable system

« Marginally stable system
Absolutely Stable System

If the system is stable for all the range of system component values, then it is known as the
absolutely stable system. The open loop control system is absolutely stable if all the poles of
the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed loop
control system is absolutely stable if all the poles of the closed loop transfer function present
in the left half of the ‘s’ plane.

Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known as

conditionally stable system.

Marginally Stable System
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If the system is stable by producing an output signal with constant amplitude and constant
frequency of oscillations for bounded input, then it is known as marginally stable system.
The open loop control system is marginally stable if any two poles of the open loop transfer
function is present on the imaginary axis. Similarly, the closed loop control system is
marginally stable if any two poles of the closed loop transfer function is present on the
imaginary axis. In this chapter, let us discuss the stability analysis in the ‘s’ domain using the
Routh-Hurwitz stability criterion. In this criterion, we require the characteristic equation to

find the stability of the closed loop control systems.

Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient
condition for stability. If any control system doesn’t satisfy the necessary condition, then we
can say that the control system is unstable. But, if the control system satisfies the necessary
condition, then it may or may not be stable. So, the sufficient condition is helpful for knowing

whether the control system is stable or not.

Necessary Condition for Routh-Hurwitz Stability

The necessary condition is that the coefficients of the characteristic polynomial should be
positive. This implies that all the roots of the characteristic equation should have negative

real parts.

Consider the characteristic equation of the order ‘n’ is -
e T - [T - Ly . 8_ =
GpE age + Sy Ty B - =

Note that, there should not be any term missing in the n* order characteristic equation. This
means that the nt order characteristic equation should not have any coefficient that is of

zero value.

Sufficient Condition for Routh-Hurwitz Stability

The sufficient condition is that all the elements of the first column of the Routh array should
have the same sign. This means that all the elements of the first column of the Routh array

should be either positive or negative.

Routh Array Method
If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the

control system is stable. If at least one root of the characteristic equation exists to the right
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half of the ‘s’ plane, then the control system is unstable. So, we have to find the roots of the
characteristic equation to know whether the control system is stable or unstable. But, it is

difficult to find the roots of the characteristic equation as order increases.

So, to overcome this problem there we have the Routh array method. In this method, there
is no need to calculate the roots of the characteristic equation. First formulate the Routh
table and find the number of the sign changes in the first column of the Routh table. The
number of sign changes in the first column of the Routh table gives the number of roots of
characteristic equation that exist in the right half of the ‘s’ plane and the control system is

unstable.
Follow this procedure for forming the Routh table.

« Fill the first two rows of the Routh array with the coefficients of the characteristic
polynomial as mentioned in the table below. Start with the coefficient of sn and

continue up to the coefficient of s0.

 Fillthe remaining rows of the Routh array with the elements as mentioned in the table

below. Continue this process till you get the first column element of row s0s0 is an.

Here, an is the coefficient of sO in the characteristic polynomial.
Note - If any row elements of the Routh table have some common factor, then you can divide the

row elements with that factor for the simplification will be easy.

The following table shows the Routh array of the n*" order characteristic polynomial.
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Example:

Let us find the stability of the control system having characteristic equation,

25 W et e T —

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the characteristic polynomial,
%o B gL )
h +E R B are positive. So, the control system satisfies the necessary
condition.

Step 2 - Form the Routh array for the given characteristic polynomial.
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Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.

All the elements of the first column of the Routh array are positive. There is no sign change in

the first column of the Routh array. So, the control system is stable.

Special Cases of Routh Array

We may come across two types of situations, while forming the Routh table. It is difficult to complete

the Routh table from these two situations.

The two special cases are -

+ The first element of any row of the Routh’s array is zero.
+ All the elements of any row of the Routh’s array are zero.

Let us now discuss how to overcome the difficulty in these two cases, one by one.

First Element of any row of the Routh’s array is zero

If any row of the Routh’s array contains only the first element as zero and at least one of the
remaining elements have non-zero value, then replace the first element with a small positive
integer,= . And then continue the process of completing the Routh’s table. Now, find the
number of sign changes in the first column of the Routh’s table by substituting =x tends to

zZero.
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Example
Let us find the stability of the control system having characteristic equation,

s 1 LB l=0

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability. All

the coefficients of the characteristic polynomial,

PrarrftrietL=6
are positive. So, the control system satisfied the

necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.

5 1 ! '
$3 a4 21

i ORI, e A

51

50

The row s3 elements have 2 as the common factor. So, all these elements are divided by 2. Special
case (i) - Only the first element of row s? is zero. So, replace it by ¢z and continue the process of
completing the Routh table.
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Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.
Ass tends to zero, the Routh table becomes like this.

& d 1 1
o i i

A [ i

'8 Ty

o ]

There are two sign changes in the first column of Routh table. Hence, the control system is unstable.

All the Elements of any row of the Routh’s array are zero

In this case, follow these two steps -
+ Write the auxilary equation, A(s) of the row, which is just above the row of zeros.

« Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with these

coefficients.
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Example

Let us find the stability of the control system having characteristic equation,
g 48 e + 2 r b2 =0

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the given characteristic polynomial are positive. So, the control system satisfied

the necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.
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Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.
There are two sign changes in the first column of Routh table. Hence, the control system is unstable.

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in on
left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary axis. So, we
can’t find the nature of the control system. To overcome this limitation, there is a technique

known as the root locus.

Root locus Technique

In the root locus diagram, we can observe the path of the closed loop poles. Hence, we can
identify the nature of the control system. In this technique, we will use an open loop transfer

function to know the stability of the closed loop control system.

Basics of Root Locus
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The Root locus is the locus of the roots of the characteristic equation by varying system gain K

from zero to infinity.
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If K =0, then D(s) = 0.
That means, the closed loop poles are equal to open loop poles when K is zero,
Case 2 —~K=w
Re-write the above characteristic equation as

o333

K ' D(s)

Substitute, K = oo in the above equation.

1 N __ N

ot De) ~ "7 Dy — 0T NE=0

If K = oo, then N(s) = 0. It means the cdosed loop poles are equal to the open
loop zeros when K is infinity,
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From above two cases, we can conclude that the root locus branches start at open loop poles
and end at open loop zeros.

Angle Condition and Magnitude Condition

The points on the root locus branches satisfy the angle condition. So, the angle condition is
used to know whether the point exist on root locus branch or not. We can find the value of K
for the points on the root locus branches by using magnitude condition. So, we can use the
magnitude condition for the points, and this satisfies the angle condition.

Characteristic equation of closed loop control system is

L et SFCa] BN e == QO
= AR (o] = =l e O
The plarsa srogie oF fode T F e b
T
e ) B Lo = damaF {& 1."} — AR b Lrr

The angle condition is the point at which the angle of the open loop transfer function is an odd
multiple of 180°.

Magnitude of G(s)H(s)G(s)H(s) is —
RGN = T 3T E n

The magnitude condition is that the point (which satisfied the angle condition) at which the magnitude
of the open loop transfers function is one.

The root locus is a graphical representation in s-domain and it is symmetrical about the real
axis. Because the open loop poles and zeros exist in the s-domain having the values either as

real or as complex conjugate pairs. In this chapter, let us discuss how to construct (draw) the
root locus.

Rules for Construction of Root Locus

Follow these rules for constructing a root locus.

Rule 1 - Locate the open loop poles and zeros in the’s’ plane.
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Rule 2 - Find the number of root locus branches.

We know that the root locus branches start at the open loop poles and end at open loop
zeros. So, the number of root locus branches N is equal to the number of finite open loop
poles P or the number of finite open loop zeros Z, whichever is greater.

Mathematically, we can write the number of root locus branches N as

N=P if P>Z
N=Z if P<Z

Rule 3 - Identify and draw the real axis root locus branches.

If the angle of the open loop transfer function at a point is an odd multiple of 180°, then that
point is on the root locus. If odd number of the open loop poles and zeros exist to the left
side of a point on the real axis, then that point is on the root locus branch. Therefore, the

branch of points which satisfies this condition is the real axis of the root locus branch.
Rule 4 - Find the centroid and the angle of asymptotes.

« If P=Z, then all the root locus branches start at finite open loop poles and end at finite

open loop zeros.

« If P>Z, then Z number of root locus branches start at finite open loop poles and end at
finite open loop zeros and P-Z number of root locus branches start at finite open loop

poles and end at infinite open loop zeros.

« If P<Z, then P number of root locus branches start at finite open loop poles and end at
finite open loop zeros and Z-P number of root locus branches start at infinite open loop

poles and end at finite open loop zeros.

So, some of the root locus branches approach infinity, when P#Z. Asymptotes give the
direction of these root locus branches. The intersection point of asymptotes on the real axis

is known as centroid.

We can calculate the centroid a by using this formula,
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Rule 5 - Find the intersection points of root locus branches with an imaginary axis.
We can calculate the point at which the root locus branch intersects the imaginary axis and the

value of K at that point by using the Routh array method and special case (ii).

« Ifall elements of any row of the Routh array are zero, then the root locus branch intersects

the imaginary axis and vice-versa.

+ Identify the row in such a way that if we make the first element as zero, then the elements

of the entire row are zero. Find the value of K for this combination.

« Substitute this K value in the auxiliary equation. You will get the intersection point of the

root locus branch with an imaginary axis.
Rule 6 - Find Break-away and Break-in points.

« If there exists a real axis root locus branch between two open loop poles, then there will

be a break-away point in between these two open loop poles.

« If there exists a real axis root locus branch between two open loop zeros, then there will

be a break-in point in between these two open loop zeros.
Note - Break-away and break-in points exist only on the real axis root locus branches.
Follow these steps to find break-away and break-in points.

+  Write Kin terms of s from the characteristic equation 1+G(s)H(s)=0.

+ Differentiate K with respect to s and make it equal to zero. Substitute these values of ss

in the above equation.

« The values of ss for which the K value is positive are the break points.
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Rule 7 - Find the angle of departure and the angle of arrival.

The Angle of departure and the angle of arrival can be calculated at complex conjugate open loop

poles and complex conjugate open loop zeros respectively.
The formula for the angle of departure i iz
SR ,
@ — 180° — @
The formula for the angle of arrival 4, i=
P, = 180" + ¢
Yithare,

-:'*=Z.-;3'P = Zfﬁ‘s

Example
Let us now draw the root locus of the control system having open loop transfer
SRR =

PR T grrigeda)

Step 1 - The given open loop transfer function has three polesat s=0, s=-1,s=-5. [t doesn’t

function,

have any zero. Therefore, the number of root locus branches is equal to the number of poles
of the open loop transfer function.

N=P=3
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Root Locus Branch Root Locus Branch
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Not a Root Locus Branch

The three poles are located are shown in the above figure. The line segment between s=-1,
and s=0 is one branch of root locus on real axis. And the other branch of the root locus on the

real axis is the line segment to the left of s=-5.

Step 2 - We will get the values of the centroid and the angle of asymptotes by using the given

formulae.

Centroid

# A, 180 and 3E0°,

The angle of asymptotes are

The centroid and three asymptotes are shown in the following figure.
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Step 3 - Since two asymptotes have the angles of 600600 and 30003000, two root locus

branches intersect the imaginary axis. By using the Routh array method and special case(ii),

the root locus branches intersects the imaginary axis at and

There will be one break-away point on the real axis root locus branch between the poles s
=-1 and s=0. By following the procedure given for the calculation of break-away point, we

will get it as s =-0.473.

The root locus diagram for the given control system is shown in the following figure.

Erramls S @y ; T =
polnt=-0_.473 e IvE

In this way, you can draw the root locus diagram of any control system and observe the movement of

poles of the closed loop transfer function.
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From the root locus diagrams, we can know the range of K values for different types of damping.

Effects of Adding Open Loop Poles and Zeros on Root Locus

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open loop zeros.

+ If we include a pole in the open loop transfer function, then some of root locus
branches will move towards right half of ‘s’ plane. Because of this, the damping ratio
6 decreases. Which implies, damped frequency wd increases and the time domain
specifications like delay time td, rise time tr and peak time tp decrease. But, it effects

the system stability.

+ If we include a zero in the open loop transfer function, then some of root locus
branches will move towards left half of ‘s’ plane. So, it will increase the control system
stability. In this case, the damping ratio 6 increases. Which implies, damped frequency
wd decreases and the time domain specifications like delay time td, rise time tr and

peak time tp increase.

So, based on the requirement, we can include (add) the open loop poles or zeros to the transfer

function.
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Example
P Two poles at—1
GH(g) = Kiz+2) One zero at -2
§ (2] 1 One asymprote at 1807
' Break-mn poini at -3
2 1
B+l p+2
p+4=p+1
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Effects of adding a pole or a zero to the root locus of a second- order system

We discussed how we could change the value of gain K to change the position of the
closed-loop poles. This corresponds to placing a proportional gain, K, in cascade with the
system G(s) and finding the closed-loop poles for different values of gain, K. However,
proportional control is a simple form of control; it does not provide us with zero steady
example, in some control design problems, to produce the performance required in the
design specifications we need to move the poles to some positions on the s-plane, which
may not lie on a root locus defined by the simple proportional gain K. To be able to move
the poles to any position on the s-plane, we need to use a more complicated controller.
For example, we may need to add a zero or a pole to the controller and see how this will
affect the root locus and hence the position of the closed-loop poles. Examples of
controllers with poles or zeros are:

K. Kps+ KE;j
PI control: K(s) = Kp + e W i)
5 s
sT+1
Lag controller: Kls) = 1 {t, oo are controller parameters)
CEST+

Thus, we need to know how the root locus will change if we add a pole or a zero.
To investigate this, we will use a simple example.

Effects of adding a zero on the root locus for a second-order system

Consider the second-order system given by

1
(8) = -
[s+pills+ pa)

p1>0, py>0

The poles are given by s = -pl and s = -p2 and the simple root locus plot for this
system is shown in Figure 13.13(a). When we add a zero at s = -z1 to the controller,
the open-loop transfer function will change to:

Kls+z)

1l5) =-
1ls) (s+pills+pa)’

EI}U
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Figure - Effect of adding a zero to a second-order system root locus.



CONTROL SYSTEMS ENGINEERING

UNIT-IV

FREQUENCY RESPONSE ANALYSIS

What is Frequency Response?

The response of a system can be partitioned into both the transient response and the steady
state response. We can find the transient response by using Fourier integrals. The steady

state response of a system for an input sinusoidal signal is known as the frequency response.

In this chapter, we will focus only on the steady state response.

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it
produces the steady state output, which is also a sinusoidal signal. The input and output

sinusoidal signals have the same frequency, but different amplitudes and phase angles. Let
the input signal be
r(t) = A sin(wpt)
The open loop transfer function will be —
G(s) = G(jw)
We can represent G(jw) in terms of magnitude and phase as shown below,
G(jw) = |Gjw)| LG (jw)
Subsftitute, w = wy in the abowve equation.
Gjwo) = |G (jwo) | LG (jwn)
The output signal is
c(t) = A|G(jwo)| sin(wpt + LG (juwn))

2 The amplitude of the output sinuscidal signal is obtained by multiplving

the amplitude of the input sinusocidal signal and the magnitude of G jw)
at w = wy.

2 The phase of the output sinusoidal signal is obtained by adding the
phase of the input sinuscidal signal and the phase of G(jw) at w = wy .

Where,
+ Aisthe amplitude of the input sinusoidal signal.

« wois angular frequency of the input sinusoidal signal.
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We can write, angular frequency wo as shown below. woe=2nfo
Here, fo is the frequency of the input sinusoidal signal. Similarly, you can follow the same procedure

for closed loop control system.

Frequency Domain Specifications

The frequency domain specifications are
Resonant peak 0 Resonant frequency [ Bandwidth.

Consider the transfer function of the second order closed control system as

C'(s) w2
R(s) 52 4+ 20wys +wi

Substitute, s = jwin the above equation.

(j) =
T(jw) = z
()2 + 26wy, (jw) + w?
) 2
- Wn o W
=gl —? + by, +wh ) (1 ol @)
o2 wh,
) 1
= T'(jw) =

(-5)+(%)

Let, & = 1 Substitute this value in the above equation.

1
(1—u?) + j(20u)

T(jw) =

Magnitude of T'(jw) is -

1
V(1 —u?)? 4 (26u)?

M = |T(ju)| =

Phase of T(jw) is -

/T (jw) = —tan ™t ( 20u )
1— u?
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Resonant Peak

It is the peak (maximum) value of the magnitude of T(jw). It is denoted by M.
At U=Uy, the Magnitude of T(jw) is -

M, = — -
‘U’{l — ud)? + (26u,)?
Substitute, u, = V1 — 262 and 1 — u2 = 242 in the above equation.
M, = -

\/(262)2 + (26v1 — 262)2
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Resonant peak in frequency response corresponds to the peak overshoot in the time domain
transient response for certain values of damping ratio 66. So, the resonant peak and peak

overshoot are correlated to each other.
Bandwidth

Itis the range of frequencies over which, the magnitude of T(jw) drops to 70.7% from its zero frequency
value.

At w=0, the value of u will be zero.

Substitute, u=0 in M.

I
UL P9+ {2

Therefore, the magnitude of T(jw) is one at w=0

S =

2
-

-

At 3-dB freauency. the magnitude of‘T(iui) will be 70.7% of magnitude of T(jw)) at w=0
:.'.E'"‘_ ﬁ*‘H: ";E{ﬂ'w_-_ ME ﬁ.ﬁ?ﬁ:?l_l; = I.l_...'g

-

I 1

=X
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Bandwidth wb in the frequency response is inversely proportional to the rise time tr in the
time domain transient response. Bode plots

The Bode plot or the Bode diagram consists of two plots -

« Magnitude plot

+ Phase plot

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis
represents the magnitude (linear scale) of open loop transfer function in the magnitude plot

and the phase angle (linear scale) of the open loop transfer function in the phase plot. The
magnitude of the open loop transfer function in dB is -

A 20 bop Dips) il 5] |

The phase angle of the open loop transfer function in degrees is -
.@!; = i jli';.-'; ""ji..f'-i
Basic of Bode Plots

The following table shows the slope, magnitude and the phase angle values of the terms present in

the open loop transfer function. This data is useful while drawing the Bode plots
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Consider the open loop transfer function G(s)H(s) = K.
Magnitude M = 20 log K dB

Fhase angle ¢ = 0 degrees

If K = 1, then magnitude is O dB.

If K = 1, then magnitude will be positive.

If K < 1, then magnitude wil be negative,

The following figure shows the corresponding Bode plot,

M (dB)
A
K>1
20log K |---------—=====—mmmmmmm
K =11
.
= log w
PA LI [o1-5 ) S —————
0<K<1
@ (degrees)
&
D<K<ow
0 >
log m

The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line itself
is the magnitude plot when the value of K is one. For the positive values of K, the horizontal
line will shift 20logK dB above the 0 dB line. For the negative values of K, the horizontal line
will shift 20logK dB below the 0 dB line. The Zero degrees line itself is the phase plot for all

the positive values of K.
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Consider the open loop transfer function G(s)H(s)=s
Magnitude M=20logw dB

Phase angleg; =90°

At w=0.1rad/sec, the magnitude is -20 dB.

At w=1rad/sec, the magnitude is 0 dB.

At w=10 rad/sec, the magnitude is 20 dB.
The following figure shows the corresponding Bode plot.

M (dB)
&
20 +
-
0j0.1 1 10 log w
20
¢ (degrees)
A
30
0 g
log w

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started at
w=0.1rad/sec having a magnitude of -20 dB and it continues on the same slope. It is touching

0 dB line at w=1 rad/sec. In this case, the phase plot is 90° line.
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Consider the open loop transfer function G(s)H(s)=1+st.
. - ._-;-'. ] =
Magnitude Eﬂlf— Eﬁ_ﬂaﬁi Fare? o
@ = tan " wr degrees

Phase ane_lie
W4 o
For , the magnitude is 0 dB and phase angle is O degrees.
gd G '\%
For , the magnitude is 20logwt dB and phase angle is 90°.
The following figure shows the corresponding Bode plot
M EdB}
20 -+
>
0 log w
T
¢ (degrees)
F
90
0 -
i 10 jogw
T

The magnitude plot is having magnitude of 0 dB upto w=1tw=1t rad/sec. From w=1t rad/sec,
it is having a slope of 20 dB/dec. In this case, the phase plot is having phase angle of 0 degrees

up to w=1t rad/sec and from here, it is having phase angle of 90°. This Bode plot is called the
asymptotic Bode plot.
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As the magnitude and the phase plots are represented with straight lines, the Exact Bode
plots resemble the asymptotic Bode plots. The only difference is that the Exact Bode plots

will have simple curves instead of straight lines.

Similarly, you can draw the Bode plots for other terms of the open loop transfer function which are

given in the table.

Rules for Construction of Bode Plots

Follow these rules while constructing a Bode plot.

+ Represent the open loop transfer function in the standard time constant form.
+ Substitute, s=jws=jw in the above equation.

+ Find the corner frequencies and arrange them in ascending order.

« Consider the starting frequency of the Bode plot as 1/10t™ of the minimum corner frequency or
0.1 rad/sec whichever is smaller value and draw the Bode plot upto 10 times maximum corner

frequency.
+ Draw the magnitude plots for each term and combine these plots properly.
« Draw the phase plots for each term and combine these plots properly.

Note - The corner frequency is the frequency at which there is a change in the slope of the magnitude

plot.

Example

Consider the open loop transfer function of a closed loop control syste
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Stability Analysis using Bode Plots

From the Bode plots, we can say whether the control system is stable, marginally stable or unstable

based on the values of these parameters.

« Gain cross over frequency and phase cross over frequency
« Gain margin and phase margin
Phase Cross over Frequency

The frequency at which the phase plot is having the phase of -180° is known as phase cross over
frequency. It is denoted by wpc. The unit of phase cross over frequency is rad/sec.

Gain Cross over Frequency

The frequency at which the magnitude plot is having the magnitude of zero dB is known as

gain cross over frequency. It is denoted by wgc. The unit of gain cross over frequency is
rad/sec.

The stability of the control system based on the relation between the phase cross over frequency and

the gain cross over frequency is listed below.

+ If the phase cross over frequency wpc is greater than the gain cross over frequency wgc, then
the control system is stable.
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« If the phase cross over frequency wpc is equal to the gain cross over frequency wgc, then the

control system is marginally stable.

+ Ifthe phase cross over frequency wpcis less than the gain crosses over frequency wgc, then the

control system is unstable.
Gain Margin

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over frequency.

GM=20log(1Mpc)=20logMpc

Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is
dB.

Phase Margin
The formula for phase margin PMPM is
PM=180%+i3gc

Where, i gc is the phase angle at gain cross over frequency. The unit of phase margin is

degrees.

*NOTE:

The stability of the control system based on the relation between gain margin and phase margin is

listed below.
+ If both the gain margin GM and the phase margin PM are positive, then the control system is
stable.

+ If both the gain margin GM and the phase margin PM are equal to zero, then the control

system is marginally stable.

If the gain margin GM and / or the phase margin PM are/is negative, then the control system
is unstable.

Polar plots
Polar plot is a plot which can be drawn between magnitude and phase. Here, the



CONTROL SYSTEMS ENGINEERING

magnitudes are represented by normal values only.

The polar form of G jw] H({ jw) 1=
Gjw)H(jw) = |G juw) H (jw)|£G [ juw) H  juw)

The Polar plot is a plot, which can be drawn between the magninude and the
phaze angle of G{jw] H{jw] by varying w from zero to <2, The polar graph
sheet is shown in the following fgure.
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This graph sheet consists of concentric circles and radial lines. The concentric circles and the
radial lines represent the magnitudes and phase angles respectively. These angles are
represented by positive values in anti-clock wise direction. Similarly, we can represent angles
with negative values in clockwise direction. For example, the angle 270° in anti-clock wise

direction is equal to the angle -90° in clockwise direction.

Rules for Drawing Polar Plots

Follow these rules for plotting the polar plots.

« Substitute, s=jw in the open loop transfer function.
+ Write the expressions for magnitude and the phase of G(jw)H(jw)

+ Find the starting magnitude and the phase of G(jw)H(jw) by substituting w=0. So, the polar
plot starts with this magnitude and the phase angle.
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+ Find the ending magnitude and the phase of G(jw)H(jw) by substituting w=<° So, the polar

plot ends with this magnitude and the phase angle.

+ Check whether the polar plot intersects the real axis, by making the imaginary term of

G(jw)H(jw) equal to zero and find the value(s) of w.

+ Check whether the polar plot intersects the imaginary axis, by making real term of

G(jw)H(jw) equal to zero and find the value(s) of w.

+ For drawing polar plot more clearly, find the magnitude and phase of G(jw)H(jw) by

considering the other value(s) of w.

Example

Consider the open loop transfer function of a closed loop control system.
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So, the polar plot starts at (e2,-90°) and ends at (0,-270°). The first and the second terms within the

brackets indicate the magnitude and phase angle respectively.

Step 3 - Based on the starting and the ending polar co-ordinates, this polar plot will intersect

the negative real axis. The phase angle corresponding to the negative real axis is -180° or
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180°. So, by equating the phase angle of the open loop transfer function to either -180° or
180°, we will get the w value as v2.

By substituting w=v2 in the magnitude of the open loop transfer function, we will get M=0.83.
Therefore, the polar plot intersects the negative real axis when w=vV2 and the polar
coordinate is (0.83,-1800).

So, we can draw the polar plot with the above information on the polar graph sheet.

Nyquist Plots

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop
control systems by varying w from —eo to o. That means, Nyquist plots are used to draw the

complete frequency response of the open loop transfer function.

Nyquist Stability Criterion

The Nyquist stability criterion works on the principle of argument. It states that if there are
P poles and Z zeros are enclosed by the ‘s’ plane closed path, then the corresponding
G(s)H(s)G(s)H(s) plane must encircle the origin P-ZP-Z times. So, we can write the number of
encirclements N as,

N=P-ZN=P-Z

« If the enclosed ‘s’ plane closed path contains only poles, then the direction of the
encirclement in the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the

enclosed closed path in the ‘s’ plane.

« If the enclosed ‘s’ plane closed path contains only zeros, then the direction of the
encirclement in the G(s)H(s)G(s)H(s) plane will be in the same direction as that of the

enclosed closed path in the ‘s’ plane.

Let us now apply the principle of argument to the entire right half of the’s’ plane by selecting

it as a closed path. This selected path is called the Nyquist contour.

We know that the closed loop control system is stable if all the poles of the closed loop
transfer function are in the left half of the’s’ plane. So, the poles of the closed loop transfer
function are nothing but the roots of the characteristic equation. As the order of the
characteristic equation increases, it is difficult to find the roots. So, let us correlate these

roots of the characteristic equation as follows.
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« The Poles of the characteristic equation are same as that of the poles of the open loop

transfer function.

« The zeros of the characteristic equation are same as that of the poles of the closed

loop transfer function.

We know that the open loop control system is stable if there is no open loop pole in the the right

half of the ‘s’ plane.

i.e.,P=0=N=-7ZP=0N=-2Z
We know that the closed loop control system is stable if there is no closed loop pole in the right

half of the ‘s’ plane.

i.e.,Z=0=N=PZ=0==N=P

Nyquist stability criterion states the number of encirclements about the critical point (1+0)
must be equal to the poles of characteristic equation, which is nothing but the poles of the
open loop transfer function in the right half of the ‘s’ plane. The shift in origin to (1+j0) gives

the characteristic equation plane.

Rules for Drawing Nyquist Plots

Follow these rules for plotting the Nyquist plots.

+ Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane.
+ Draw the polar plot by varying w from zero to infinity. If pole or zero present at s = 0, then

varying w from 0+ to infinity for drawing polar plot.

+  Draw the mirror image of above polar plot for values of w ranging from —oo to zero (0~ if any

pole or zero present at s=0).

+ The number of infinite radius half circles will be equal to the number of poles or zeros at
origin. The infinite radius half circle will start at the point where the mirror image of the polar

plot ends. And this infinite radius half circle will end at the point where the polar plot starts.

After drawing the Nyquist plot, we can find the stability of the closed loop control system
using the Nyquist stability criterion. If the critical point (-1+j0) lies outside the encirclement,

then the closed loop control system is absolutely stable.

Stability Analysis using Nyquist Plots
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From the Nyquist plots, we can identify whether the control system is stable, marginally stable or
unstable based on the values of these parameters.

Gain cross over frequency and phase cross over frequency
+ Gain margin and phase margin
Phase Cross over Frequency

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 180°)
is known as the phase cross over frequency. It is denoted by wyc.

Gain Cross over Frequency

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain cross
over frequency. It is denoted by wgc.

The stability of the control system based on the relation between phase cross over frequency
and gain cross over frequency is listed below.

If the phase cross over frequency wpc is greater than the gain cross over frequency wgc, then
the control system is stable.

If the phase cross over frequency wpc is equal to the gain cross over frequency wgc, then the
control system is marginally stable.

If phase cross over frequency wpc is less than gain cross over frequency wgc, then the control
system is unstable.

Gain Margin

The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the phase
cross over frequency.

L
A = —
ET
Where, Mpc is the magnitude in normal scale at the phase cross over frequency.

Phase Margin

The phase margin PM is equal to the sum of 180° and the phase angle at the gain cross over frequency.

PM=1800+ gec

Where, ¢ ¢ is the phase angle at the gain cross over frequency.
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The stability of the control system based on the relation between the gain margin and the phase

margin is listed below.

If the gain margin GM is greater than one and the phase margin PM is positive, then the control

system is stable.

If the gain margin GMs equal to one and the phase margin PM is zero degrees, then the control

system is marginally stable.

If the gain margin GM is less than one and / or the phase margin PM is negative, then the control

system is unstable.

UNIT -V
STATE SPACE ANALYSIS OF CONTINUOUS SYSTEMS

The state space model of Linear Time-Invariant (LTI) system can be represented as,

X'=AX+BU

Y=CX+DU

The first and the second equations are known as state equation and output equation respectively.

Where,

X and X' are the state vector and the differential state vector respectively.
U and Y are input vector and output vector respectively.

A is the system matrix.

B and C are the input and the output matrices.

D is the feed-forward matrix.

Basic Concepts of State Space Model
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The following basic terminology involved in this chapter.
State

It is a group of variables, which summarizes the history of the system in order to predict the future
values (outputs).

State Variable

The number of the state variables required is equal to the number of the storage elements present
in the system.

Examples - current flowing through inductor, voltage across capacitor
State Vector

It is a vector, which contains the state variables as elements.

In the earlier chapters, we have discussed two mathematical models of the control systems
Those are the differential equation model and the transfer function model. The state space

model can be obtained from any one of these two mathematical models. Let us now discuss
these two methods one by one.

State Space Model from Differential Equation

Consider the following series of the RLC circuit. It is having an input voltage, vi(t) and the current
flowing through the circuit is i(t).

i(t) R L
— MA— Y N
i3 -+

w(t) v(t) TC

There are two storage elements (inductor and capacitor) in this circuit. So, the number of the

state variables is equal to two and these state variables are the current flowing through the
inductor, i(t) and the voltage across capacitor, vc(t).

From the circuit, the output voltage, vo(t) is equal to the voltage across capacitor, v¢(t).
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State Space Model from Transfer Function
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Consider the two types of transfer functions based on the type of terms present in the numerator.

« Transfer function having constant term in Numerator.
« Transfer function having polynomial function of‘s’ in Numerator.

Transfer function having constant term in Numerator

Consider the following transfer function of a system
P .

Boarargs: the obovs equaiion os
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Here, D=[0].

Example:
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Find the state space model for the system having transfer function.
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Transfer function having polynomial function of ‘s’ in Numerator Consider

the following transfer function of a system
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Then, the state equation is
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Mi: =B, then,

Transfer Function from State Space Model

We know the state space model of a Linear Time-Invariant (LTI) system is -
X'=AX+BU

Y=CX+DU

Apply Laplace Transform on both sides of the state equation.
sX(s) =AX(s)+BU(s)
= (SI-A)X(s)=BU(s)
= X(s) = (sI-A)"1BU(s)

Apply Laplace Transform on both sides of the output equation. Y(s)
=CX(s) + DU(s)

Substitute, X(s) value in the above equation.

=Y(s) =C ( sI-A)"1BU(s)+DU(s)
=Y(s) = [C (sI-A)"1B+D]U(s)
=Y(s) U(s) = C(sI-A)™1B+D

The above equation represents the transfer function of the system. So, we can calculate the
transfer function of the system by using this formula for the system represented in the state

space model.

Note - When D=[0], the transfer function will be
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Example:

Let us calculate the transfer function of the system represented in the state space model as,
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Therefore, the transfer function of the system for the given state space model is
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Uls) s? +s5+1

State Transition Matrix and its Properties

If the system is having initial conditions, then it will produce an output. Since, this output is
present even in the absence of input, it is called zero input response xzir(t). Mathematically,
we can write it as,

ﬂ#mi:‘- ; fﬂﬂi.ﬁlztﬁ : :_,:!:.1- £ %Iﬂ_?*— I;]-lﬂﬂj}

- -

From the above relation, we can write the state transition matrixg: (t) as

d(t) =e® = L7 sl — A

So, the zero input response can be obtained by multiplying the state transition matrix g(t) with the

initial conditions matrix.
Properties of the state transition matrix

« If t=0, then state transition matrix will be equal to an Identity matrix.

¢(0)=I
« Inverse of state transition matrix will be same as that of state transition matrix just by
replacingt’ by ‘-t’.

B = g

« If t=t1+t2 , then the corresponding state transition matrix is equal to the multiplication of the

two state transition matrices at t=t1t=t1 and t=t2t=t2.

ghlt1+t2)=g2(t1)4(t2)
Controllability and Observability

Let us now discuss controllability and observability of control system one by one.

Controllability

A control system is said to be controllable if the initial states of the control system are

transferred (changed) to some other desired states by a controlled input in finite duration of
time.
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We can check the controllability of a control system by using Kalman’s test.

Write the matrix Qc in the following form.

Q.=[B AB A’B A" 1B

controllable.

Observability

Find the determinant of matrix QcQc and if it is not equal to zero, then the control system is

A control system is said to be observable if it is able to determine the initial states of the control
system by observing the outputs in finite duration of time.

We can check the observability of a control system by using Kalman’s test.

Write the matrix Qo in following form.

A 57 e ! e b
ﬂﬂ — [E:#: .&J:L EJ.}T {A‘é ::.q i bR in.{!; ; 1§ffJ

Find the determinant of matrix QoQo and if it is not equal to zero, then the control system is
observable.

Example:

Let us verify the controllability and observability of a control system which is represented in the
state space model as,
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Here,

A:[_ll _01}, B:[l}, [0 1],D=1[0] and n =2

For e = 2, the matrix Q. will be
Q. =[B AB]

We will get the product of maftrices & and B as,

o[
1
1 -1
:"Qc:[u 1i|
|Qcl =150

Since the determinant of matrix Qc is not equal to zero, the given control system is controllable.

For n=2, the matrix Qo will be —
Hisre,

F_q a7

a2 __
AT = e

st o =[]

ity vl get the producs of matrloss AY org 0 as

Since, the determinant of matrix Qo is not equal to zero, the given control system is observable.

Therefore, the given control system is both controllable and observable.



