20MA4T1- STATISTICS AND NUMERICAL METHODS

FOR II - B.E. (MECHANICAL) / IV SEMESTER

SYLLABUS

Semester	Programme	Course Code	Course Name		Т	Р	С
IV	B.E. MECH	20MA4T1	STATISTICS AND NUMERICALMETHODS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
A	RBT Level	Topics Covered									
CO1	Identify and apply various numerical techniques for solving non-linear equations and systems of linear equations.	K3	3								
CO2	Analyse and apply the knowledge of interpolation and determine the integration and differentiation of the functions by using the numerical data.	K4	4								
CO3	Justify the concept of testing of hypothesis for small and large samples and interpret the results.	K5	1								
CO4	Classify the principles of design of experiments and perform analysis of variance.	K2	2								
CO5	Determine the dynamic behaviour of the system through solution of ordinary differential equations by using numerical methods.	K5	5								

PRE-REQUISITE	Engineering Mathematics I, Partial Differential Equations	Engineering Mathematics	II and Transforms and
---------------	--	-------------------------	-----------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PS	Os	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3				1	3	3		3		
CO2	3	3		3				1	3	3		3		
CO3	3	3		3				1	3	3		3		
CO4	3	3		3				1	3	3		3		
CO5	3	3		3				1	3	3		3		

1

		COURS	E ASSESSME	ENT METHODS						
DIRECT	1	Continuous Assessr	nent Tests							
	2	Assignments and tu	torials							
	3 End Semester Examinations									
INDIRECT 1 Course Exit Survey										
COURSE CONTENT										
Topic - 1	TESTING OF HYPOTHESIS									
Sampling distributions – Estimation of parameters – Statistical hypothesis – Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t, Chi-square and F distributions for mean, variance and proportion – Contingency table (test for independent) – Goodness of fit.										
Topic - 2		I	DESIGN OF H	EXPERIMENTS	1			9+3		
One way and Latin square	l two design	way classifications -2^2 factorial design.	- Completely	randomized desig	gn – F	Random	ized block d	esign -		
Topic - 3		SOLUTION OF E	QUATIONS A	AND EIGENVAI	LUE F	ROBL	EMS	9+3		
method – Iterative methods of Gauss Jacobi and Gauss Seidel – Eigen values of a matrix by Power method. Topic - 4 INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9+3										
		NUM	IERICAL IN	TEGRATION				9+3		
Lagrange's a interpolation integrations	nd Ne – App Ising T	NUM wton's divided differ roximation of derivat rapezoidal and Simp	IERICAL IN ence interpola tes using interp son's 1/3 rules	TEGRATION tions – Newton's polation polynomi	forwa als – 1	rd and Numeric	backward dif al single and	9+3 ferenc doubl		
Lagrange's a interpolation integrations Topic - 5	nd Ne – App Ising T NUN	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTIO	1ERICAL IN ence interpola tes using interp son's 1/3 rules ON OF ORDI	TEGRATION tions – Newton's oolation polynomi NARY DIFFER	forwa als – 1 ENTI	rd and Numeric AL EQ	backward dif al single and UATIONS	9 + 3 ference double $9 + 3$		
Lagrange's a interpolation integrations u Topic - 5 Single step n Runge-Kutta methods for s	nd Ne – App Ising T NUN nethods methods solving	NUM wton's divided differ roximation of derivat Trapezoidal and Simp IERICAL SOLUTION s : Taylor's series me od for solving first or g first order equations	IERICAL IN ence interpolates using interp son's 1/3 rules ON OF ORDI thod – Euler's rder equations	FEGRATION tions – Newton's polation polynomi NARY DIFFER method – Modifi – Multi step met	forwa als – 1 ENTI ed Eu hods :	rd and Numeric AL EQ ler's me Milne'	backward dif cal single and UATIONS thod – Four s predictor co	9 + 3 ference double 9 + 3 th order orrecto		
Lagrange's a interpolation integrations u Topic - 5 Single step n Runge-Kutta methods for s THEORY	nd Ne – App Ising T NUN nethods methods solving 45	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTION s : Taylor's series me od for solving first or trist order equations TUTORIAL	IERICAL IN ence interpolation tes using interpolation son's 1/3 rules ON OF ORDI thod – Euler's thod – Euler's thod – Euler's thod – Euler's	TEGRATION tions – Newton's oolation polynomi NARY DIFFER method – Modifi – Multi step met	forwa fals – 1 ENTI fed Eu hods :	rd and Numeric AL EQ ler's me Milne'	backward dif cal single and UATIONS thod – Four s predictor co TOTAL	9+. ference double 9+. 9+. th order orrector 60		
Lagrange's a interpolation integrations u Topic - 5 Single step n Runge-Kutta methods for s THEORY	nd Ne – App Ising T NUN nethods methods solving 45	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTION s : Taylor's series me od for solving first or trist order equations TUTORIAL	1ERICAL IN ence interpolation tes using interpolation son's 1/3 rules ON OF ORDI thod – Euler's thod – Euler's thod – Euler's thod – Euler's	TEGRATION tions – Newton's oolation polynomi NARY DIFFER method – Modifi – Multi step met PRACTICAL	forwa fals – 1 ENTI fed Eu hods : 0	rd and Numeric AL EQ ler's me Milne'	backward dif cal single and UATIONS thod – Fourt s predictor co TOTAL	9+: ferenc doubl 9+: th orde orrecto		
Lagrange's a interpolation integrations u Topic - 5 Single step n Runge-Kutta methods for s THEORY	nd Ne – App Ising T NUN nethods methods olving 45 EREN	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTIO s : Taylor's series me of for solving first or first order equations TUTORIAL	1ERICAL IN ence interpolation tes using interpolation son's 1/3 rules ON OF ORDI thod – Euler's trader equations . 15	TEGRATION tions – Newton's oolation polynomi NARY DIFFER method – Modifi – Multi step met PRACTICAL	forwa fals – 1 ENTI fed Eu hods : 0	rd and Numeric AL EQ ler's me Milne'	backward dif cal single and UATIONS thod – Fourt s predictor co TOTAL	9 + 3 a double 9 + 3 9 + 3 th orde orrecto 60		
Lagrange's a interpolation integrations t Topic - 5 Single step m Runge-Kutta methods for s THEORY BOOK REFI 1 Gerald. (Edition, 1	nd Ne – App Ising T NUN nethods methods olving 45 45 EREN C. F. a New D	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTION s : Taylor's series me od for solving first or g first order equations TUTORIAL CES and Wheatley. P. O., elhi, 2006.	IERICAL IN ence interpolation ies using interpolation son's 1/3 rules ON OF ORDI thod – Euler's thod – Euler's ider equations . 15 .	TEGRATION tions – Newton's polation polynomi NARY DIFFER method – Modifi – Multi step met PRACTICAL	forwa fals – 1 ENTI fed Eu hods : 0 is", P	and	backward dif cal single and UATIONS thod – Fourt s predictor co TOTAL Education,As	9 + 3 Ference double $9 + 3$ th orde orrecto 60 Sia, 7th		
Lagrange's a interpolation integrations to Topic - 5 Single step n Runge-Kutta methods for s THEORY 1 Gerald. 0 Edition, 1 2 Grewal, Publisher	nd Ne – App using T NUN nethods methods oolving 45 EREN C. F. a New D B.S., s, 9th	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTIO s : Taylor's series me of for solving first or first order equations TUTORIAL CES and Wheatley. P. O., elhi, 2006. and Grewal, J.S., " Edition, New Delhi, 2	1ERICAL IN ence interpolation tess using interpolation son's 1/3 rules ON OF ORDI thod – Euler's thod – Euler's 'der equations . 15 . Numerical M 2010	TEGRATION tions – Newton's solation polynomi NARY DIFFER method – Modifi – Multi step met PRACTICAL umerical Analys lethods in Engi	forwa fals – 1 ENTI fed Eu hods : 0 is", P neerin	and	backward dif cal single and UATIONS thod – Fourt s predictor co TOTAL Education,As Science'', H	9 + 3 ference double 9 + 3 th order orrector 60 sia, 7the Khanna		
Lagrange's a interpolation integrations u Topic - 5 Single step m Runge-Kutta methods for s THEORY BOOK REF 1 Gerald. 0 Edition, 1 2 Grewal, Publisher 3 Burden, 1	nd Ne – App Ising T NUN nethods methods olving 45 45 C. F. a New D B.S., s, 9th R.L an	NUM wton's divided differ roximation of derivat rapezoidal and Simp IERICAL SOLUTION s : Taylor's series me od for solving first or g first order equations TUTORIAL CES and Wheatley. P. O., elhi, 2006. and Grewal, J.S., " Edition, New Delhi, 2 d Faires, J.D, "Nume	IERICAL IN ence interpolation interpolation son's 1/3 rules ON OF ORDI thod – Euler's thod – Euler's interpolation thod – Euler's interpolation thod – Euler's interpolation thod – Euler's interpolation interpolation thod – Euler's interpolation thod – Euler's interpolation interpolation thod – Euler's interpolations interpolation thod – Euler's interpolations interpolations<	TEGRATION tions – Newton's polation polynomi NARY DIFFER method – Modifi – Multi step met PRACTICAL umerical Analys lethods in Engi ", 9th Edition, Co	forwa fals – 1 ENTI fed Eu hods : 0 is", P neerin	ard and Numeric AL EQ ler's me Milne' earson	backward dif cal single and UATIONS thod – Fourt s predictor co TOTAL Education,As Science'', H	9 + . ference doubl 9 + . th orde orrecto 60 Sia, 7th Khanna		

4 Vijay K. Rohatgi, EhsanesSaleh,"An Introduction to Probability and Statisics", 2nd Edition,2009

5 N. G. Das.,"Statistical Methods", Tata McGraw Hill Publishing Ltd,2008

OT	OTHER REFERENCES							
1	https://www.sobtell.com/blog/38-real-life-applications-of-numerical-analysis							
2	https://www.scienceabc.com/eyeopeners/why-do-we-need-numerical-analysis-in-everyday- life.html							
3	https://leverageedu.com/blog/application-of-statistics/							

UNIT-I

TESTING OF HYPOTHESIS

PART – A

TESTING OF HYPOTHESIS

1. Explain the terms sample size and sampling error Solution:

Sample size: A finite subset of statistical individuals in a population is called a sample and the number of individuals in a sample is called sample size.

Sampling error: For the purpose of determining population characteristics, the individuals in the sample are observed. On examining the sample of a particular stuff we arrive at a decision of purchasing or rejecting that stuff. The error involved in such approximation is known as sampling error.

2. Define the following terms: Statistics, Parameter and Standard Error Solution:

Statistic: Measure describing the characteristic of sample Parameter: Values that describe the characteristic of population Standard error: Standard deviation of the sampling distribution of a statistic

3. Define Type I and Type II errors in taking a decision. Solution:

Type I Error: The hypothesis is true but our tests reject it.

Type II Error: The hypothesis is false but our test accepts it.

	Decision					
	Accept H_0 Reject H_0					
H_0 True	Correct decision	Type I error				
H_0 False	Type II error Correct decision					

4. State the proceedure involved in testing of hypothesis. Solution:

- (i) Set up a null hypothesis H_0 ,
- (ii) Set up the alternative hypothesis H_1 ,
- (iii) Select the appropriate level of significance (α),
- (iv) Compute the test statistic $z = \frac{t-E(t)}{sE(t)}$ under H_0 ,
- (v) We compare the "calculate z" with "critical value z_{α} " at given level of significance (α)

[If|z| < 1.96, H_0 may be accepted at 5% level of significance.

If |z| > 1.96, H_0 may be rejected at 5% level of significance.

If |z| > 2.58, H_0 may be accepted at 1% level of significance.

If |z| > 2.58, H_0 may be rejected at 1% level of significance.

5. What is meant by level of significance and critical region?

Solution:

Critical region:

A region corresponding to a statistics t in the sample space S which lead to the rejection of H_0 is called critical Region or Rejection Region. Those region which lead to the acceptance of H_0 give as a region alled Acceptance Region.

Level of significance:

The probability α' that a random value of the statistic 't' belongs to the critical region is known as the level of significance. In other words, level of significance is the size of Type I Error. The level of significance usually employed in testing of hypothesis are 5% and 1%.

6. Define Null and Alternative hypothesis.

Solution:

Null hypothesis is based for analyzing the problem Null hypothesis is the hypothesis of no difference and is denote byH_0 .

Any hypothesis which is complementary to the null hypothesis is called an Alternative hypothesis, denoted by H_1

7. A coin is tossed 400 times and it turns up head 216 times. Discuss whether the coin may be unbiased one at 5% level of significance.

Solution:

Given
$$n = 400, P = \frac{1}{2}$$

 $Q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$

X=Number of success=216

(i) The parameter of interest is P.

(ii) H_0 : The coin is unbiased

(iii)
$$H_1$$
: The coin is biased

(iv)
$$\alpha = 0.05$$

(v)
$$Z = \frac{X - np}{\sqrt{npQ}}$$

(vi) Reject
$$H_0$$
 if $|z| > 1.96$

(vii) Computation:
$$Z = \frac{216 - (400)(\frac{1}{2})}{\sqrt{(400)(\frac{1}{2})(\frac{1}{2})}} = \frac{16}{10}$$

(viii) Conclusion: |Z| = 1.6 < 1.96So we accept H_0 at 5% level of significance.

Hence coin is unbiased.

8. A standard sample of 200 tins of coconut oil gave an average weight of 4.95Kgs. With a standard deviation of 0.21 Kg.Do we accept that the net weight is 5 Kgs per tin at 5% level of significance? Solution:

Given $n = 200, \bar{x} = 4.95 \ kg, \sigma = 0.21 \ kg, \ \mu_0 = 5 \ kg$

- (i) The parameter of interest is μ .
- (ii) $H_0: \mu = 5 \ kgs$ [The net weight is 5 kgs]
- (iii) $H_1: \mu \neq 5 \ kgs$ [Two tailed test]

(iv)
$$\alpha = 0.05$$

(v)
$$Z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

(vi) Reject H_0 if |z| > 1.96 at $\alpha = 0.05$

- (vii) Computation: $Z = \frac{4.95-5}{\left(\frac{0.21}{\sqrt{200}}\right)} = -3.36$
- (viii) Conclusion: |Z| = 3.36 > 1.96
- So we reject H_0 : $\mu = 5 kgs$ at 5% level of significance.

t-DISTRIBUTION

9. Write down the formula of test statistic t to test the significance of difference between the means of large samples.

Solution:

$$Z = \frac{|\overline{x_1} - \overline{x_2}|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

<u>CHI-SQUARE (χ^2) DISTRIBUTION</u>

10. Define Chi-Square test for goodness of fit. Solution:

Chi-Square test for goodness of fitis a test to find if the deviation of the experiment from theory is just by chance or it is due to the inadequacy of the theory to fit the observed data. By this test, we test whether difference between observed and expected frequencies are significant or not.

Chi-Square test for goodness of fit is defined by

 $\chi^2 = \sum \frac{(O-E)^2}{E}$. Where

O-Observed frequency

E- Expected frequency

11. Write Soluti	any two applications of Chi – square $(\chi^2)^{\square}$ – test.
(i)	To test the goodness of fit
(ii)	To test the "independence of attributes"
(iii) To test the homogeneous of independent estimations.
12. What test.	are the conditions for the validity of Ψ^2 - test? OR State the conditions for applying Ψ^2 -
Soluti	on:
(i) (ii) (iii (iv	 The sample observations should be independent. Constraints on the cell frequencies, if any, must be linear [e.g., ∑ O_i = ∑ E_i] N, the total frequency, should be at least 50. No theoretical cell frequency should be less than 5.
13. What are Solution:	e the expected frequencies of 2*2 contigency table c d
	Expected frequency table: $ \frac{(a+b)(a+c)}{N} \qquad \frac{(a+b)(b+d)}{N} $ $ \frac{(a+c)(c+d)}{N} \qquad \frac{(c+d)(b+d)}{N} $
14. Give the Soluti	formula for the χ^2 - test of independence for c d
	$\chi^{2} = \frac{N(ad - bc)^{2}}{(a + c)(b + d)(a + b)(c + d)}, \qquad N = a + b + c + d$
	PART – B
1 5 1	TESTING OF HYPOTHESIS FOR SINGLEMEAN
I. Exp Solu	ain clearly the procedure generally followed in testing of a hypothesis. tion:
	General procedure for hypothesis tests
i.	From the problem context, identify the parameter of interest.
ii.	State the null hypothesis, H_0 .

- iii. Specify an appropriate alternative hypothesis, H_1 .
- iv. Choose a significance level α .

If |z| < 1.96, H_0 may be accepted at 5% level of significance.

If |z| > 1.96, H_0 may be rejected at 5% level of significance.

If |z| < 2.58, H_0 may be accepted at 1% level of significance.

If |z| > 2.58, H_0 may be rejected at 1% level of significance.

- v. Determine an appropriate test statistic.
- vi. State the rejection for the statistic.
- vii. Compute any necessary sample quantities, substitute these into the equation for the test statistic and compute the value.

viii. Conclusion: Decide whether or not, H_0 should be rejected and report that in the problem context.

2. A sample of 900 members has a mean 3.4 cm and standard deviation 2.61 cm. Is the sample from a large population of mean 3.25 cms and standard deviation of 2.61 cms? (Test at 5% level of significance. The value of z at 5% level is $|Z_{\alpha}| < 1.96$). Solution:

Given

$$n = 900\mu_0 = 3.25$$

 $\bar{x} = 3.4 \ cm\sigma = 2.61$
 $s = 2.61$

- (i) The parameter is μ_0 .
- (ii) Null hypothesis H_0 : Assume that the sample has been drawn from the population with mean $\mu = 3.25$.
- (iii) Alternative hypothesis $H_1: \mu \neq 3.25$
- (iv) Level of significance $\propto = 0.05$.
- (v) The test statistic is $z = \frac{\bar{x} \mu_0}{\frac{\sigma}{\sqrt{n}}}$
- (vi) Reject if |z| > 1.96 at 5% level of significance.
- (vii) Computation:

$$z = \frac{\bar{x} - \mu_0}{\frac{\Box}{\sqrt{n}}} = \frac{3.4 - 3.25}{\frac{2.61}{\sqrt{900}}} - 1.724$$

$$z = 1.724 < 1.96$$

(viii) Conclusion

Here |z| = 1.724 < 1.96, so we accept the null hypothesis H_0 at 5% level of significance. **TESTING OF HYPOTHESIS FOR DIFFERENCE OF MEAN**

3. The means of two large samples of 1000 and 2000 members are 67.5 and 68.0 inches respectively. Can the samples be regarded as drawn from the same populations of standard deviation 2.5 inches? Solution:

Given sample sizes $n_1 = 1000$, $n_2 = 2000$

$$\bar{x}_1 = 67.5, \bar{x}_2 = 68.0$$

 $s_1 = \sigma_1 = 2.5 \quad s_2 = \sigma_2 = 2.5$

- (i) The parameter is $\mu_1 \& \mu_2$.
- (ii) Null hypothesis H_0 : $\mu_1 = \mu_2$ (there is no significant difference).
- (iii) Alternative hypothesis $H_1: \mu_1 \neq \mu_2$
- (iv) Level of significance $\propto = 0.05$.

(v) The test statistic is $z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

(vi) Reject if |z| > 1.96 at 5% level of significance.

(vii) Computation:

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
$$= \frac{67.5 - 68.0}{\sqrt{\frac{2.5^2}{1000} + \frac{2.5^2}{2000}}} = \frac{-0.5}{0.09685} = -5.16$$

|z| = 5.16

(viii) Conclusion Here |z| = 5.16 > 1.96, so we reject the null hypothesis H_0 at 5% level of significance.

4. A random sample of 100 bulbs from a company P shows a mean life 1300 hours and standard deviation of 8 hours. Another random sample of 100 bulbs from company Q showed a mean life 1248 hours and standard deviation of 93 hours. Are the bulbs of company P superior to bulbs of company Q at 5% level of significance?

Solution:

$$H_0: \mu_1 = \mu_{2}$$

 $H_0: \mu_1 > \mu_2$ (right tailed test)

L.O.S
$$\alpha = \frac{5}{100} = 0.05.$$

Test statistics $z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

Where

$$n_{1} = 100, \quad n_{2} = 100$$

$$\bar{x}_{1} = 1300, \quad \bar{x}_{2} = 1248$$

$$s_{1} = \sigma_{1} = 82 \quad s_{2} = \sigma_{2} = 93$$

$$z = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$= \frac{1300 - 1248}{\sqrt{\frac{82^{2}}{100} + \frac{93^{2}}{100}}}$$

$$= \frac{52}{12.39879} = 4.1939$$

Table value of z at 5% LOS is 1.675.

Since 4.19 > 1.645, H_0 is rejected and the bulbs of company A is superior to the bulbs of company B.

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
$$= \frac{67.5 - 68.0}{\sqrt{\frac{2.5^2}{1000} + \frac{2.5^2}{2000}}} = \frac{-0.5}{0.09685} = -5.16$$

5. A mathematics test was given to 50 girls and 75 boys. The girls made an average grade of 76 with a SD of 6, while boys made an average grade of 82 with a SD of 2. Test whether there is any significant difference between the performance of boys and girls.

Solution:

(AU N/D 2012, M/ J 2016)

	No of cases	Mean	S.D
Sample I	50	76	6
Sample II	75	82	2

Given sample sizes $n_1 = 50$, $n_2 = 75$

 $\bar{x}_1 = 76, \bar{x}_2 = 82$

 $s_1 = \sigma_1 = 6 \qquad s_2 = \sigma_2 = 2$

The parameter is $\mu_1 \& \mu_2$.

- (i) Null hypothesis H_0 : $\mu_1 = \mu_2$ (there is no significant difference).
- (ii) Alternative hypothesis $H_1: \mu_1 \neq \mu_2$
- (iii) Level of significance $\propto = 0.05$.

(iv) The test statistic is
$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

(v) Reject if |z| > 1.96 at 5% level of significance.

(vi) Computation:

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{76 - 82}{\sqrt{\frac{6^2}{50} + \frac{2^2}{75}}}$$
$$= \frac{-6}{\sqrt{\frac{36}{50} + \frac{4}{75}}} = -\frac{6}{0.88}$$
$$= -6.82$$
$$|z| = 6.82$$

(vii) Conclusion

Here |z| = 6.82 > 1.96, so we reject the null hypothesis H_0 at 5% level of significance.

6. Test if the variances are significantly different for

ΛΙ	24	27	26	21	25	
X2	27	30	32	36	28	23

Solution:

X	$x-\overline{x}$	$(x-\overline{x})^2$	Y	$y - \overline{y}$	$(y-\overline{y})^2$
24	-0.6	0.36	27	-2.3	5.29
27	2.4	5.76	30	0.7	0.49
26	1.4	1.96	32	-2.7	7.29
21	-3.6	12.96	36	6.7	44.89
25	0.4	0.16	28	-1.3	1.69
			23	-6.3	39.69
123	0	21.2	176	-5.2	99.34

$$\overline{x} = \frac{123}{5} = 24.6, \ \overline{y} = \frac{176}{6} = 29.3$$

$$\sum (x - \overline{x})^2 = 21.2, \qquad \sum (y - \overline{y})^2 = 99.34$$

$$s^2 = \frac{1}{n_1 + n_2 - 2} \left[\sum (x - \overline{x})^2 + \sum (y - \overline{y})^2 \right]$$

$$= \frac{1}{5 + 6 - 2} [21.2 + 99.34] = 13.39$$

$$s = 3.66$$

(i) The parameter is $\mu_1 \& \mu_2$.

(ii) Null hypothesis $H_0: \mu_1 = \mu_2$ (there is no significant difference).

(iii) Alternative hypothesis $H_1: \mu_1 \neq \mu_2$

(iv) Level of significance $\propto = 0.05$.

(v) The test statistic is
$$z = \frac{x-y}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

(vi) Reject if |z| > 2.262 at 5% level of significance for 9 degrees of freedom

(vii) Computation:

$$z = \frac{\overline{x} - \overline{y}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{24.6 - 29.3}{3.66\sqrt{\frac{1}{5} + \frac{1}{6}}} = \frac{-4.7}{2.2172} = -2.1197$$

|z| = 2.12

(viii) Conclusion

Here |z| = 2.12 < 2.262, so we accept the null hypothesis H_0 at 5% level of significance Hence there is no significant difference.

TESTING OF HYPOTHESIS FOR DIFFERENCE OF PROPORTION

t-DISTRIBUTION(n<30)

7. Test if the difference in the means is significant for the following data:

	Sample I	76	68	70	43	94	68	33					
	Sample II	40	48	92	85	70	76	68	22				
S	Solution:												
C	Calculation for sample means and S.D.'s												
	x	x	$-\bar{x}$	$(x-\bar{x})^2$	2	У	y –	\overline{y}	$(y-\bar{y})^2$				
	76	1	1.4	129.96		40	-22	.6	510.76				
	68		3.4	11.56		48	-14	.6	213.16				
	70		5.4	29.16		92	29.	4	864.36				
	43		21.6	466.56		85	22.	4	501.76				
	94	2	29.4	864.36		70	7.4	1	54.76				
	68		3.4	11.56		76	13.	4	179.56				
	33 -31.6		998.56		68	5.4	1	29.16					
						22	-40	.6	1648.36				
452		2511.72	,	501			4001.88						

Given $n_1 = 7$, $n_2 = 8$ (< 30 so we use t - test)

Mean
$$\bar{x} = \frac{452}{7} = 64.6$$
 $\bar{y} = \frac{501}{8} = 62.6$
 $\sum (x - \bar{x})^2 = 2511.72$ $\sum (y - \bar{y})^2 = 4001.88$

$$s^{2} = \frac{\sum(x - \bar{x})^{2} + \sum(y - \bar{y})^{2}}{n_{1} + n_{2} - 2} = \frac{2511.72 + 4001.88}{7 + 8 - 2} = 501.04$$

s = 22.38

- (i) The parameter is $\mu_1 \& \mu_2$.
- (ii) Null hypothesis H_0 : $\mu_1 = \mu_2$ (there is no significant difference in the variability in yields).
- (iii) Alternative hypothesis $H_1: \mu_1 \neq \mu_2$
- (iv) Level of significance $\propto = 0.05$. d.f= 7 + 8 2 = 13
- (v) The test statistic is $t = \frac{\bar{x}_1 \bar{x}_2}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}$
- (vi) Reject if |t| > 2.16 at 5% level of significance.
- (vii) Computation:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{64.6 - 62.6}{22.38\sqrt{\frac{1}{7} + \frac{1}{8}}} = 0.1727$$
$$|t| = 0.1727$$

(viii) Conclusion

Here |t| = 0.1727 < 2.16, we reject the null hypothesis H_0 at 5% level of significance. There is no significant difference between the two means.

<u>CHI-SQUARE (χ^2) DISTRIBUTION</u>

8. Using the data given in the following table to test at 1% level significance whether a person's ability in Mathematics is independent of his/her interest in Statistics.

			Ability in Mathematics	
		Low	Average	High
Interest in	Low	63	42	15
Statistics				
	Average	58	61	31
	High	14	47	29

Solution:

Table of expected frequencies.

	Low	Average	High	Total
--	-----	---------	------	-------

Low	63	42	15	120
Average	58	61	31	150
High	14	47	29	90
Total	135	150	75	360

135 × 120	150×120	75×120	120
360	360	360	
= 45	= 50	= 25	
135×150	150×150	75×150	150
360	360	360	
= 56.25	= 62.5	= 31.25	
135×90	150×90	75×90	90
360	360	360	
= 33.75	= 37.5	= 18.75	
135	150	75	360

Calculated Ψ^2

Observed frequency(O)	Expected frequency(E)	(O-E)	$\frac{(\boldsymbol{O}-\boldsymbol{E})^2}{\boldsymbol{E}}$
63	45	324	7.5
42	50	64	1.28
15	25	100	4.00
58	56.25	3.0625	0.05
61	62.5	2.25	0.04

31	31.25	0.0625	0.002
14	33.75	390.0625	11.56
47	37.5	90.25	2.41
29	18.75	105.0625	5.60
			32.142

Now $\Psi^2 = \sum \frac{(o-E)^2}{E} = 32.142$

 $\Psi^2 = 32.14$

Tab Ψ^2 fort d.f at 5% level is 9.488

Since Cal $\Psi^2 > Tab \Psi^2 \Rightarrow we \ reject \ H_0$.

Hence ability in Mathematics and interest in statistics are depended.

9. Fit a binomial distribution for the following data and also test the goodness of fit.

X:	0	1	2	3	4	5	6	Total
F(X):	5	18	28	12	7	6	4	80

Solution:

Given n=2

(i) The parameter is χ^2

(ii) H_0 :Binomial is good fit

(iii) H_1 :Binomial is not a good fit

(iv) Level of significance $\propto = 0.0$

(v) The test statistic is
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

(vi) Reject H_0 if $\chi^2 > \chi^2_{0.05}$ (from χ^2 table)

(vii) Computation :

$$p(x) = nC_X p^X q^{n-x}$$
$$E = \frac{80}{7} = 11$$
$$np = 2.4$$

	p 0.1,q	0.0
Observed	Expected	$(0-E)^2$
frequency(O)	frequency(E)	E
5	11	3.27
18	11	4.46
28	11	26.27
12	11	0.99
7	11	1.46
6	11	2.27
4	11	4.46

$$6p = 2.4$$

 $n = 0.4, a = 0.6$

$$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = 6.17$$
$$n = 2$$
$$\chi^{2}_{0.05} = 5.98$$

 $if\chi^2 > \chi^2_{0.05}$ Reject H_0

10. Theory predicts that the proportion of beans in four groups A, B, C, D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experiment support the theory?

Solution:

Given A, B, C, D in the ration 9: 3: 3: 1

					Total				
<i>E</i> _{<i>i</i>} :	900	300	300	100	1600				
<i>O_i</i> :	882	313	287	118	1600				
$\chi^2 = \sum \lim \frac{(O-E)^2}{E}$									
	$=\frac{18^2}{900} + \frac{13^2}{300} + \frac{13^2}{300} + \frac{18^2}{100} = 4.73$								
			16						

$$\sum E_i = \sum O_i$$
, $d.f = 4 - 1 = 3$

 H_0 : The experiment supports the theory

Cal
$$\chi^2 = 4.73$$

Table χ^2 3 d.f=7.82

Cal χ^2 < Table χ^2

So we accept H_0

F-TEST

11. A group of 10 rats fed on diet A and another group of 8 rats fed on diet B, recorded the following increase in weight (gms)

Diet A:	5	6	8	1	12	4	3	9	6	10
Diet B:	2	3	6	8	10	1	2	8		

Does it show superiority of diet A over diet B?

Solution:

Given $n_1 = 10, n_2 = 8$

<i>x</i> ₁	x ₁ ²	<i>x</i> ₂	x_2^2
5	25	2	4
6	36	3	9
8	64	6	36
1	1	8	64
12	144	10	100
4	16	1	1
3	9	2	4
9	81	8	64
6	36		
10	100		
64	512	40	282

$$\bar{x}_{1} = \frac{\sum x_{1}}{n} = \frac{64}{10} = 6.4 \quad \bar{x}_{2} = \frac{\sum x_{2}}{n} = \frac{40}{8} = 5$$

$$S_{1}^{2} = \frac{\sum x_{1}^{2}}{n_{1}} - (\overline{x_{1}})^{2} = \frac{512}{10} - (6.4)^{2} = 10.24$$

$$S_{2}^{2} = \frac{\sum x_{2}^{2}}{n_{2}} - (\overline{x_{2}})^{2} = \frac{282}{8} - 25 = 10.25$$

$$S_{1}^{2} < S_{2}^{2}$$
(i) The representation $z = 28 = 2$

(i) The parameter is $\sigma_1^2 \& \sigma_2^2$.

(ii) Null hypothesis $H_0: \sigma_1^2 = \sigma_2^2$ (there is no significant difference).

- (iii) Alternative hypothesis $H_0: \sigma_1^2 \neq \sigma_2^2$
- (iv) Level of significance $\propto = 0.05$. Degree of freedom $(v_1) = 9, d. f(v_2) = 7$ ie., $F_{(9,7)} = 3.29$
- (v) Accept H_0 if calculated F $< F_{(9,7)} = 3.29$ (from table 'F')
- (vi) **Computation:** The test statistic is $F = \frac{S_2^2}{S_1^2} = \frac{10.25}{10.24} = 1.0009$

(vii) Conclusion

Here |F| = 1.0009 < 3.29, so we accept the null hypothesis H_0 .

We conclude that the two samples have come from populations with equal variances.

12. Two independent samples of sizes 9 and 7 from a normal population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Do the estimates of the population variance differ significantly at 5% level ?

Solution:

Given $n_1 = 9, n_2 = 7$

x_1	x_1^2	<i>x</i> ₂	x_2^2
18	324	16	256
13	169	19	361
12	144	13	169
15	225	16	256
12	144	18	324
14	196	13	169
16	256	15	225
14	196		
15	225		
129	1879	110	1760

$$\bar{x}_{1} = \frac{\sum x_{1}}{n} = \frac{129}{9} = 14.3333 \bar{x}_{2} = \frac{\sum x_{2}}{n} = \frac{110}{7} = 15.7143$$

$$S_{1}^{2} = \frac{\sum x_{1}^{2}}{n_{1}} - (\overline{x_{1}})^{2} = \frac{1879}{9} - (14.3333)^{2} = 3.3342$$

$$S_{2}^{2} = \frac{\sum x_{2}^{2}}{n_{2}} - (\overline{x_{2}})^{2} = \frac{1760}{7} - (15.7143)^{2} = 4.4894$$

$$S_{1}^{2} < S_{2}^{2}$$
(i) The parameter $is\sigma_{1}^{-2}\&\sigma_{2}^{-2}$.
(ii) Null hypothesis $H_{0}: \sigma_{1}^{-2} = \sigma_{2}^{-2}$ (there is no significant difference).
(iii) Alternative hypothesis $H_{0}: \sigma_{1}^{-2} \neq \sigma_{2}^{-2}$

(iv) Level of significance $\propto = 0.05$. Degree of freedom $(v_1) = 8$, d. f $(v_2) = 7$ ie., $F_{(6,8)} = 3.58$

(v) Accept
$$H_0$$
 if calculated F $< F_{(6,8)} = 3.58$ (from table 'F')

(vi) **Computation:** The test statistic is $F = \frac{S_2^2}{S_1^2} = \frac{4.4894}{3.3342} = 1.3464$

(vii) Conclusion

Here |F| = 1.3464 < 3.58, so we accept the null hypothesis H_0 .

We conclude that the difference is not significant.

13. Two random samples gave the following results:

Samples	Size	Sample	Sum of squares of deviation
		mean	from the mean
1	10	15	90
2	12	14	108

Examine whether the samples come from the same normal population. Solution:

A normal population has two parameters namely the mean μ and the variance σ^2 . If we want to test samples from the same normal population, we have to test

(i) the equality of population variances (using F-test)

(ii) the equality of population means (using t-test)

Since t-test assumes $\sigma_1^2 = \sigma_2^2$ we shall first apply F-test and then t-test.

(i) <u>F-test</u>

Given $n_1 = 10$, $n_2 = 12$, $\overline{x_1} = 15$, $\overline{x_2} = 14$

$$S_{1}^{2} = \sum \frac{(x - \bar{x})^{2}}{n_{1} - 1} = \frac{90}{9} = 10$$
$$S_{2}^{2} = \sum \frac{(x - \bar{x})^{2}}{n_{2} - 1} = \frac{108}{11} = 9.8181$$
$$S_{1}^{2} > S_{2}^{2}$$

- The parameter of interest is σ_1^2 and σ_2^2 (i)
- $H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$ (ii)
- (iii)

(iv)
$$\alpha = 0.05$$
, $d.f(v_1) = n_1 - 1 = 9$ $d.f(v_1) = n_2 - 1 = 11$

- The test statistic is $F = \frac{{S_1}^2}{{S_2}^2}$ (v)
- Reject H_0 if F > 2.90 (from table 'F') (vi)
- **Computation:** $F = \frac{10}{9.8182} = 1.019$ (vii)
- **Conclusion:** Here F=1.019< 2.90, so we accept H_0 at 5% level of significance. (viii) [Note: If F-test failed, then t-test should not be used]

(ii) t-test

Given $n_1 = 10$, $n_2 = 12$, $S_1^2 = 10$, $S_2^2 = 9.8181$

$$S^{2} = \frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{100 + 117.82}{10 + 12 - 2} = 10.9$$

- (i) The parameter is $\mu_1 \& \mu_2$.
- Null hypothesis H_0 : $\mu_1 = \mu_2$ (there is no significant difference). (ii)
- Alternative hypothesis $H_1: \mu_1 \neq \mu_2$ (iii)
- Level of significance $\propto = 0.05$. Degree of freedom= $n_1 + n_2 2 = 20$ (iv)

(v) The test statistic is
$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{S^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

(vi) Reject if |t| > 2.086 [from table 't' we get t=2.086] at 5% level of significance.

Computation: (vii)

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{S^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{1}{1.3472}$$
$$= 0.707$$

(viii) Conclusion

> Here |t| = 0.707 < 2.086, so we accept the null hypothesis H_0 at 5% level of significance. Hence the difference is not significant.

Final conclusion: From the above two test, we can conclude that the two sample drawn from the same normal population.

UNIT-II

DESIGN OF EXPERIMENTS

$\mathbf{PART} - \mathbf{A}$

1. Define Analysis of variance (ANOVA)

Solution:

Analysis of variance (ANOVA) is a technique that will enable us to test for the significance of the difference among more than two sample means.

2. State the basic principles of design of experiments.

Solution:

There are three basic principles of experimental design. They are (i) Randomization, (ii) Replication,

(iii) Local control (error control)

3. What is the aim of the design of experiments?

Solution:

The main aim of the design of experiments is to control the extraneous variables and hence to minimize the experimental error so that the result of the experiments could be attributed only to the experimental variable.

4. State the assumptions involved in ANOVA.

Solution:

For the validity of the F-test in ANOVA, the following assumptions are made:

- (i) The observations are independent.
- (ii) Parent population from which observations are taken in normal and
- (iii) Various treatment and environmental effects are additive in nature.

5. What are the uses of ANOVA?

Solution:

Analysis of variance is useful, for example, for determining

(I) Which of various training methods produces the fastest learning record.

(ii) Whether the effects of some fertiliserson the yields are significantly different,

(iii) Whether the mean qualities of outputs of various machines differ significantly etc. In fact this technique finds application in nearly every type of experimental design in natural sciences as well as in social sciences.

COMPLETELY RANDOMIZED DESIGN

6. Compare one-way classification model with two-way classification model.

Solution:

One way	Two way
1. We cannot test two sets of hypothesis	1. Two sets of hypothesis can be tested.
2. Data are classified according to one	2. Data are classified according to the
factor	different factor.

7. What is a completely randomized design.

Solution:

In a completely randomized design the treatments are given to the experimental units by a procedure of random allocation. It is used when the units are homogeneous.

8. State any two advantages of a Completely Randomized Experimental Design.

Solution:

(i) It is easy to lay out the design.

- (ii) It allows for complete flexibility. Any number of factor classes and replications may be used.
- (iii) The statistical analysis is relatively simple, even if we do not have the same number of replicates for each factor class or if the experimental errors are not the same from class to class of this factor.
- (iv) The method of analysis remains when data are missing or rejected and the loss of information due to missing data is smaller than any other design.

9. Define 2^2 factorial design.

Solution:

A two-factor factorial design is an experimental design in which data is collected for all possible combinations of the levels of the two factors of interest.

10. Why 2×2 Latin square is not possible? Explain.

23

Solution:

In Latin square, the formula for degrees of freedom for residual (SSE) is d.f=(n-1)(n-2)

Substituting n = 2, d.f = 0

 $MSE = \infty$

 \therefore 2 × 2 Latin square is not possible

<u>PART – B</u>

COMPLETELY RANDOMIZED DESIGN (C.R.D) (OR) [ONE WAY CLASSIFICATION]

1.	The following	table shows	the lives i	n hours of four	brands of electric l	lamps
	1110 10110 1111			I HOULD OF IOUL	brands of ciccure	Iuiip

Brand A	1610	1610	1650	1680	1700	1720	1800	
В	1580	1640	1640	1700	1750			
С	1460	1550	1600	1620	1640	1660	1740	1820
D	1510	1520	1530	1570	1600	1680		

Perform an analysis of variance test the homogeneity of the mean lives of the four

brands of lamps.

Solution:

 H_0 : There is no significant difference between the four brands

 H_1 : There is significant difference between the four brands

Subtract 1600 and then divided by 10 we get

X ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	Total	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}	X_{4}^{2}
Α	В	С	D					

1	-2	-14	-9	-24	1	4	196	81
1	4	-5	-8	-8	1	16	25	64
5	4	0	-7	2	25	16	0	49
8	10	2	-3	17	64	100	4	9
10	15	4	0	29	100	225	16	0
12	-	6	8	26	144	-	36	64
20	-	14	-	34	400	-	196	-
-	-	22	-	22	-	-	484	-
57	31	29	-19	98	735	361	957	267

Step 1: *N* = 26

Step 2: T=98

 $\frac{T^2}{N} = \frac{9604}{26} = 369.39$ TSS= $\Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2 + \Sigma X_4^2 - \frac{T^2}{N}$ = 753 + 361 + 957 + 267 - 369.39 = 1950.61 SSC= $\frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1} - \frac{T^2}{N}$ $N_1 \rightarrow$ Number of elements in each column = $\frac{(57)^2}{7} + \frac{(31)^2}{5} + \frac{(29)^2}{6} + \frac{(-19)^2}{6} - 369.39$

= 452.25

SSE = TSS - SSC

= 1950.61 - 452.25 = 1498.36

Step 6: ANOVA

 Source of	Sum of squares	Degree of	Mean squares	Variance-	Table
variaions		freedom		ratio	value at
					5% level
Between	SSC=452.25	C-1=4-1=3	$MSC = \frac{SSC}{C-1} =$	$F_c = \frac{MSC}{MSF}$	$F_{C}(3,22)$
Columns			$\frac{452.25}{3} = 150.75$	$=\frac{150.75}{68.11}$	= 3.05
Error	SSE=1498.36	N-C=26-4=22	$MSE = \frac{SSE}{N-C} =$	= 2.21	
			$\frac{1498.36}{22} = 68.11$	Since $\frac{MSE}{MSC}$ <	
				1	

Step 7: Conclusion:

Cal $F_c < \text{Tab} F_C$

 \therefore So we accept H_0

RANDOMIZED BLOCK DESIGN (R.B.D) (or) [TWO WAY CLASSIFICATION]

2. A set of data involving four "four tropical feed stuffs A, B, C, D" tried on 20 chicks is given below. All the twenty chicks are treated alike in all respect expect the feeding treatments and each feeding treatment is given to 5 chicks. Analyze the data.

Weight gain of baby chicks fed on different feeding materials composed of tropical feed stuffs.

						Total T _i
A	55	49	42	21	52	219
В	61	112	30	89	63	355
С	42	97	81	95	92	407

D	169	137	169	85	154	714
		Grand	l Total			G=1695

Solution :

Null hypothesis H_0 :

- (i) H_0 : There is no significant difference between treatments(columns)
- (ii) H_1 : There is no significant difference between stuffs.(rows)

Code the data by subtracting 50 from each value.

Stuffs	Trea	Treatments										
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Total	X ₁ ²	X_2^2	X_3^2	X_4^2	X_5^2	
$(Y_1) = \mathbf{A}$	5	-1	-8	-29	2	-31	25	1	64	841	4	
$(Y_2) = \mathbf{B}$	11	62	-20	39	13	105	121	3844	400	1521	169	
$(Y_3) = \mathbf{C}$	-8	47	31	45	42	157	64	2209	961	2025	1764	
$(Y_4) = \mathbf{D}$	119	87	119	35	104	464	14161	7569	14161	1225	10816	
Total	127	195	122	90	161	695(T)	14371	13623	15586	5612	12753	

Step: 1

N=20.

Step: 2

T =695

Step: 3

$$\frac{T^2}{N} = \frac{(695)^2}{20} = 24151.25$$

Step: 4

$$TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 + \sum X_5^2 - \frac{T^2}{N}$$

= 14371 + 13623 + 15586 + 5612 + 12753 - 24151.25

= 37793.75

Step:5

SSC=
$$\frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1} + \frac{(\Sigma X_5)^2}{N_1} - \frac{T^2}{N}$$
; N₁ →Number of elements in each column

$$= \frac{(127)^2}{4} + \frac{(195)^2}{4} + \frac{(122)^2}{4} + \frac{(90)^2}{4} + \frac{(161)^2}{4} - 24151.25$$

$$= 4032.25 + 9506.25 + 3721 + 2025 + 6480.25 - 24151.25$$

$$= 1613.50$$

Step: 6

SSR= $\frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N} N_2$ →Number of elements in each row $= \frac{(-31)^2}{5} + \frac{(105)^2}{5} + \frac{(157)^2}{5} + \frac{(464)^2}{5} - 24151.25$ = 192.2 + 2205 + 4929.8 + 43059.2 - 24151.25 = 26234.95

SSE = TSS - SSC - SSR

= 37793.75 - 1613.50 - 26234.95

= 9945.3

Step: 7 ANOVA TABLE

Source of	Sum of squares	Degree of	Mean squares	F-ratio	Table value at
variaions		freedom			5% level
Between	SSC=1613.50	c-1=5-1=4	$MSC = \frac{SSC}{d,f} =$	$F_c = \frac{MSE}{MSE}$	$F_c(12,4) = 5.91$
Block(Columns)				MSC	
DIOCK(COlumns)			403.375	= 2.055	
Between	SSR=26234.95	r-1=4-1=3	$MSR = \frac{SSR}{df} =$	$F_{P} = \frac{MSR}{MSR}$	$F_R(3,12) = 3.49$
			a.j	^K MSE	
Varieties(Rows)			<u>26234.95</u> 3	= 10.55	
Residual	SSE=9945.3	(N-c-	$MSE = \frac{SSE}{12} = \frac{9945.3}{12} =$	-	
			12 12		
		r+1)=12	828.775		

Step: 8 Conclusion:

Cal $F_c < Table\,F_c$ so we accept H_0

Cal $F_R > Table \, F_R$ so we reject H_0

		Α	В	C	D
	1	44	38	47	36
	2	46	40	52	43
Workers	3	34	36	44	32
	4	43	38	46	33
	5	38	42	49	39

3. Carry out ANOVA (Analysis of variance) for the following

Solution:

Null hypothesis H_0 :

(i) The mean productivity is the same for four different machines

(ii) The 5 men do not differ with respect to mean productivity.

Code the data by subtracting 40 from each value.

The coded data is

		Machir	ne Type		Total				
Workers	X ₁	<i>X</i> ₂	<i>X</i> ₃	X4		X ₁ ²	X ₂ ²	X ₃ ²	X_{4}^{2}
<i>Y</i> ₁	4	-2	7	-4	5	16	4	49	16
<i>Y</i> ₂	6	0	12	3	21	36	0	144	9
<i>Y</i> ₃	-6	-4	4	-8	-14	36	16	16	64
Y ₄	3	-2	6	-7	0	9	4	36	49
Y ₅	-2	2	9	-1	8	4	4	81	1
Total	5	-6	38	-17	T=20	101	28	326	139

Step: 1

N =20

Step: 2

T=20

Step: 3

Correction factor (C.F) =
$$\frac{T^2}{N} = \frac{400}{20} = 20$$

Step: 4

$$TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$$
$$= 101 + 28 + 326 + 139 - 20$$
$$= 574$$

 $SSC = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} + \frac{(\sum X_5)^2}{N_1} - \frac{T^2}{N} N_1 \rightarrow \text{Number of elements in each column}$ $= \frac{(5)^2}{4} + \frac{(-6)^2}{4} + \frac{(38)^2}{4} + \frac{(-17)^2}{4} - C.F$ = 5 + 7.2 + 288.8 + 57.8 - 20= 338.8

 $SSR = \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N} N_2 \rightarrow Number \text{ of elements in each row}$

$$= \frac{(5)^2}{4} + \frac{(21)^2}{4} + \frac{(-14)^2}{4} + \frac{(0)^2}{4} + \frac{(8)^2}{4} - C.F$$
$$= 6.25 + 110.25 + 49 + 16 - 20$$

= 161.5

$$SSE = TSS - SSC - SSR$$

$$= 574 - 338.8 - 161.5$$

= 73.7

ANOVA TABLE

Source of	Sum of	Degree of	Mean squares	F-ratio	Table
variations	squares	freedom(D.f)			value at 5% level
					07010701
Between	SSC=338.8	<i>C</i> – 1=4-1=3	$MSC = \frac{SSC}{D.f} =$	$F_c = \frac{MSC}{MSE}$	$F_{c}(3,12)$
Block(Columns)				MSE	= 3.49
``````````````````````````````````````				= 18.38	
	•		30		

	1		•		•
			$\frac{338.8}{3} = 112.933$		
Between	SSR=161.5	R - 1 = 5 - 1 = 4	$MSR = \frac{SSR}{D.f} =$	$F_R = \frac{MSR}{MSE}$	$F_{R}(4,12)$
Varieties(Rows)			$\frac{161.5}{4} = 40.375$	= 6.574	= 3.26
Residual	SSE=73.7	(C-1)(R-1)=12	$MSE = \frac{SSE}{D.f} =$	-	
			$\frac{73.7}{12} = 6.142$		

#### **Step: 8 Conclusion**

(i) Table  $F_c(3,12)$  at 5% level = 3.49

Calculated value  $F_C=18.38>F_T=3.49~{\rm Reject}\,H_0$ 

 $\therefore$  Mean productivity is not the same for the four different types of machines.

(ii) Table  $F_R(4,12)$  at 5% level = 3.26

Calculated value  $F_C = 6.58 > F_T = 3.26$  Reject  $H_0$ 

 $\div$  The workers differ with respect to mean productivity.

4. A company appoints 4 salesmen A, B, C and D and observes their sales in 3 seasons,

summer, winter and monsoon	The figures are g	<b>fiven in the fo</b>	llowing table:
----------------------------	-------------------	------------------------	----------------

season	Salesmen				
	Α	В	С	D	
Summer	45	40	28	37	
Winter	43	41	45	38	
Monsoon	39	39	43	41	

Carry out an analysis of variances.

#### Solution:

Null hypothesis  $H_0$ : (i) The salesman do not differ significantly in their performance.

(ii)There is no significant difference between the seasons.

Code the data by subtraction 43 from each value to simplify calculations.

Seasons		Sale	smen			X ² 1	$X^2$	$X^2$	X ²
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X4	Total	1	2	3	4
Summer	-2	-3	15	6	16	4	9	225	36
Winter	0	2	-2	5	5	0	4	4	25
Monsoon	4	4	0	2	10	16	16	0	4
Total	2	3	13	13	31	20	29	229	65

**Step 1:** *N* = 12

Step 2: T=31

Step 3:  $\frac{T^2}{N} = \frac{(31)^2}{12} = 80$ 

Step 4:

 $TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ = 20 + 29 + 229 + 65 - 80 = 263

Step 5:

 $SSC = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N} \quad N_1 \rightarrow \text{Number of elements in each column}$ 

$$= \frac{(2)^2}{3} + \frac{(3)^2}{3} + \frac{(13)^2}{3} + \frac{(13)^2}{3} - 80$$
$$= 37.6$$

Step 6:

 $SSR = \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} - \frac{T^2}{N} \quad N_2 \rightarrow Number \text{ of elements in each row}$ 

$$=\frac{(16)^2}{4} + \frac{(5)^2}{4} + \frac{(10)^2}{4} - 80$$

= 15.25

SSE = TSS - SSC - SSR

#### = 263 - 37.6 - 15.25 = 210.15

#### **Step 7: ANOVA TABLE**

Source of	Sum of	Degree of	Mean squares	Variance-	Table value at
variations	squares	freedom		ratio	5% level
Between	SSC=37.67	c-1=4-1=3	$MSC = \frac{SSC}{c-1}$	$F_c = \frac{MSE}{MSC}$	$F_C(6,3) = 8.94$
Block(Columns)			$=\frac{37.67}{3}=12.56$	= 2.79	
Between	SSR=15.25	r-1=3-1=2	$MSR = \frac{SSR}{r-1}$	$F_R = \frac{MSE}{MSR}$	$F_R(6,2) = 19.33$
Varieties(Rows)			$=\frac{15.25}{2}=7.63$	= 4.587	
Residual	SSE=210.15	(C-1)(R-1)=6	$MSE = \frac{SSE}{N - C - r + 1}$	-	
			$=\frac{210.15}{6}=35$		

Step 8: Conclusion:

 $\operatorname{Cal} F_c < \operatorname{Tab} F_C$ 

 $\therefore$  So we accept  $H_0$ 

5. Four varieties A, B, C, D of a fertilizer are tested in a randomized block design with 4

replication. The plot yields in pounds are as follows:

Column Row	1	2	3	4
1	A(12)	D(20)	C(16)	B(10)
2	D(18)	A(14)	B(11)	C(14)
3	B(12)	C(15)	D(19)	A(13)
4	C(16)	B(11)	A(15)	D(20)

Analyze the experimental yield.

Solution:

Null hypothesis  $H_0$ : Four varieties are similar

Alternative hypothesis  $H_1$ : Four varieties are not similar.

Calculation of correction factor

		Bl	ock		Total of				
Variety	1	2	3	4	varieties	$X_{1}^{2}$	X ² ₂	X ² ₃	X ² ₄
	$(X_1)$	(X ₂ )	(X ₃ )	$(X_4)$					
А	12	14	15	13	54	144	196	225	169
В	12	11	11	10	44	144	121	121	100
С	16	15	16	14	61	256	225	256	196
D	18	20	19	20	77	324	400	361	400
Total	58	60	61	57	236	868	942	963	865

**Step 1:** *N* = 16

Step 2: T=236

**Step 3:** 
$$\frac{T^2}{N} = \frac{(236)^2}{16} = 3481$$

Step 4:

 $TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ = 868 + 942 + 963 + 865 - 3481

= 157

Step 5:

 $SSC = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N} \quad N_1 \to \text{Number of elements in each column}$  $= \frac{(58)^2}{4} + \frac{(60)^2}{4} + \frac{(61)^2}{4} + \frac{(57)^2}{4} - 3481$ = 841 + 900 + 930 + 812 - 3481 = 2

Step 6:

 $\text{SSR} = \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N} \quad N_2 \rightarrow \text{Number of elements in each row}$ 

$$= \frac{(54)^2}{4} + \frac{(44)^2}{4} + \frac{(61)^2}{4} + \frac{(77)^2}{4} - 3481$$
$$= 729 + 484 + 930.25 + 1482.25 - 3481$$
$$= 144.5$$
$$SSE = TSS - SSC - SSR$$
$$= 157 - 2 - 144.5 = 10.5$$

**Step 7: ANOVA TABLE** 

Source of	Sum of	Degree of	Mean squares	Variance-ratio	Table value
variations	squares	freedom			at 5% level
Between	<i>SSC</i> = 144.5	C - 1 = 3	$MSC = \frac{SSC}{C-1} = \frac{144.5}{3}$	$F_C = \frac{MSC}{MSE}$	$F_{C}(3,9)$
Varieties			= 48.17	$=\frac{48.17}{1.22}=39.48$	= 3.86
Between	SSR = 2	R - 1 = 3	$MSR = \frac{SSR}{m-1} = \frac{2}{2}$	$F_R = \frac{MSE}{MSP} = \frac{1.22}{0.77}$	$F_{R}(9,3)$
Blocks			r - 1 = 3 = 0.67	= 1.82	= 8.81
Residual	SSE = 11	(C-1)(R-1)	MSE		
		= 9	$=\frac{SSE}{(C-1)(R-1)}$		
			$=\frac{11}{9}=1.22$	-	

**Step 8: Conclusion:** 

 $\operatorname{Cal} F_c > \operatorname{Tab} F_C \; ; \; \operatorname{Cal} F_R < \operatorname{Tab} F_R$ 

 $\therefore$  So we reject  $H_0$ 

Hence four varieties are not similar. But the varieties are similar along block wise.

#### LATIN SQUARE DESIGNS

6. Analyze the variance in the Latin square of yields (in kgs) of paddy where P,Q,R,S denote the different methods of cultivation:

S122 P121 R123 Q122

Q124	R123	P122	$\mathbf{S125}$
P120	Q119	S120	R121
R122	S123	Q121	P122

Examine whether different method of cultivation have significantly different yields.

# Solution:

Null hypothesis  $H_0$ : There is no significant difference between rows, between columns and treatments.

Let us take 120 as origin for simplifying the calculations.

#### Table I

	(X ₁ )	(X ₂ )	(X ₃ )	(X ₄ )	Total	X ² 1	X ² ₂	X ² ₃	X ² ₄
<i>Y</i> ₁	2	1	3	2	8	4	1	9	4
Y ₂	4	3	2	5	14	16	9	4	25
Y ₃	0	-1	0	1	0	0	1	0	1
Y ₄	2	3	1	2	8	4	9	1	4
Total	8	6	6	10	30	24	20	14	34

**Step 1:** N = 16

**Step 2:** T=30

**Step 3:** 
$$\frac{T^2}{N} = \frac{(30)^2}{16} = 56.25$$

Step 4:

 $TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$ = 24 + 20 + 14 + 34 - 56.25= 35.75

#### Step 5:

 $\text{SSC} = \frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} - \frac{T^2}{N} \quad N_1 \rightarrow \text{Number of elements in each column}$
$$= \frac{(8)^2}{4} + \frac{(6)^2}{4} + \frac{(6)^2}{4} + \frac{(10)^2}{4} - 56.25$$
$$= 2.75$$

Step 6:

 $SSR = \frac{(\sum Y_1)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_3)^2}{N_2} + \frac{(\sum Y_4)^2}{N_2} - \frac{T^2}{N} \quad N_2 \to \text{Number of elements in each row}$  $= \frac{(8)^2}{4} + \frac{(14)^2}{4} + \frac{(0)^2}{4} + \frac{(8)^2}{4} - 56.25$ = 24.75

Table II: To find SST:

					Т
Р	0	1	2	2	5
Q	4	-1	1	2	6
R	2	3	3	1	9
S	2	3	0	5	10

$$SST = \frac{(5)^2}{4} + \frac{(6)^2}{4} + \frac{(9)^2}{4} + \frac{(10)^2}{4} - 56.25$$

= 4.25

SSE = TSS - SSC - SSR - SST

$$= 35.75 - 2.75 - 24.75 - 4.25 = 4$$

Step 7: ANOVA

Source of	Sum of	Degree of	Mean squares	Variance-ratio	Table value at
variaions	squares	freedom			5% level
Between	SSC	n - 1 = 3	$MSC = \frac{SSC}{1}$	$F_{c} = \frac{MSC}{MSE} = \frac{0.917}{0.667} = 1.375$	$F_C(3,6) = 4.76$
Column	= 2.75		n-1 = 0.917	• MSE 0.667	

Between	SSR	n - 1 = 3	$MSR = \frac{SSR}{n-1}$	$F_R = \frac{MSR}{MSE} = \frac{8.25}{0.667} = 12.369$	$F_R(3,6) = 4.76$
Row	= 24.75		= 8.25		
Between	SST	n - 1 = 3	$MST = \frac{SST}{n-1}$	$F_T = \frac{MST}{MSE} = \frac{1.417}{0.667} = 2.124$	$F_T(3,6) = 4.76$
Treatments	= 4.25		= 1.417		
Error	SSE = 4	( <i>n</i> – 1)	$MSE = \frac{SSE}{6}$	_	
		(n-2) = 6	= 0.667		
Total	TSS				
	= 35.75				

**Step 8: Conclusion:** 

Cal  $F_c$  < Tab  $F_C$ Cal  $F_R$  > Tab  $F_R$ Cal  $F_T$  < Tab  $F_T$ 

There is a significant difference between rows.

But there is no significant difference between columns and treatments.

7. The following is a Latin square design when 4 varieties of seeds are being tested. Set up the analysis of variance table and state your conclusion. You may carry out suitable change of obtain and scale.

Α	105	В	95	С	125	D	115
С	115	D	125	Α	105	В	105
D	115	С	95	В	105	Α	115
В	95	Α	135	D	95	С	115

#### Solution:

Subtract 100 and then divided by 5 we get

А	1	В	-1	С	5	D	3
С	3	D	5	А	1	В	1
D	3	С	-1	В	1	А	3
В	-1	А	7	D	-1	С	3

#### Table I

Y _n	(X ₁ )	(X ₂ )	(X ₃ )	(X ₄ )	Total	X ² 1	X ² ₂	X ² ₃	X ² ₄
<i>Y</i> ₁	1	-1	5	3	8	1	1	25	9
<i>Y</i> ₂	3	5	1	1	10	9	25	1	1
<i>Y</i> ₃	3	-1	1	3	6	9	1	1	9
Y ₄	-1	7	-1	3	8	1	49	1	9
Total	6	10	6	10	32	20	76	28	28

**Step 1:** *N* = 16

**Step 2:** T=32

**Step 3:**  $\frac{T^2}{N} = \frac{(32)^2}{16} = 64$ 

Step 4:

$$TSS = \sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 - \frac{T^2}{N}$$
$$= 20 + 76 + 28 + 28 - 64$$

= 88

## Step 5:

 $SSC = \frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \frac{(\Sigma X_4)^2}{N_1} - \frac{T^2}{N} \quad N_1 \to \text{Number of elements in each column}$  $= \frac{(6)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(10)^2}{4} - 64$ 39

Step 6:

 $SSR = \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} + \frac{(\Sigma Y_4)^2}{N_2} - \frac{T^2}{N} \quad N_2 \rightarrow Number of elements in each row$ 

$$= \frac{(8)^2}{4} + \frac{(10)^2}{4} + \frac{(6)^2}{4} + \frac{(8)^2}{4} - 64$$
$$= 16 + 25 + 9 + 16 - 64$$

= 2

Table II: To find SST:

					Total
А	1	1	3	7	12
В	-1	1	1	-1	0
С	5	3	-1	3	10
D	3	5	3	-1	10

$$SST = \frac{(12)^2}{4} + \frac{(0)^2}{4} + \frac{(10)^2}{4} + \frac{(10)^2}{4} - \frac{T^2}{N}$$

= 36 + 0 + 25 + 25 - 64 = 22

SSE = TSS - SSC - SSR - SST

= 88 - 4 - 2 - 22 = 60

## Step 7: ANOVA

Source of	Sum of	Degree of	Mean squares	Variance-ratio	Table value at
variaions	squares	freedom			5% level
Between	SSC = 4	n - 1 = 3	$MSC = \frac{SSC}{1.33}$	$F_c = \frac{MSC}{m}$	$F_C(6,3) = 8.94$
Column			n-1	- MSE	
Column				10	
				$=\frac{1.33}{1.33}=7.52$	

40

Between	SSR = 2	n-1=3	$MSR = \frac{SSR}{m-1} = 0.67$	$F_R = \frac{MSR}{MSE}$	$F_R(6,3) = 8.94$
Row			n-1	10	
				$=\frac{14.9}{0.67}$	
Between	<i>SST</i> = 22	n - 1 = 3	$MST = \frac{SST}{n-1} = 7.33$	$F_T = \frac{MST}{MSE}$	$F_T(6,3) = 8.94$
Treatments				$-\frac{10}{10}$ - 136	
				$-\frac{1.30}{7.33}$ - 1.30	
Error	SSE = 60	(n-1)(n-2)	$MSE = \frac{SSE}{(n-1)(n-2)}$	_	
		= 6	= 10		
Total	TSS = 88	15			

**Step 8: Conclusion:** 

$$\label{eq:relation} \begin{split} & \operatorname{Cal} \, F_R > \operatorname{Tab} \, F_R \\ & \operatorname{Cal} \, F_c < \operatorname{Tab} \, F_C \end{split}$$

 $\operatorname{Cal} F_T < \operatorname{Tab} F_T$ 

There is a significant difference between rows as well as columns.

But there is no significant difference between treatments.

#### **UNIT-III**

#### SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

### $\mathbf{PART} - \mathbf{A}$

#### FIXED POINT ITERATION METHOD

1. What is the order of convergence and the condition for convergence of fixed point iteration method?

Sol:

Order of convergence: 1

Condition for convergence:  $|\phi'(x)| < 1$ 

#### **NEWTON'S METHOD (OR) NEWTON RAPHSON METHOD**

2. State the order of convergence and condition for convergence of Newton-Raphson method. (OR)

Write the convergence condition and order of convergence for Newton-Raphson method.

Solution: Order of convergence is two.

Condition for convergence is  $|f(x).f''(x)| < |f'(x)|^2$ 

3. Find the smallest positive roots of the equation  $x^3 - 2x + 0.5 = 0$ 

Solution:

 $f(x) = x^3 - 2x + 0.5$ 

$$f'(x) = 3x^2 - 2$$
$$f(0) = 0.5(+ve)$$
$$f(1) = -0.5(-ve)$$

2

Hence the roots lies between 0 and 1. Since the value of f(x) at x=0 is very close to zero than the value of f(x) at x=1, we can say that the root is very close to 0. Therefore we can assume that  $x_0 = 0$  is the initial approximation to the root.

#### Newton's formula is

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 

Putting n=0 in (1), we get the first approximation  $x_1$  to the root, given by

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{0.5}{-2}$$
$$x_1 = 0.25$$

Putting n=1 in (1), we get the second approximation  $x_2$  to the root, given by

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.25 - \frac{(0.25)^3 - 2(0.25) + 0.5}{3(0.25)^2 - 2}$$
$$= 0.25 - \frac{0.0156}{-1.8125} = 0.2586$$

 $x_2 = 0.2586$ 

Putting n=2 in (1), we get the third approximation  $x_3$  to the root, given by

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.2586 - \frac{(0.2586)^3 - 2(0.2586) + 0.5}{3(0.2586)^2 - 2}$$

 $x_3 = 0.2586$ 

Hence the smallest positive root is **0**.2586.

4. Derive the formula to find the value of 1/N where  $N \neq 0$ , using Newton Raphson method.

Solution:

Let 
$$x = \frac{1}{N}$$
  

$$N = \frac{1}{x}$$

$$\frac{1}{x} - N = 0$$

$$f(x) = \frac{1}{x} - N$$
;  $f'(x) = -\frac{1}{x^2}$ 

The Newton's formula is  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 

$$= x_n - \frac{\left(\frac{1}{x_n} - N\right)}{\left(-\frac{1}{x_n^2}\right)}$$
$$= x_n + \left(\frac{1}{x_n} - N\right) X \quad x_n^2$$
$$= x_n + x_n - x_n^2 N$$
$$x_{n+1} = x_n(2 - Nx_n)$$

5. Arrive a formula to find the value of  $\sqrt[3]{N}$  where  $N \neq 0$ , using Newton-Raphson method.

Solution:

Let 
$$x = \sqrt[3]{N}$$
  
 $x^3 = N$   
 $x^3 - N = 0$   
 $f(x) = x^3 - N$ ;  $f'(x) = 3x^2$ 

By Newton-Raphson method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - \frac{x_n^3 - N}{3x_n^2} = \frac{3x_n^3 - x_n^3 + N}{3x_n^2}$$
$$= \frac{1}{3} \left[ \frac{2x_n^3 + N}{x_n^2} \right]$$
$$= \frac{1}{3} \left[ 2x_n + \frac{N}{x_n^2} \right], n = 0, 1, 2, \dots \dots$$

## **GAUSSIAN ELIMINATION AND GAUSS – JORDON METHODS**

6. Give two direct methods to solve a system of linear equation.

## Solution:

- * Gauss Elimination Method
- * Gauss Jordon Method.

## 7. Compare Gauss - Jacobi and Gauss - Sedial method.

#### Solution:

S.No	Gauss – Jacobi method	Gauss – Sedial method
1.	Convergence rate is slow	The rate of convergence of Gauss – Seidal method is
		fast, roughly twice that of Gauss – Jacobi
2.	Indirect method	Indirect method
3.	condition for convergence is the	Condition for convergence is the co-efficient matrix is
	coefficient matrix is diagonally	diagonally dominant.
	dominant	

8. Solve 3x + 2y = 4, 2x - 3y = 7 by Gauss elimination method.

#### Solution:

Given 3x + 2y = 4

$$2x - 3y = 7$$

The given system is equivalent to

$$\begin{bmatrix} 3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
  
Here  $[A, B] = \begin{pmatrix} 3 & 2 \\ 2 & -3 \end{vmatrix} \begin{bmatrix} 4 \\ 7 \end{pmatrix}$ 
$$= \begin{pmatrix} 3 & 2 \\ 0 & -13 \end{vmatrix} \begin{bmatrix} 4 \\ 13 \end{pmatrix} R_2 \leftrightarrow 3R_2 - 2R_1$$

This is an upper triangular matrix

Using backward substitution method

-13y = 13 y = -1 3x + 2y = 4 3x - 2 = 4 3x = 6x = 2

Hence the solution is x = 2 and y = -1

# 9. Which iterative method converges faster for solving linear system of equations? Why?

Sol:

Gauss Seidal method is solving for linear system of equations converge faster. In this method the rate of convergence is roughly twice as fast as that of Gauss- Jacobi's method.

#### 10.Write the uses of power method?

## Sol:

To find the numerically largest eigen value of a given matrix.

#### EIGEN VALUE OF A MATRIX BY POWER METHOD

46

11. Find the dominant eigen value and eigenvector of the matrix  $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$  by power method.

Solution:

Let 
$$X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
  
 $AX_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix} = 7 \begin{pmatrix} 0.43 \\ 1 \end{pmatrix} = 7X_2$   
 $AX_2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0.43 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.43 \\ 5.29 \end{pmatrix} = 5.29 \begin{pmatrix} 0.46 \\ 1 \end{pmatrix} = 5.29X_3$   
 $AX_3 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0.46 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.46 \\ 5.38 \end{pmatrix} = 5.38 \begin{pmatrix} 0.46 \\ 1 \end{pmatrix} = 5.38X_4$ 

Hence the dominant eigen value=5.38

The corresponding eigen vector=  $\binom{0.46}{1}$ .

#### <u>PART – B</u>

#### FIXED POINT ITERATION METHOD

#### 1. Using fixed point iteration method to find the positive root of the equation

 $\cos x - 3x + 1 = 0.$ 

Sol:

Given that  $\cos x = 3x - 1$ 

Let f(x) = cosx - 3x + 1 = 0

$$f(0) = 1 - 0 + 1 = 2 = +ve$$

$$f(1) = \cos 1 - 3 + 1 = -1.4597 = -ve$$

So, a root lies between 0 and 1

The given equation may be written as

$$x = \frac{1}{3}(1 + \cos x) = g(x)$$
$$g(x) = \frac{1}{3}(1 + \cos x)$$

$$g'(x) = -\frac{1}{3}sinx$$
  

$$|g'(x)| = \frac{1}{3}sinx$$
  

$$|g'(0)| = 0 < 1$$
  

$$|g'(1)| = \frac{1}{3}sin 1 = 0.2804 < 1$$

So, the method can be applied.

Let  $x_0 = 0.6$ 

$$x_{1} = \frac{1}{3} [1 + \cos x_{0}] = \frac{1}{3} [1 + \cos (0.6)] = 0.60845$$
$$x_{2} = \frac{1}{3} [1 + \cos x_{1}] = 0.60684$$
$$x_{3} = \frac{1}{3} [1 + \cos x_{2}] = 0.60715$$
$$x_{4} = \frac{1}{3} [1 + \cos x_{5}] = 0.60709$$
$$x_{5} = \frac{1}{3} [1 + \cos x_{4}] = 0.60710$$
$$x_{6} = \frac{1}{3} [1 + \cos x_{5}] = 0.60710$$

Here  $x_5 = x_6 = 0.60710$ 

Hence, the better approximate root is 0.60710

## 2. Solve $e^x - 3x = 0$ by method of fixed point iteration.

#### Sol:

G.T:  $e^x - 3x = 0$ 

Let  $f(x) = e^x - 3x$ 

$$f(0) = e^0 - 3(0) = 1(+ve)$$

$$f(1) = e^1 - 3(1) = e - 3(-ve)$$

Therefore the root lies between 0 &1.

The given equation is of the form,  $x = \frac{e^x}{3} = g(x)$ 

$$g'(x) = \frac{e^{x}}{3}$$
$$|g'(x)| = \frac{e^{x}}{3}$$
$$|g'(0)| = \frac{1}{3} < 1$$
$$|g'(1)| = \frac{e}{3} < 1$$

Let us assume  $x_0 = 0.6$ 

$$x_{1} = \frac{e^{x_{0}}}{3} = \frac{1}{3}e^{0.6} = 0.6074$$

$$x_{2} = \frac{e^{x_{1}}}{3} = \frac{1}{3}e^{0.6074} = 0.6119$$

$$x_{3} = \frac{e^{x_{2}}}{3} = 0.6146$$

$$x_{4} = \frac{e^{x_{3}}}{3} = 0.6163$$

$$x_{5} = \frac{e^{x_{4}}}{3} = 0.6174$$

$$x_{6} = \frac{e^{x_{5}}}{3} = 0.6180$$

$$x_{7} = \frac{e^{x_{6}}}{3} = 0.6184$$

$$x_8 = \frac{e^{x_7}}{3} = 0.6187$$

$$x_9 = \frac{e^{x_8}}{3} = 0.6188$$

$$x_{10} = \frac{e^{x_9}}{3} = 0.6189$$

$$x_{11} = \frac{e^{x_{10}}}{3} = 0.6190$$

$$x_{12} = \frac{e^{x_{11}}}{3} = 0.6190$$

 $\therefore x_{11} = x_{12} = 0.6190$  correct to 4 decimal places.

Hence, the better approximate root is 0.6190.

#### **NEWTON'S METHOD (OR) NEWTON RAPHSON METHOD**

## 3. Solve the equation $x \log_{10} x = 1.2$ using Newton-Raphson method.

Solution:

Let 
$$f(x) = x \log_{10} x - 1.2 \Rightarrow f'(x) = x \times \frac{1}{x} \log_{10} e + \log_{10} x$$

$$f'(x) = \log_{10}e + \log_{10}x$$

$$f(0) = 0 \log_{10}(0) - 1.2 = -1.2 = -ve$$

$$f(1) = 1 \log_{10}(1) - 1.2 = -1.2 = -ve$$

 $f(2) = 2 \log_{10}(2) - 1.2 = -0.598 = -ve$ 

 $f(3) = 3 \log_{10}(3) - 1.2 = 0.231 = +ve$ 

Therefore the root lies between 2&3

## |f(2)| > |f(3)|

Hence the root is nearer to 3 choose  $x_0=2.7$ 

$$\begin{aligned} x_{n+1} &= x_n - \frac{f(x_n)}{f'(x_n)} \\ x_1 &= x_0 - \frac{f(x_0)}{f'(x_0)} = 2.7 - \frac{f(2.7)}{f'(2.7)} = 1 - \left[\frac{2.7 \log_{10}(2.7) - 1.2}{\log_{10}e + \log_{10}2.7}\right] = 2.7 - \left[\frac{-0.035}{0.867}\right] \\ x_1 &= 2.740 \\ x_2 &= x_1 - \frac{f(x_1)}{f'(x_1)} = 2.740 - \frac{f(2.740)}{f'(2.740)} = 2.740 - \left[\frac{-0.006}{0.872}\right] \\ x_2 &= 2.741 \\ x_3 &= x_2 - \frac{f(x_2)}{f'(x_2)} = 2.741 - \frac{f(2.741)}{f'(2.741)} = 2.741 - \left[\frac{-.003}{0.872}\right] \\ x_3 &= 2.741 \end{aligned}$$

We observe that the root  $x_2 = x_3 = 2.741$ Correct to 3 decimal places. Hence the required root correct to three decimal places is 2.741

# 4. Find the real positive root of $3x - \cos x - 1 = 0$ by Newton's method correct to 5 decimal places.

Solution :

Let 
$$f(x) = 3x - \cos x - 1$$

 $f'(x) = 3 + \sin x$ 

$$f(0) = 0 - 1 - 1 = -2 = -ve$$

$$f(1) = 3 - \cos 1 - 1 = 2 - \cos 1 = 1.459698 = +ve$$

Therefore a root lies between 0 and 1.

Hence the root lies between 0 and 1.

Let 
$$x_0 = 1$$
  
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \dots \dots \dots (1)$ 

Let n=0 in equation (1)

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$= 1 - \frac{f(1)}{f'(1)}$$

$$= 1 - \left[\frac{3(1) - \cos(1) - 1}{3 + \sin(1)}\right]$$

$$= 1 - \left[\frac{1.45970}{3.84147}\right]$$

$$= 1 - 0.37998$$

$$x_{1} = 0.62002$$

- -

Let n=1 in equation (1)

$$\begin{aligned} x_2 &= x_1 - \frac{f(x_1)}{f'(x_1)} \\ &= 0.62002 - \frac{f(0.62002)}{f'(0.62002)} \\ &= 0.62002 - \left[\frac{3(0.62002) - \cos(0.62002) - 1}{3 + \sin(0.62002)}\right] \\ x_2 &= 0.60712 \end{aligned}$$

Let n=2 in equation (1)

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$
$$= 0.60712 - \frac{f(0.60712)}{f'(0.607102)}$$

 $= 0.60712 - \left[\frac{3(0.60712) - \cos(0.60712) - 1}{3 + \sin(0.60712)}\right]$   $x_3 = 0.60710$   $x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}$   $= 0.60710 - \frac{f(0.60710)}{f'(0.60710)}$   $= 0.60710 - \left[\frac{3(0.60710) - \cos(0.60710) - 1}{3 + \sin(0.60710)}\right]$   $x_3 = 0.60710$ 

From  $x_2$  and  $x_3$  we findout the root is 0.60710 correct to five decimal places.

5. Interpret the Newton's iterative formula to calculate the reciprocal of N and hence find the value of 1/26.

Sol:

Let 
$$x = \frac{1}{N}$$

Let n=3 in equation (1)

$$N = \frac{1}{x}$$
$$\frac{1}{x} - N = 0$$

$$f(x) = \frac{1}{x} - N$$
;  $f'(x) = -\frac{1}{x^2}$ 

The Newton's formula is  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 

$$= x_n - \frac{\left(\frac{1}{x_n} - N\right)}{\left(-\frac{1}{x_n^2}\right)}$$

$$= x_n + \left(\frac{1}{x_n} - N\right) X \quad x_n^2$$

$$= x_n + x_n - x_n^2 N$$
$$= x_n (2 - N x_n)$$

To find 1/26, take N=26

Let  $x_0 = 0.04$ 

W.K.T  $x_{n+1} = x_n(2 - Nx_n)$ 

 $x_{1} = x_{0}(2 - 26x_{0})$  = 0.04(2 - 26(0.04)) = 0.0384  $x_{2} = x_{1}(2 - 26x_{1})$  = 0.0384(2 - 26(0.0384)) = 0.0385  $x_{3} = x_{2}(2 - 26x_{2})$  = 0.0385(2 - 26(0.0385)) = 0.0385

Here  $x_2 = x_3 = 0.0385$ 

Hence the value of 1/26=0.0385

#### SOLUTION OF LINEAR SYSTEM BY GAUSSIAN ELIMINATION METHOD

6. Solve the system of equations using Gauss elimination method

5x - 2y + z = 4; 7x + y - 5z = 8; 3x + 7y + 4z = 10.

## Solution:

The given system is equivalent to

$$\begin{bmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 10 \end{bmatrix}$$
$$\begin{bmatrix} A, B \end{bmatrix} = \begin{pmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix} \begin{bmatrix} 10 \\ 18 \\ 16 \end{bmatrix}$$
$$\sim \begin{pmatrix} 5 & -2 & 1 \\ 0 & -19 & 27 \\ 0 & -41 & -17 \end{bmatrix} \begin{vmatrix} 4 \\ -12 \\ -38 \end{pmatrix} \stackrel{[]}{\underset{=}{\sqcup}} \begin{array}{c} R_2 \leftrightarrow 7R_1 - 5R_2 \\ R_3 \leftrightarrow 3R_1 - 5R_3 \\ []}{\underset{=}{\sqcup}} \begin{array}{c} R_3 \leftrightarrow 3R_1 - 5R_3 \\ []}{\underset{=}{\sqcup}} \end{array}$$
$$\sim \begin{pmatrix} 5 & -2 & 1 \\ 0 & -19 & 27 \\ 0 & 0 & 1430 \\ 0 & 0 & 1430 \\ \end{bmatrix} \begin{array}{c} 4 \\ -12 \\ 230 \\ []}{\underset{=}{\sqcup}} \begin{array}{c} R_3 \leftrightarrow 41R_2 - 19R_3 \\ []}{\underset{=}{\sqcup}} \end{array}$$

Use back substitution to find the solution to the system.

1430z = 230 z = 230/1430 z = 0.161 -19y + 27z = -12 -19y = -12 - 4.343 Y = 0.860 5x - 2y + z = 4 5x - 1.72 + 1.161 = 4 x = 1.112 x = 1.112, y = 0.860, z = 0.161.

Hence x = 1.112, y = 0.860, z = 0.161.

7. Solve the following equations by Gauss elimination method:

$$2x + y + 4z = 12; \ 8x - 3y + 2z = 20; 4x + 11y - z = 33$$

### Solution:

The given system is equivalent to

$$\begin{bmatrix} 2 & 1 & 4 \\ 8 & -3 & 2 \\ 1 & 4 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12 \\ 20 \\ 33 \end{bmatrix}$$

$$[A,B] = \begin{pmatrix} 2 & 1 & 4 & 12 \\ 8 & -3 & 2 & 20 \\ 1 & 4 & 9 & 33 \end{pmatrix}$$
  

$$\sim \begin{pmatrix} 2 & 1 & 4 \\ 0 & 7 & 14 \\ 0 & -9 & 9 \\ \end{vmatrix} \begin{vmatrix} 12 \\ 18 \\ -9 \end{vmatrix} R_2 \to 4R_1 - R_2, R_3 \to 2R_1 - R_3$$
  

$$\sim \begin{pmatrix} 2 & 1 & 4 \\ 0 & -9 & 9 \\ \end{vmatrix} \begin{vmatrix} 12 \\ 18 \\ -9 \\ \end{pmatrix} R_3 \to 7R_3 + 9R_2$$

Use back substitution to find the solution to the system.

189z = 189z = 1 $7y + 14z = 28 \Rightarrow 7y + 14 = 28 \Rightarrow 7y = 14$ y = 2 $2x + y + 4z = 12 \Rightarrow 2x + 2 + 4 = 12$ 2x = 6x = 3

Hence x = 3, y = 2, z = 1.

#### SOLUTION OF LINEAR SYSTEM BY GAUSS - JORDAN METHODS

8. Using the Gauss – Jordan method solve the following equations 10x + y + z = 12,

2x + 10y + z = 13, x + y + 5z = 7

Solution:

Given 
$$10x + y + z = 12$$
  
 $2x + 10y + z = 13$   
 $x + y + 5z = 7$ 

Interchanging the first and the last equation then

56

x + y + 5z = 72x + 10y + z = 1310x + y + z = 12

The given system is equivalent to

$$\begin{bmatrix} 1 & 1 & 5 \\ 2 & 10 & 1 \\ 10 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ 13 \\ 12 \end{bmatrix}$$
  
AX = B  
Here [A, B] =  $\begin{pmatrix} 1 & 1 & 5 & 7 \\ 2 & 10 & 1 & 13 \\ 10 & 1 & 1 & 12 \end{pmatrix}$ 

Fix the pivot element row and make the other elements zero in the pivot element column.

$$\sim \begin{pmatrix} 1 & 1 & 5 & 7 \\ 0 & 8 & -9 & -1 \\ 0 & -9 & -49 & -58 \end{pmatrix} R_2 \leftrightarrow R_2 - 2R_1 \& R_3 \leftrightarrow R_3 - 10R_1 \\ \sim \begin{pmatrix} 8 & 0 & 49 & 57 \\ 0 & 8 & -9 & -1 \\ 0 & 0 & 473 & 473 \end{pmatrix} R_1 \leftrightarrow 8R_1 - R_2 \& R_3 \leftrightarrow 8R_3 + 9R_2 \\ \sim \begin{pmatrix} 8 & 0 & 49 & 57 \\ 0 & 8 & -9 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} R_3 \leftrightarrow \frac{R_3}{473} \\ \sim \begin{pmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 0 & 8 \\ 0 & 0 & 1 & 1 \end{pmatrix} R_1 \leftrightarrow R_1 - 49R_3 \& R_2 \leftrightarrow R_2 + 9R_3 \\ \sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} R_1 \leftrightarrow \frac{R_1}{8} \& R_2 \leftrightarrow \frac{R_2}{8}$$

Therefore the solution is x = 1, y = 1, z = 1

9. Using the Gauss – Jordan method solve the following equations 2x - y + 3z = 8,

-x + 2y + z = 4, 3x + y - 4z = 0

Solution:

Given 2x - y + 3z = 8-x + 2y + z = 43x + y - 4z = 0

The given system is equivalent to

 $\begin{bmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix}$ AX = BHere [A, B] =  $\begin{pmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{vmatrix} \begin{pmatrix} 8 \\ 0 \end{pmatrix}$ 

Fix the pivot element row and make the other elements zero in the pivot element column.

$$\sim \begin{pmatrix} 2 & -1 & 3 & | & 8 \\ 0 & 3 & 5 & | & 16 \\ 0 & 5 & -17 | & -24 \end{pmatrix} R_2 \leftrightarrow 2R_2 + R_1 \& R_3 \leftrightarrow 2R_3 - 3R_1 \\ \sim \begin{pmatrix} 6 & 0 & 14 & | & 40 \\ 0 & 3 & 5 & | & 16 \\ 0 & 0 & -76 | & -152 \end{pmatrix} R_1 \leftrightarrow 3R_1 + R_2 \\ R_3 \leftrightarrow 3R_3 - 5R_2 \\ \sim \begin{pmatrix} 6 & 0 & 14 & | & 40 \\ 0 & 3 & 5 & | & 16 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} R_3 \leftrightarrow \frac{R_3}{-76} \\ \sim \begin{pmatrix} 6 & 0 & 0 & | & 12 \\ 0 & 3 & 0 & | & 6 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} R_1 \leftrightarrow R_1 - 14R_3 \& R_2 \leftrightarrow R_2 - 5R_3 \\ \sim \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} R_1 \leftrightarrow \frac{R_1}{6} \& R_2 \leftrightarrow \frac{R_2}{3}$$

Therefore the solution is x = 2, y = 2, z = 2

#### **GAUSS – JACOBI METHOD AND GAUSS – SEDIAL METHOD**

10. Solve the system of equation by Gauss - Sedial method correct to 4 decimal places

20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25

Solution: .

Given 20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25

As the coefficient matrix is diagonally dominant solving for x, y, z we get

$$x = \frac{1}{20}[17 - y + 2z], y = \frac{1}{20}[-18 - 3x + z], z = \frac{1}{20}[25 - 2x + 3y]$$

Let the initial value be y=0, z=0

Iteration	$x = \left[\frac{17 - y + 2z}{20}\right]$	$y = \left[\frac{-18 - 3x + z}{20}\right]$	$z = \left[\frac{25 - 2x + 3y}{20}\right]$
1	0.85	-1.0275	1.0109
2	1.0025	-0.9998	0.9998
3	1.0000	-1.0000	1.0000
4	1	-1	1

Hence x = 1, y = -1, z = 1.

11. Solve the system of equation by Gauss – Seidel method 28x + 4y - z = 32, x + 3y + 10z = 24,

2x + 17y + 4z = 35.

Solution: .

Given 28x + 4y - z = 32x + 3y + 10z = 242x + 17y + 4z = 35

As the coefficient matrix is diagonally dominant solving for x, y, z we get

z]

$$x = \frac{1}{28}[32 - 4y + y] = \frac{1}{17}[35 - 2x - 4z]$$

$$z = \frac{1}{20} [24 - x - 3y]$$

Let the initial value be y=0, z=0

Iteration 
$$x = \left[\frac{32 - 4y + z}{28}\right]$$
  $y = \left[\frac{35 - 2x - 4z}{17}\right]$   $z = \left[\frac{24 - x - 3y}{20}\right]$ 

Let ₁ the init	ial value bey=0, z=0	1.9244	1.8084
2	0.9325	1.5236	1.8497
3	0.9913	1.5070	1.8488
4	0.9936	1.5069	1.8486
5	0.9936	1.5069	1.8486

Hence x = 0.9936, y = 1.5069, z = 1.8486

#### EIGEN VALUE OF A MATRIX BY POWER METHOD

12. Find the largest Eigen value and the corresponding Eigen vector of  $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$  using

power method. Using  $x_1 = (1 \quad 0 \quad 0)^T$  as initial vector.

Solution:

Let 
$$X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 be an approximate eigen value.  
 $AX_1 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 1 X_2$   
 $AX_2 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 0.4286 \\ 0 \end{bmatrix} = 7 X_3$   
 $AX_3 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0.4286 \\ 0 \end{bmatrix} = \begin{bmatrix} 3.5714 \\ 1.8572 \\ 0 \end{bmatrix} = 3.5714 \begin{bmatrix} 1 \\ 0.52 \\ 0 \end{bmatrix} = 3.5714 X_4$   
 $AX_4 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0.52 \\ 0 \end{bmatrix} = \begin{bmatrix} 4.12 \\ 2.04 \\ 0 \end{bmatrix} = 4.12 \begin{bmatrix} 1 \\ 0.4951 \\ 0 \end{bmatrix} = 4.12 X_5$   
 $AX_5 = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0.4951 \\ 0 \end{bmatrix} = \begin{bmatrix} 3.9706 \\ 1.9902 \\ 0 \end{bmatrix} = 3.9706 \begin{bmatrix} 1 \\ 0.5012 \\ 0 \end{bmatrix} = 3.9706 X_6$ 

$$AX_{6} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0.5012 \\ 0 \end{bmatrix} = \begin{bmatrix} 4.0072 \\ 2.0024 \\ 0 \end{bmatrix} = 4.0072 \begin{bmatrix} 1 \\ 0.4997 \\ 0 \end{bmatrix} = 4.0072 X_{6}$$
$$AX_{7} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0.4997 \\ 0 \end{bmatrix} = \begin{bmatrix} 3.9982 \\ 1.9994 \\ 0 \end{bmatrix} = 3.9982 \begin{bmatrix} 1 \\ 0.5000 \\ 0 \end{bmatrix} = 3.9982 X_{8}$$
$$AX_{8} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0.5 \\ 0 \end{bmatrix} = 4 X_{9}$$
$$AX_{9} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0.5 \\ 0 \end{bmatrix}$$

Therefore Dominant eigen value =4; corresponding eigen vector is (1, 0.5, 0)

13. Find , by power method, the largest Eigen value and the corresponding Eigen vector of a

matrix  $A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$  with initial vector  $(1 \ 1 \ 1)^{T}$ .

Solution:

Let 
$$X_1 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$$
 be an arbitrary initial eigen vector.  
 $AX_1 = \begin{bmatrix} 1 & 3 & -1\\ 3 & 2 & 4\\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 3\\ 9\\ 13 \end{bmatrix} = 13 \begin{bmatrix} 0.231\\ 0.692\\ 1 \end{bmatrix} = 13X_2$   
 $AX_2 = \begin{bmatrix} 1 & 3 & -1\\ 3 & 2 & 4\\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.231\\ 0.692\\ 1 \end{bmatrix} = \begin{bmatrix} 1.307\\ 6.077\\ 12.537 \end{bmatrix} = 12.537 \begin{bmatrix} 0.104\\ 0.485\\ 1 \end{bmatrix} = 12.537X_3$   
 $AX_3 = \begin{bmatrix} 1 & 3 & -1\\ 3 & 2 & 4\\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.104\\ 0.485\\ 1 \end{bmatrix} = \begin{bmatrix} 0.559\\ 5.282\\ 11.836 \end{bmatrix} = 11.836 \begin{bmatrix} 0.047\\ 0.485\\ 1 \end{bmatrix} = 11.836X_4$   
 $AX_4 = \begin{bmatrix} 1 & 3 & -1\\ 3 & 2 & 4\\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.047\\ 0.485\\ 1 \end{bmatrix} = \begin{bmatrix} 0.385\\ 5.033\\ 11.737 \end{bmatrix} = 11.737 \begin{bmatrix} 0.033\\ 0.429\\ 1 \end{bmatrix} = 11.737X_5$   
 $AX_5 = \begin{bmatrix} 1 & 3 & -1\\ 3 & 2 & 4\\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.033\\ 0.429\\ 1 \end{bmatrix} = \begin{bmatrix} 0.32\\ 4.957\\ 1 \end{bmatrix} = 11.683 \begin{bmatrix} 0.027\\ 0.424\\ 1 \end{bmatrix} = 11.683X_6$   
 $AX_6 = \begin{bmatrix} 1 & 3 & -1\\ 3 & 2 & 4\\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.027\\ 0.424\\ 1 \end{bmatrix} = \begin{bmatrix} 0.299\\ 4.929\\ 11.669 \end{bmatrix} = 11.669 \begin{bmatrix} 0.026\\ 0.422\\ 1 \end{bmatrix} = 11.669X_7$ 

$$AX_{7} = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.026 \\ 0.422 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.299 \\ 4.922 \\ 11.662 \end{bmatrix} = 11.662 \begin{bmatrix} 0.025 \\ 0.422 \\ 1 \end{bmatrix} = 11.662X_{8}$$
$$AX_{8} = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix} \begin{bmatrix} 0.025 \\ 0.422 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.291 \\ 4.919 \\ 11.663 \end{bmatrix} = 11.663 \begin{bmatrix} 0.025 \\ 0.422 \\ 1 \end{bmatrix}$$

Therefore, the dominant eigenvector is  $\begin{bmatrix} 0.025\\ 0.422\\ 1 \end{bmatrix}$ , eigenvalue is 11.663.

#### UNIT-IV

## INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

#### PART-A

#### LAGRANGE'S INTERPOLATION

#### 1. Write down the Lagrange's Interpolation formula.

### Solution:

Let y = f(x) be a function which takes the values  $y_0, y_1, y_2, \dots, y_n$  corresponding to

 $x_0, x_1, x_2, \dots, x_n$ 

Then Lagrange's interpolation formula is

$$y = f(x) = \frac{(x - x_1)(x - x_2)\dots(x - x_n)}{(x_0 - x_1)(x_0 - x_2)\dots(x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2)\dots(x - x_n)}{(x_1 - x_0)(x_1 - x_2)\dots(x_1 - x_n)} y_1$$
  
+  $\dots \dots + \frac{(x - x_0)(x - x_1)\dots(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)\dots(x_n - x_{n-1})} y_n$ 

# 2. Find the second degree polynomial through the points (0,2),(2,1),(1,0) using Lagrange's formula.

#### Solution:

We use Lagrange's interpolation formula

$$y = f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1$$
$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$
$$= \frac{(x - 2)(x - 1)}{(0 - 2)(0 - 1)} \cdot 2 + \frac{(x - 0)(x - 1)}{(2 - 0)(2 - 1)} \cdot 1 + \frac{(x - 0)(x - 2)}{(1 - 0)(1 - 2)} \cdot 0$$
$$= x^2 - 3x + 2 + \frac{1}{2}(x^2 - x) = \frac{1}{2}(2x^2 - 6x + 4 + x^2 - x)$$
$$y = \frac{1}{2}(3x^2 - 7x + 4)$$

## **DIVIDED DIFFERENCES**

3. Distinguish between interpolation and extrapolation.

## Solution:

Interpolation	Extrapolation
To find the values of a function inside a	To find the values of a function outside a
given range is interpolation.	given range is extrapolation.

## 4. Find the divided difference of f(x) which takes the values 1, 4, 40, 85 with arguments 0,

## 1, 3, 4

#### Solution:

The divided difference table is as follows

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$

0	1			
		$\frac{4-1}{1-0} = 3$	$\frac{18-3}{2}=5$	
1	4		3 – 0	
		$\frac{40-4}{3-1} = 18$		$\frac{6.75-5}{4-0} = 0.44$
3	40		$\frac{45 - 18}{4 - 0} = 6.75$	
		$\frac{85 - 40}{4 - 3} = 45$		
4	85			

## 5. Find the divided differences of $f(x) = x^3 + x + 2$ for the arguments 1, 3, 6, 11.

Solution:

$$f(1) = 1^3 + 1 + 2 = 4$$

$$f(3) = 3^{3} + 3 + 2 = 32$$
$$f(6) = 6^{3} + 6 + 2 = 224$$
$$f(11) = 11^{3} + 11 + 2 = 1344$$

The divided difference table is as follows

xf(x) $\Delta f(x)$ $\Delta^2 f(x)$ $\Delta^3 f(x)$	
-----------------------------------------------------	--

1	4			
		$\frac{32-4}{3-1} = 14$	$\frac{64-14}{6-1} = 10$	
3	32	$\frac{224 - 32}{6 - 3} = 64$	0 - 1	$\frac{20-10}{11-1} = 1$
6	224		$\frac{224 - 64}{11 - 3} = 20$	
		$\frac{1344 - 224}{11 - 6} = 224$		
11	1344			

#### **NEWTON'S FORWARD AND BACKWARDINTERPOLATION**

6. Derive Newton's backward interpolation formula using operator method.

(OR) State Newton's backward formula for interpolation.

State Newton's backward difference formula.

Solution:

$$y(x) = y_n + v\nabla y_n + \frac{v(v+1)}{2!}\nabla^2 y_n + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_n + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^4 y_n + \cdots$$

Where  $v = \frac{x - x_n}{h}$ 

7. Derive Newton's forward interpolation formula using equal intervals .

Solution:

$$y_n = f(x_0 + nh) = y_0 + n\Delta y_n + \frac{n(n-1)}{2!}\Delta^2 y_n + \frac{n(n-1)(n-2)}{3!}\Delta^3 y_n + \cdots$$

## 8. Find the first and second divided difference with arguments a, b, c of the function

 $f(x) = \frac{1}{x}$ 

Solution:

If 
$$f(x) = \frac{1}{x} \Rightarrow f(a) = \frac{1}{a}$$
  
 $f(a,b) = \Delta \left[\frac{1}{a}\right] = \frac{\frac{1}{b} - \frac{1}{a}}{b - a} = -\frac{1}{ab} \qquad \left[\because f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{x_0 - x_1}\right]$   
 $f(a,b,c) = \frac{f(b,c) - f(a,b)}{c - a} = \frac{-\frac{1}{bc} - \frac{1}{ab}}{c - a} = \frac{1}{abc} \left[\frac{c - a}{c - a}\right] = \frac{1}{abc}$   
 $\therefore \qquad \Delta^2 \left[\frac{1}{a}\right] = \frac{1}{abc}$ 

#### **DIFFERENTION USING INTERPOLATION FORMULA**

9. Write down the expression for  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  at  $x = x_n$  by Newton's backward difference formula.

Solution:

$$\left(\frac{dy}{dx}\right)_{x=x_n} = \frac{1}{h} \left[ \nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \frac{1}{4} \nabla^4 y_n + \cdots \right]$$

$$\left(\frac{d^2y}{dx^2}\right)_{x=x_n} = \frac{1}{h^2} \left[ \nabla^2 y_n - \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \cdots \right]$$

#### NUMERICAL INTEGRATION BY TRAPEZOIDAL METHOD

**10. State Trapezoidal rule to evaluate**  $\int_{-\infty}^{\infty} f(x) dx$ .

Solution:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

11. Taking h = 0.5, evaluate  $\int_{1}^{2} \frac{dx}{1+x^2}$  using Trapezoidal rule.

Solution:

Here 
$$y(x) = \frac{1}{1+x^2}$$

Length of the interval = 1

x : 1 1.5 2  $y = \frac{1}{1+x^2}$ : 0.5 0.3077 0.2

h = 0.5

By Trapezoidal rule

Trapezoidal rule

$$=\frac{h}{2}[$$
sum of the first and last ordinates $]$ 

+ 2[sum of the remaining ordinates]

$$\int_{1}^{2} \frac{dx}{1+x^2} = \frac{h}{2} \left[ (0.5+0.2) + 2(0.3077) \right]$$

$$\int_{1}^{2} \frac{dx}{1+x^2} = \frac{0.5}{2} [0.7 + 0.6154]$$

$$\int_{1}^{2} \frac{dx}{1+x^2} = \frac{0.5}{2} [1.3154] = 0.3289$$

12. Using Trapezoidal rule, evaluate  $\int_{0}^{x} \sin x \, dx$  by dividing the range into 6 equal parts.

Solution:

**Given:** 
$$\int_{0}^{\pi} \sin x \, dx$$

**Range = b** - **a** =  $\pi - 0 = \pi$ 

Here 
$$h = \frac{\pi}{6}$$

X	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$	π
$y = \sin x$	0.0	0.5	0.866	1	0.866	0.5	0

(i) By Trapezoidal Rule:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}(A+2B)$$
$$= \frac{\pi}{12}[(0+0)+2(0.5+0.866+1+0.8666+0.5)]$$
$$= 0.6220 \pi$$

13. Evaluate  $\int_{\frac{1}{2}}^{1} \frac{1}{x} dx$  by Trapezoidal rule, dividing the range into 4equal parts.

Solution:

Here,

$$h = \frac{1 - \frac{1}{2}}{4} = \frac{1}{8}; \quad y = \frac{1}{x}$$

<i>x</i> :	1/2 = 4/8	5/8	6/8	7/8	8/8
f(x): 1/x	8/4	8/5	8/6	8/7	8/8

A= Sum of the first and last ordinates  $=\frac{8}{4} + \frac{8}{8} = 3$ 

B= Sum of the remaining ordinates =8/5+8/6+8/7=856/210

$$\therefore \int_{\frac{1}{2}}^{1} \frac{1}{x} dx = \frac{h}{2} [A + 2B] = \frac{1}{16} \left( 3 + \frac{856 \times 2}{210} \right) = 0.6971$$

14. Evaluate  $\int_0^1 \frac{dx}{1+x^2}$  using Trapezoidal rule.

## Solution:

Here  $y(x) = \frac{1}{1+x^2}$ 

Length of the interval = 1

x
 :
 0
 0.2
 0.4
 0.6
 0.8
 1

 
$$y = \frac{1}{1+x^2}$$
 :
 1
 0.96154
 0.86207
 0.73529
 0.60976
 0.5

  $h = 0.2$ 

By Trapezoidal rule

Trapezoidal rule

$$= \frac{h}{2} [sum of the first and last ordinates] + 2[sum of the remaining ordinates] 
$$\int_{-1}^{1} \frac{dx}{1+x^{2}} = \frac{h}{2} [(y_{0} + y_{6}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})] \int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{0.2}{2} [(1+0.5) + 2(0.96154 + 0.86207 + 0.9412 + 0.73529 + 0.60976)] \int_{-1}^{1} \frac{dx}{1+x^{2}} = \frac{0.2}{2} [7.83732] = 0.783732 \dots (1)$$$$

By actual integration,

$$\int_{0}^{0} \frac{dx}{1+x^{2}} = (tan^{-1}x)_{0}^{1} = tan^{-1}1 - tan^{-1}0 = \frac{\pi}{4} \dots \dots (2)$$

From (1)& (2)

 $\frac{\pi}{4} = 0.783732$ 

 $\pi = 3.13493$ (*approximately*)

#### NUMERICAL INTEGRATION BY SIMPSON'S 1/3 AND 3/8 RULES

15. State Simpson's one-third rule.

Solution:

Simpson's one third rule is

$$\int_{x_0}^{x_0+nh} f(x) \, dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$

**16. State Trapezoidal rule for evaluating**  $\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy.$ 

Solution:

 $I = \frac{hk}{4} [(Sum \text{ of values of f at Four corners}) + 2(Sum \text{ of the values of f at remaining nodes})$ on the boundary) + 4(sum of values of f at interior nodes)

#### PART-B

#### LAGRANGE'S INTERPOLATION

1. Find the interpolation polynomial f(x) by Lagrange's formula and hence find f(3) for

(0,2),(1,3),(2,12) and (5,147). (OR)

Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for

70

x	0	1	2	5
f(x)	2	3	12	147

Solution:

By Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1$$
  
+  $\frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$   
$$y = f(x) = \frac{(x - 1)(x - 2)(x - 5)}{(0 - 1)(0 - 2)(0 - 5)} (2) + \frac{(x - 0)(x - 2)(x - 5)}{(1 - 0)(1 - 2)(1 - 5)} (3)$$
  
+  $\frac{(x - 0)(x - 1)(x - 5)}{(2 - 0)(2 - 1)(2 - 5)} (12) + \frac{(x - 0)(x - 1)(x - 2)}{(5 - 0)(5 - 1)(5 - 2)} (147)$   
$$= \frac{(x - 1)(x - 2)(x - 5)}{(-10)} (2) + \frac{x(x - 2)(x - 5)}{4} (3)$$
  
+  $\frac{(x - 1)(x - 5)}{-6} (12) + \frac{x(x - 1)(x - 2)}{60} (147)$ 

Put x = 3 we get

$$y = f(3) = \frac{(3-1)(3-2)(3-5)}{-10}(2) + \frac{3(3-2)(3-5)}{4}(3)$$
$$+ \frac{3(3-1)(3-5)}{-6}(12) + \frac{3(3-1)(3-2)}{60}(147)$$
$$= \frac{2(-2)}{(-10)}(2) + \frac{3(-2)}{4}(3) + \frac{3(2)(-2)}{(-6)}(12) + \frac{3(2)}{60}(147)$$
$$y = f(3) = \frac{4}{10}(2) - \frac{6}{4}(3) + 2(12) + \frac{1}{10}(147) = \frac{8}{10} - \frac{18}{4} + 24 + \frac{147}{10}$$
$$f(3) = 35$$

2. Use Lagrange's formula to construct a polynomial which takes the values f(0) = -12, f(1) = 0, f(3) = 6 and f(4) = 12. Hence find f(2).

Solution:

By Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1$$

$$+\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3$$

$$y = f(x) = \frac{(x-1)(x-3)(x-4)}{(0-1)(0-3)(0-4)}(-12) + 0$$

$$+\frac{(x-0)(x-1)(x-4)}{(3-0)(3-1)(3-4)}(6)+\frac{(x-0)(x-1)(x-3)}{(4-0)(4-1)(4-3)}(12)$$

$$= \frac{(x-1)(x-3)(x-4)}{(-12)}(-12) + \frac{x(x-1)(x-4)}{(-6)}(6)$$

$$+ \frac{x(x-1)(x-3)}{12}(12)$$

$$= (x-1)(x-3)(x-4) - x(x-1)(x-4) + x(x-1)(x-3)$$

$$= (x-1)[x^2 - 3x - 4x + 12 - x^2 + 4x + x^2 - 3x]$$

$$= (x-1)(x^2 - 6x + 12)$$

$$= x^3 - 6x^2 + 12x - x^2 + 6x - 12$$

$$f(x) = x^3 - 7x^2 + 18x - 12$$

$$\therefore f(2) = 2^3 - 7(2)^2 + 18(2) - 12 = 4$$

$$\therefore f(2) = 4$$
# **DIVIDED DIFFERENCES**

# 3. Determine f(x) as a polynomial in x for the following data, using Newton's divided

difference formula. Also find f(3)

x	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
-4	1245				
		$\frac{33 - 124}{-1 - (-4)} = -404$			
-1	33		$\frac{-28 - (-404)}{2} = 94$		
		5 - 33	0 - (-4)		
		$\frac{3-33}{0-(-1)} = -28$		$\frac{10 - 94}{2 - (-4)} = -14$	
0	5		$\frac{2 - (-28)}{2 - (-1)} = 10$		
		$\frac{9-5}{2-0} = 2$			$\frac{13+14}{5-(-4)} = 3$
			442 - 2 - 98	$\frac{88 - 10}{5 - (-1)} = 13$	
2	9	$\frac{1335-9}{5} = 442$	$\frac{1}{5-0} = 30$		
		5 – 2			
5	1335				

By Newton's divided difference interpolation formula,

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3)$$

Here 
$$f(x_0) = 1245, f(x_0, x_1) = -404, f(x_0, x_1, x_2) = 94, f(x_0, x_1, x_2, x_3) = -14 \& f(x_0, x_1, x_2, x_3, x_4) = 3$$
,  
Hence we using this formula in equation (1) we get  
 $f(x) = 1245 + (x + 4)(-404) + (x + 4)(x + 1)(94) + (x + 4)(x + 1)(x - 0)(-14)$   
 $+ (x + 4)(x + 1)(x - 0)(x - 2)(3)$   
 $= 1245 - 404x - 1616 + 94x^2 + 470x + 376 - 14x^3 - 70x^2 - 56x$   
 $+ 3x[x^3 - 2x^2 + 5x^2 - 10x + 4x - 8]$   
 $= -14x^3 + 24x^2 + 10x + 5 + 3x[x^3 \mp 3x^2 - 6x - 8]$   
 $= -14x^3 + 24x^2 + 10x + 5 + 3x^4 + 9x^3 - 18x^2 - 24x$   
 $\therefore \quad f(x) = 3x^4 - 5x^3 + 6x^2 - 14x + 5$   
 $\Rightarrow \quad f(3) = 3 \times 3^4 - 5 \times 3^3 + 6 \times 3^2 - 14 \times 3 + 5 = 125$   
 $\therefore \qquad f(3) = 125$ 

4. Use Newton's divided difference formula find f(9) given the values (5,150), (7,392), (13,2366) and (17,5202)

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$

5	150			
		$\frac{392 - 150}{7 - 5} = 121$	$\frac{329 - 121}{12 - 5} = 26$	
7	392		13 – 5	
		$\frac{2366 - 392}{13 - 7} = 329$		$\frac{38 - 26}{17 - 5} = 1$
13	2366		$\frac{709 - 329}{17 - 7} = 38$	
		$\frac{5202 - 2366}{17 - 13} = 709$		
17	5202			

By Newton's divided difference formula

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2)$$
$$+ (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3) \dots \dots (1)$$
$$= 150 + (x - 5)(121) + (x - 5)(x - 7)(26) + (x - 5)(x - 7)(x - 13)(1)$$

$$f(9) = 150 + (9 - 5)(121) + (9 - 5)(9 - 7)(26) + (9 - 5)(9 - 7)(9 - 13)(1)$$
$$f(9) = 150 + 484 + 192 - 32$$

f(9) = 794

# **NEWTON'S FORWARD AND BACKWARD INTERPOLATION**

### 5. Find a polynomial of degree two for the data by Newton's forward difference formula.

X	0	1	2	3	4	5	6	7
У	1	2	4	7	11	16	22	29

X	У	Δy	$\Delta^2 y$	$\Delta^3 y$	
0	1				
		1			
1	2		1		
		2		0	
2	4		1		
		3		0	
3	7		1		
		4		0	
4	11		1		
		5		0	
5	16		1		
		6		0	
6	22		1		
		7			
7	29				

Here  $x_0 = 0$ ,  $y_0 = 1$ , h = 1

 $y(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \dots$ 

Where 
$$u = \frac{x - x_0}{h} = \frac{x - 0}{1} = x \Rightarrow u = x$$

$$y(x) = 1 + x(1) + \frac{x(x-1)}{2!}(1)$$

$$= 1 + x + \frac{x^2 - x}{2} = \frac{2 + 2x + x^2 - x}{2}$$

 $y(x) = \frac{1}{2}[x^2 + x + 2]$  is the required polynomial.

# 6. Using Newton's forward interpolation formula, find the cubic polynomial which takes

the following values.

X	0	1	2	3
Y	1	2	1	10

Solution:

x	у	$\Delta y$	$\Delta^2 y$	$\Delta^3 y$
<i>x</i> ₀ 0	y ₀ 1			
		$2-1=1(\Delta y_0)$		
<i>x</i> ₁ 1	<i>y</i> ₁ 2		-1 - 1	
			$= -2 \ (\Delta^2 y_0)$	
		$1-2=-1(\Delta y_1)$		10 + 2
<i>x</i> ₂ 2	<i>y</i> ₂ 1			$= 12 \ (\Delta^3 y_0)$
			$9 + 1 = 10 \ (\Delta^2 y_1)$	
		$10 - 1 = 9(\Delta y_2)$		
<i>x</i> ₃ 3	y ₃ 10			

We will use forward difference formula

$$y(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + \cdots$$

Where  $u = \frac{x - x_0}{h} = \frac{x - 0}{1} = x \Rightarrow u = x$ 

$$\therefore \qquad y(x) = 1 + x(1) + \frac{x(x-1)}{2!}(-2) + \frac{x(x-1)(x-2)}{3!}(12)$$

$$= 1 + x - \frac{x^2 - x}{2}(2) + \frac{x(x-1)(x-2)}{6}(12)$$

$$= 1 + x - x^{2} + x + 2x(x - 1)(x - 2)$$

$$= 1 + x - x^{2} + x + 2x(x^{2} - 3x + 2)$$

$$= 1 + x - x^{2} + x + 2x^{3} - 6x^{2} + 4x$$

$$= 1 + 6x - 7x^{2} + 2x^{3}$$

$$y(x) = 2x^{3} - 7x^{2} + 6x + 1$$

$$y(4) = P_{3}(4) = 2(4)^{3} - 7(4)^{2} + 6(4) + 1$$

$$= 2(64) - 7(16) + 24 + 1$$

$$= 41$$

7. From the given table compute the value of sin  $38^{\circ}$ 

x	0	10	20	30	40
sin x	0	0.17365	0.34202	0.5	0.64279

Solution:

:.

We form the difference table:

x	Y = f(x)	$\Delta y$	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
	$(y_n)$				
0	0	$(\Delta y_0)$			
		0.17365	$(\Delta^2 y_0)$		
10	0.17365		-0.00528	$(\Delta^3 y_0)$	
		0.16837		-0.00511	$(\Delta^4 y_0)$
20	0.34202		-0.01039		0.00031
		0.15798		-0.00487	$(\nabla^4 y_n)$

30	0.5		-0.01519	$(\nabla^3 y_n)$	
		0.14279	$(\nabla^2 y_n)$		
40	0.64279				
$(x_n)$	$(y_n)$				

We will use backward difference formula

$$y(x) = y_n + v\nabla y_n + \frac{v(v+1)}{2!}\nabla^2 y_n + \frac{v(v+1)(v+2)}{3!}\nabla^3 y_n + \frac{v(v+1)(v+2)(v+3)}{4!}\nabla^4 y_n + \cdots$$

Where  $v = \frac{x - x_n}{h} = \frac{40 - 0.064279}{10} = -0.2$ 

 $y(38^{\circ}) = 0.64279 - 0.028 - 0.0127 + 0.0290 \quad y(38^{\circ}) = 0.64249$ 

 $\sin 38^{\circ} = 0.61568$ 

### **DIFFERENTION USING INTERPOLATION FORMULA**

8. Construct  $\frac{dx}{dy}$  and  $\frac{d^2y}{d^2x}$  at x = 51, from the following data:

X:	50	60	70	80	90
Y:	19.96	36.65	58.81	77.21	94.61

Solution:

Given x= 51,  $x_0 = 50$  h = 60 - 50 = 10

$$u = \frac{x - x_0}{h} = \frac{51 - 50}{10} = 0.1$$

At 
$$x = 51$$
,  $u = 0.1$ 

Difference table

X	y = f(x)	$\Delta y$	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$

$$\begin{bmatrix} 50 & 19.96 & 16.69 & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... & ... &$$

$$f''(x) = \left(\frac{d^2 y}{dx^2}\right)_{u=0.1} = \frac{1}{h^2} \left[\Delta^2 y_0 + (u-1)\Delta^3 y_0 + \frac{(6u^2 - 18u + 11)}{12}\Delta^4 y_0 + \dots\right]$$
$$f''(51) = \frac{1}{100} \left[ 5.47 + (0.1 - 1)(-9.23) + \frac{(6(0.1)^2 - 18(0.1) + 11)}{12}(11.99) \right]$$

$$=\frac{1}{100} [5.47 + 8.307 + 9.2523]$$

f''(51) = 0.2303

# 9. For the given data, find the first two derivative at x=1.1

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
У	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Solution:

The difference table is as follows

X	y=f(x)	$\Delta y$	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$
1	7.989						
		0.414					
1.1	8.403		-0.036				
		0.378		0.006			
1.2	8.781		-0.030		-0.002		
		0.348		0.004		0.001	
1.3	9.129		-0.026		-0.001		0.002
		0.322		0.003		0.003	
1.4	9.451		-0.023		0.002		
		0.299		0.005			
1.5	9.750		-0.018		0		
		0.281					
1.6	10.031						

$$f'(x) = \frac{dy}{dx} = \frac{1}{h} \left[ \Delta y_0 + \frac{(2u-1)}{2!} \Delta^2 y_0 + \frac{(3u^2 - 6u + 2)}{3!} \Delta^3 y_0 + \cdots \right] \quad Where \ u = \frac{x - x_0}{h}$$

$$u = \frac{x - x_0}{h} = \frac{1}{1} = 1$$

$$\left(\frac{dy}{dx}\right)_{x=1.1} = \frac{1}{1} \left[ 0.414 + \frac{(2(1)-1)}{2!} \left(-0.036\right) + \frac{(3(1)-6(1)+2)}{3!} \left(0.006\right) + \cdots \right]$$
$$\left(\frac{dy}{dx}\right)_{x=1.1} = 0.3950$$

### NUMERICAL INTEGRATION BY TRAPEZOIDAL METHOD

10. Evaluate  $\int_0^6 \frac{dx}{1+x^2}$  by i) Trapezoidal rule ii) Simpson's rule. And compare the result with its actual integration value.

Solution:

	Here $y(x) = \frac{1}{1+x^2}$						
	Let $h = 1$						
x :0	1	2	3	4	5	6	
y: 1	0.5	0.2	0.1	0.058824	0.038462	0.27027	

We know that for Trapezoidal rule

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{h}{2} [(y_{0} + y_{6}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})]$$

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{1}{2} \left[ (1+0.27027) + 2(0.5+0.2+0.1+0.058824+0.038462) \right]$$

$$\int_{0}^{6} \frac{dx}{1+x^2} = 1.41079950$$

We know that Simpson's one third rule is

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{h}{3} [(y_{0} + y_{5}) + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4})]$$

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{1}{3} [(0.5+0.027027) + 4(0.5+0.1+0.038462) + 2(0.2+0.58824)]$$
$$\int_{0}^{6} \frac{dx}{1+x^{2}} = 1.28241$$

We know that Simpson's three – eight rule is

$$\int_{x_0}^{x_0+nh} f(x) \, dx = \frac{3h}{8} \left[ (y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3) \right]$$

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{3}{8} \left[ (1+0.027027) + 3(0.5+0.2+0.058824+0.038462) + 2(0.1) \right]$$
$$\int_{0}^{6} \frac{dx}{1+x^{2}} = 1.35708188$$

By actual integration,

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = (\tan^{-1}x)_{0}^{6} = \tan^{-1}6 = 1.40564764$$

### **Conclusion:**

Here the value by trapezoidal rule is closer to the actual value than the value by Simpson's rule.

11. Take h = 0.05, evaluate  $\int_{1}^{1.3} \sqrt{x} \, dx$  using Trapezoidal rule and Simpson's three-eighth

rule. Solution:

x	1	1.05	1.1	1.15	1.2	1.25	1.3
у	1	1.0247	1.0488	1.0724	1.0954	1.118	1.1402

We know that for Trapezoidal rule

$$\int_{1}^{1.3} \sqrt{x} \, dx = \frac{h}{2} [(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$\int_{1}^{1.3} \sqrt{x} \, dx = \frac{0.05}{2} \left[ (1 + 1.1402) + 2(1.0247 + 1.0488 + 1.0724 + 1.0954 + 1.118) \right]$$

$$\int_{1}^{1.3} \sqrt{x} \, dx = 0.3215$$

We know that Simpson's three – eight rule is

$$\int_{x_0}^{x_0+nh} f(x) \, dx = \frac{3h}{8} [(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3)]$$

$$\int_{1}^{1.3} \sqrt{x} \, dx = \frac{3(0.05)}{8} [(1 + 1.1402) + 3(1.0247 + 1.0488 + 1.0954 + 1.118) + 2(1.0724)]$$

$$\int_{1}^{1.3} \sqrt{x} \, dx = 0.3215$$

# DOUBLE INTEGRALS USING TRAPEZOIDAL AND SIMPSON'S RULES

12. Evaluate  $\int_{1}^{1.2} \int_{1}^{1.4} \frac{1}{x+y} dx dy$  by using Trapezoidal rule taking h=0.1 and k=0.1 Solution:

y∖x	1	1.1	1.2	1.3	1.4
1	0.5000	0.4762	0.4545	0.4348	0.4167
1.1	0.4762	0.4545	0.4348	0.4167	0.4000
1.2	0.4545	0.4348	0.4167	0.4000	0.3846

 $I = \frac{hk}{4} [(sum of values of f at the four corners)]$ 

+ 2 (sum of values of f at the remaining nodes on the boundary)

+ 4(sum of the values of f at the interior nodes)]

$$I = \frac{(0.1)(0.1)}{4} [(0.5000 + 0.4167 + 0.3846 + 0.4545) + 2(0.4762 + 0.4545 + 0.4348 + 0.4000 + 0.4000 + 0.4167 + 0.4348 + 0.4762) + 4(0.4545 + 0.4348 + 0.4167)]$$

I = 0.0349

13. Evaluate  $\int_0^1 \int_0^1 \frac{1}{x+y+1} dx dy$  by using Trapezoidal rule taking h=0.5 and k=0.25

Solution:

	0	0.5	1
0	1	0.6667	0.5
0.25	0.8	0.5714	0.4444
0.5	0.6667	0.5	0.40
0.75	0.5714	0.4444	0.3636
1	0.50	.40	0.3333

 $I = \frac{hk}{4} [(sum of values of f at the four corners)]$ 

+ 2 (sum of values of f at the remaining nodes on the boundary)

+ 4(sum of the values of f at the interior nodes)]

 $I = \frac{(0.5)(0.25)}{4} [(1 + 0.5 + 0.3333 + 0.5) + 2(0.667 + 0.4444 + 0.40 + 0.3636 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.5714 + 0.40 + 0.5714 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.5714 + 0.40 + 0.5714 + 0.40 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 + 0.5714 +$ 

0.6667 + 0.8) + 4(0.5714 + 0.5 + 0.4444)

= 0.5319

14. Evaluate  $\int_{1}^{3} \int_{1}^{2} \frac{1}{xy} dx dy$  by using Trapezoidal rule taking h=0.5 and k=0.5

### Solution:

	1	1.5	2
1	1	0.667	0.5
1.5	0.667	0.4444	0.3333
2	0.5	0.3333	0.25
2.5	0.4000	0.2667	0.2000
3	0.3333	4.5000	0.1667

 $I = \frac{hk}{4} [(sum of values of f at the four corners)]$ 

+ 2 (sum of values of f at the remaining nodes on the boundary)

+ 4(sum of the values of f at the interior nodes)]

$$I = \frac{(0.5)(0.5)}{4} [(1 + 0.5 + 0.3333 + 0.1667) + 2(0.667 + 0.3333 + 0.25 + 0.2 + 4.5 + 0.4 + 0.667) + 4(0.4444 + 0.3333 + 0.2667)]$$

I = 1.3258

0.5

15. Evaluate  $\int_0^{1/2} \int_0^{1/2} \frac{\sin(xy)}{1+xy} dx dy$  using Simpson's rule with h=1/4=k

Solution:

Let 
$$f(x, y) = \frac{\sin(xy)}{1+x}$$

The values of f(x, y) at the nodal points are given in the following table

	0	1/4	1/2
0	0	0	0
1⁄4	0	0.0588	0.1108
1/2	0	0.1108	0.1979

By Simpson's rule,  $I = \frac{hk}{9}$  [(sum of values of f at the four corners)

+ 2 (sum of the values of f at the odd position on the boundary except the corners)

+ 4 (sum of the values of f at the even position on the boundary)

+ {4 (sum of the values of f at odd positions) + 8 (sum of the values of

f at even positions) on the odd row of the matrix except boundary rows}

+  $\{8 \text{ (sum of the values of f at the odd positions)}+16 \text{ (sum of the })$ 

Values of f at the even position) on the even rows of the matrix}]

$$I = \frac{\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)}{9} \left[ (0 + 0 + 0.1979 + 0) + 4(0 + 0 + 0.1108 + 0.1108) + 16(0.0588) \right]$$

I = 0.0141

16. Evaluate  $\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy$  by using Trapezoidal rule taking h=0.1 and k=0.1

and verify with actual integration .

y∖x	1	1.1	1.2	1.3	1.4
1	0.5	0.4762	0.4545	0.4348	0.4167
1.1	0.4545	0.4329	0.4132	0.3953	0.3788
1.2	0.4167	0.3968	0.3788	0.3623	0.3472
1.3	0.3846	0.3663	0.3497	0.3344	0.3205

	1.4	0.3571	0.3401	0.3247	0.3106	0.2976	
I = $\frac{hk}{4}$ [(sum	of values o	f f at the four	r corners)				
Ĩ							
	+ 2 (s	sum of values	s of f at the r	emaining no	des on the bo	oundary)	
	+ 4(s	um of the val	ues of f at th	ne interior no	odes)]		
I = -	$\frac{(0.1)(0.1)}{4}[($	(0.5000 + 0.42)	167 + 0.3571	+ 0.2976)			
	ł	- 2(0.3846 + 0	0.4167 + 0.45	545 + 0.4762	+ 0.4545 + 0	.4348 + 0.378	38 + 0.3472
	+ 0.3205 + 0.3106 + 0.3247 + 0.3401)						
	+4(0.4329 + 0.4132 + 0.3953 + 0.3968 + 0.3788 + 0.3623 + 0.3663 + 0.3497						
	+	- 0.3344)]					

I = 0.0614

By actual integration:

$$\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx \, dy = \left( \int_{1}^{1.4} \frac{1}{y} dy \right) \left( \int_{2}^{2.4} \frac{1}{x} dx \right)$$
$$= (\log y)_{1}^{1.4} (\log y)_{2}^{2.4}$$
$$= (\log 1.4) [\log 2.4 - \log 2]$$
$$= \log(1.4) \log(1.2)$$

$$\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx \, dy = 0.0613$$

# <u>UNIT-V</u>

# **NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS**

# PART-A

### TAYLOR SERIES METHOD

1. Using Taylor series method fine y(1, 1) given that y' = x + y, y(1) = 0Solution:

Given y' = x + y and  $x_0 = 1, y_0 = 0$ 

We know that Taylor series formula is

$$y_{1} = y_{0} + \frac{(x - x_{0})}{1!}y_{0}' + \frac{(x - x_{0})^{2}}{2!}y_{0}'' + \frac{(x - x_{0})^{3}}{3!}y_{0}''' + \cdots$$

$$y' = x + y \qquad \qquad y_{0}' = 1 + 0 = 1$$

$$y'' = 1 + y' \qquad \qquad y_{0}'' = 1 + 1 = 2$$

$$y''' = y'' \qquad \qquad y_{0}''' = 2$$

$$y_{1} = 0 + (x - 1) + \frac{(x - 1)^{2}}{2}(2) + \frac{(x - 1)^{3}}{6}(2)$$

$$y(1.1) = 0 + (1.1 - 1) + \frac{(1.1 - 1)^{2}}{2}(2) + \frac{(1.1 - 1)^{3}}{6}(2)$$

$$y_{1} = y(1.1) = 0.1103$$

2. Find y(0.1) if  $\frac{dy}{dx} = 1 + y$ , y(0) = 1 using Taylor series method.

Solution:

Given y' = 1 + y and  $x_0 = 0, y_0 = 1$ 

We know that Taylor series formula is

$$y_{1} = y_{0} + \frac{(x - x_{0})}{1!} y_{0}' + \frac{(x - x_{0})^{2}}{2!} y_{0}'' + \frac{(x - x_{0})^{3}}{3!} y_{0}''' + \cdots$$

$$y' = 1 + y \qquad y_{0}' = 1 + 1 = 2$$

$$y'' = y'' \qquad y_{0}'' = 2$$

$$y_{0}''' = 2$$

$$y_{0}''' = 2$$

$$y_{1} = 1 + (x - 0)^{2} + \frac{(x - 0)^{2}}{2} (2) + \frac{(x - 0)^{3}}{6} (2) + \frac{(x - 0)^{4}}{24} (2)$$

$$= 1 + 2x + x^{2} + \frac{x^{3}}{3} + \frac{x^{4}}{12}$$

$$y(0.1) = 1 + 2(0.1) + (0.1)^{2} + \frac{(0.1)^{3}}{3} + \frac{(0.4)^{4}}{12}$$

 $y_1 = y(0.1) = 1.2103$ 

### 3. State the advantages and disadvantages of the Taylor's series method.

### Solution:

The method gives a straight forward adaptation of classic calculus to develop the solution as an infinite series. It is a powerful single step method if we are able to find the successive derivatives easily.

If f(x,y) involves some complicated algebraic structures then the calculation of higher derivatives becomes tedious and the method fails.

#### **EULER AND MODIFIED EULER METHOD**

4. State Euler's method to solve  $\frac{dy}{dx} = f(x, y)$  with  $y(x_0) = y_0$ . Solution:

 $y_1 = y_0 + hf(x_0, y_0)$  where  $n = 0, 1, 2 \dots$ 

5. State Modified Euler's method to solve  $\frac{dy}{dx} = f(x, y)$  with  $y(x_0) = y_0$ . Solution:

$$y_1 = y_0 + hf\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0)\right)$$

6. Find y(0.1) by using Euler's method given that  $\frac{dy}{dx} = x + y$ , y(0) = 1.

Solution:

Given 
$$y' = x + y$$
,  $x_0 = 0$ ,  $y_0 = 1$   
By Euler's method

$$y_1 = y_0 + hf(x_0, y_0)$$
  

$$y_1 = 1 + (0.1)(0 + 1) = 1 + 0.1 = 1.2$$
  

$$y_1 = y(0.1) = 1.2$$

7. Find y(0,2) for the equation  $y' = y + e^x$ , given that y(0) = 0 by using Euler's method.

Given 
$$y' = y + e^x$$
,  $x_0 = 0$ ,  $y_0 = 0$ ,  $h = 0.2$ 

By Euler algorithm,  $y_1 = y_0 + hf(x_0, y_0)$ 

$$= 0 + 0.2f(0,0)$$
$$= 0.2[0 + e^{0}] = 0.2$$
$$y(0.2) = 0.2$$

# <u>RUNGE-KUTTA METHOD FOR SOLVING FIRST AND SECOND ORDER EQUATIONS</u> 8. State the fourth order Runge-Kutta algorithm.

### Solution:

Let h denote the interval between equidistant values of x. if the initial values are  $(x_0, y_0)$ , the first increment in y is computed from the formulas.

$$k_{1} = hf(x_{0}, y_{0})$$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf(x_{0} + h, y_{0} + k_{3})$$

$$\Delta y = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$x_{1} = x_{0} + h, y_{1} = y_{0} + \Delta y$$

The increment in y in the second interval is computed in a similar manner using the same four formulas, using the values  $x_1, y_1$  in the place of  $x_0, y_0$  respectively.

$$f_1(x, y, z) = z$$
$$f_2(x, y, z) = -xz - y$$

By Runge- Kutta method

$k_1 = h f_1(x_0, y_0, z_0)$	$l_1 = h f_2(x_0, y_0, z_0)$
$= (0.1)f_1(0,1,0)$	$= (0.1)f_2(0,1,0)$
= (0.1)(0)	= (0.1)(0-1)
$k_{1} = 0$	$l_1 = -0.1$

### **MILNE'S PREDICTOR AND CORRECTOR METHODS**

### 9. State Milne's predictor-corrector formula.

#### Solution:

Milne's Predictor Formula:

$$y_{n+1, p} = y_{n-3} + \frac{4h}{3}(2y'_{n-2} - y'_{n-1} + 2y'_{n})$$

Milne's Corrector Formula:

$$y_{n+1, c} = y_{n-1} + \frac{h}{3}(2y'_{n-1} - 4y'_{n} + y'_{n+1})$$

#### 10. Distinguish between single step methods and multi-step methods.

### Solution:

single step method	multi-step method	
Taylor's series, Euler's, Modified Euler's,	Milne's and Adams predictor - corrector	
Runge – Kutta method of fourth order	method	
One prior value is required for finding the	Four prior value are required for finding	
value of $y$ at $x_i$	the value of $y$ at $x_i$	

# 11. What are multi-step methods? How are they better than single step methods?

### Solution:

One step method: We use data of just one proceeding step.

Multi step method: We use data from more than one of the proceeding steps.

### PART-B

### **TAYLOR SERIES METHOD**

# 1. Find the value of y at x = 0.1, 0.2 given that $\frac{dy}{dx} = x^2y - 1, y(0) = 1$ , by Tailor's series method

up to four terms.

Solution:

Given  $y' = x^2 y - 1$  and  $x_0 = 0, y_0 = 1$ 

We know that Taylor series formula is				
$y = y_0 + \frac{(x-x_0)}{1!} y'_0 + \frac{(x-x_0)^2}{2!} y''_0 + \frac{(x-x_0)^3}{3!} y''_0 + \cdots \qquad \dots (1)$				
$y' = x^2 y - 1$	$y_0' = 0 - 1 = -1$			
$y^{\prime\prime} = 2xy + x^2y^{\prime}$	$y_0'' = 2(0)(1) + 0(-1) = 0$			
$y''' = 2[xy' + y] + x^2y'' + y'2x$	$y_0^{\prime\prime\prime} = 2(1) + 4(0)(-1) + 0 = 2$			
$= 2y + 4xy' + x^2y''$				
$y^{iv} = 2y' + 4[xy'' + y'] + x^2y''' + y'''2x$	$y_0^{iv} = 6(-1) + 6(0)(0) + (0)(2)$			
$= 6y' + 6xy'' + x^2y'''$	= -6			

Substituting in equation (1) we get

$$y = 1 + (x - 0)(-1) + \frac{(x - 0)^2}{2}(0) + \frac{(x - 0)^3}{6}(2) + \frac{(x - 0)^4}{24}(-6)$$
$$y = 1 - x + \frac{x^3}{3} - \frac{x^4}{4}$$

**To find y (0.1)** 

$$y(0.1) = 1 - 0.1 + \frac{0.1^3}{3} - \frac{0.1^4}{4}$$
$$y(0.1) = 1 - 0.1 + 0.00033 - 0.000025$$
$$y(0.1) = 0.900305$$

To find y (0.2)

$$y(0.2) = 1 - 0.2 + \frac{0.2^3}{3} - \frac{0.2^4}{4}$$
$$y(0.2) = 1 - 0.2 + 0.0026 + -0.0004$$
$$y(0.2) = 0.8022$$

$$x_0 = 0.1$$
 ,  $y_0 = 00.0993$  ,  $h = 0.1$ 

 $y_2 = y(0.2) = 0.09933 + (0.1)(0.9801334) + \frac{(0.1)^2}{2}(-0.3946868) + \frac{(0.1)^3}{6}(-3.84159)$ 

$$y(0.2) = 0.19467$$

2. Determine the value of y(0.4) using milnes's method given  $y' = xy + y^2$ , y(0) = 1. Using Taylor series method obtain the values of y(0.1) and y(0.2) and y(0.3).

### **Solution :**

Given  $y' = xy + y^2$  and  $x_0 = 0, y_0 = 1$ ,

By Taylor series formula is

$y = y_0 + \frac{(x - x_0)}{1!} y'_0 + \frac{(x - x_0)^2}{2!} y''_0 + \frac{(x - x_0)^3}{3!} y''_0 + \dots \qquad \dots (1)$				
$y' = xy + y^2$	$y'_0 = 1$			
$y^{\prime\prime} = xy^{\prime} + y + 2y^{\prime}$	$y_0^{''} = 1 + 2(1)(1) = 1$			
y''' = xy' + y' + y' + 2yy'' + 2y'y' = $xy' + 2y'^{2} + 2yy''$	$y_0^{\prime\prime\prime} = 2 + 6 + 2 = 10$			
+ 2y'				
$y^{iv} = xy''' + y'' + 2y'' + 2y'y'' + 2y y''' + 4 y'y'' = xy''' + 3y'' + 4 y'y'' + 2y y'''$	$y_0^{iv} = 9 + 12 + 20 = 41$			

Substituting in equation (1) we get

$$y_1 = y(0.1) = 1 + 0.1(1) + \frac{(0.1)^2}{2}(3) + \frac{(0.1)^3}{6}(10) + \frac{(0.1)^4}{24}(41)$$
  
$$y(0.1) = 1.11684$$

$$y_2 = y(0.2) = 1 + 0.2(1) + \frac{(0.2)^2}{2}(3) + \frac{(0.2)^3}{6}(10) + \frac{(0.2)^4}{24}(41)$$
$$y(0.2) = 1.276067$$

$$y_3 = y(0.3) = 1 + 0.3(1) + \frac{(0.3)^2}{2}(3) + \frac{(0.3)^3}{6}(10) + \frac{(0.)^4}{24}(41)$$
  
$$y(0.1) = 1.48384$$

X	0	0.1	0.2	0.3
Y	1	1.11684	1.27607	1.49384

$$y_{4, p} = y_0 + \frac{4h}{3} [2y'_1 - y'_2 + 2y'_3]$$
  

$$y_{4, p} = 1 + \frac{4(0.1)}{3} [2(1.35902) - 1.88357 + 2(2.67974)]$$
  

$$y_{4, p} = 1.82586$$
  

$$y'_4 = (0.4) 1.82586 + 1.82586^2 = 4.06411$$

By Mile's corrector formula is

$$y_{4, c} = y_2 + \frac{h}{3} [y'_2 + 4y'_3 + y'_4]$$

$$= 1.27607 + \frac{0.1}{3} [1.88357 + (2.67974) + 4.06411]$$
$$y_{4, c} = 1.83096$$
$$y_{4} = 1.83096$$

3. Using Taylor series method fin y at x=1.1 by solving the equation if  $\frac{dy}{dx} = x^2 + y^2$ , y(1) = 2. Carryout the computations upto fourth order derivative.

Solution:

Given initial condition  $x_0 = 1, y_0 = 2, h = 0.1$ We know that Taylor series formula is $y = y_0 + \frac{(x-x_0)^2}{1!} y_0' + \frac{(x-x_0)^3}{2!} y_0'' + \frac{(x-x_0)^3}{3!} y_0''' + \cdots$ ... (1) $y' = x^2 + y^2$  $y_0' = 1 + 2 = 5$ y'' = 2x + 2yy' $y_0'' = 2(1) + 2(2)(5) = 22$  $y''' = 2 + 2yy'' + 2y'^2$  $y_0'' = 2 + 2(2)(22) + 2(5)^2 = 140$  $y^{iv} = 2 yy''' + 2y'y'' + 4y'y''$  $y_0^{iv} = 2(2)(140) + 2(5)(22) + 4(5)(22) = 1220$ 

Substituting in equation (1) we get

$$y_{1} = 2 + \frac{(x - x_{0})}{1!}(5) + \frac{(x - x_{0})^{2}}{2!}(22) + \frac{(x - x_{0})^{3}}{3!}(140) + \frac{(x - x_{0})^{4}}{4!}(1220) + \cdots$$

$$y_{1} = 2 + \frac{(1.1 - 1)}{1!}(5) + \frac{(1.1 - 1)^{2}}{2!}(22) + \frac{(1.1 - 1)^{3}}{3!}(140) + \frac{(1.1 - 1)^{4}}{4!}(1220) + \cdots$$

$$y(1.1) = 2 + 0.1(5) + \frac{(0.1)^{2}}{2}(22) + \frac{(0.1)^{3}}{6}(140) + \frac{(0.1)^{4}}{24}(1220) + \cdots$$

$$y_{1} = 2 + 0.5 + 0.11 + 0.023 + 0.00508 = 2.63808$$

#### **EULER AND MODIFIED EULER METHOD**

4. Apply Modified Euler's method to find y(0.2) and y(0.4) given that  $\frac{dy}{dx} = x^2 + y^2$ , y(0) = 1 by

taking h=0.2

Solution:

Initial conditions are

$$x_0 = 0, y_0 = 1, h = 0.2$$

By Euler algorithm

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}(x_n, y_n'))$$

Let n = 0

$$y_{1} = y_{0} + hf(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}(x_{0}, y_{0}')$$

$$= 1 + (0.2)f(0 + \frac{0.2}{2}, 1 + \frac{0.2}{2}(0^{2} + 1^{2}))$$

$$= 1 + (0.2)f(0.1, 1.1)$$

$$= 1 + (0.2)[(0, 1)^{2} + (1, 1)^{2}]$$

$$= 1 + (0.2)(1.22)$$

$$= 1.244$$

$$y_{1} = 1.244$$

$$y_{1} = 1.244$$

*Let* n = 1*,* 

=

$$x_{1} = 0.2, y_{1} = 1.244, h = 0.2$$

$$y_{2} = y_{1} + hf(x_{1} + \frac{h}{2}, y_{1} + \frac{h}{2}(x_{1}, y_{1}')$$

$$1.244 + (0.2)f(0.2 + \frac{0.2}{2}, 1.244 + \frac{0.2}{2}((0.2)^{2} + (1.244)^{2}))$$

$$= 1.244 + (0.2)f(0.3, 1.4028)$$

$$= 1.244 + (0.2)[(0.3)^{2} + (1.3684)^{2}]$$

$$y_{2} = 1.6556$$

$$y_{2} = y(0.4) = 1.6556$$

5. Evaluate y at x = 0.2 given  $\frac{dy}{dx} = y - x^2 + 1$ , y(0) = 0.5 using modified Euler's method.

Solution:

$$\frac{dy}{dx} = y - x^2 + 1$$
,  $x_0 = 0$ ,  $y_0 = 0.5$ ,  $h = 0.2$ 

By Euler algorithm

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{1}{2}h(x_n, y_n')$$

Letn = 0

$$y_1 = y_0 + hf(x_0 + \frac{h}{2}, y_0 + \frac{1}{2}h(x_0, y_0')$$
$$= 0.5 + (0.2)f\left(0 + \frac{0.2}{2}, 0.5 + \frac{0.2}{2}(0, 0.5)\right)$$
$$f(x_0, y_0) = y_0 - x_0^2 + 1, f(0, 0.5) = 0.5 + 0 + 1 = 1.5$$

$$= 0.5 + (0.2)f[(0.1, 0.5 + 0.1(1.5)]$$
  
= 0.5 + (0.2)f(0.1,0.65)  
$$f(0.1,0.65) = 0.65 + (0.1)^2 + 1 = 0.65 - 0.01 + 1$$
  
= 1.65 - 0.01 = 1.64  
$$y_1 = 0.5 + (0.2)(1.64)$$
  
0.5 + 0.328 = 0.828

y(0.2) = 0.828

6. Apply Modified Euler's method to find y(0.1) and y(0.2) given that  $\frac{dy}{dx} = x^2 + y^2$ , y(0) = 1

Solution:

Initial conditions are

$$x_0 = 0, y_0 = 1, h = 0.1$$

By Euler algorithm

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{1}{2}h(x_n, y_n')$$

Let n = 0

$$y_{1} = y_{0} + hf(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}h(x_{0}, y_{0}')$$

$$= 1 + (0.1)f(0 + \frac{0.1}{2}, 1 + \frac{0.1}{2}(1 + 0))$$

$$= 1 + (0.1)f(0.05, 1.05)$$

$$= 1 + (0.1)[(0.05)^{2} + (1.05)^{2}]$$

$$= 1 + (0.1)(1.105)$$

$$= 1.1105$$

 $y_1 = y(0.1) = 1.1105$   $x_1 = 0.1, y_1 = 1.1105, h = 0.1$   $y_2 = y_1 + hf(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}h(x_1, y_1')$   $= 1.1105 + (0.1)f(0.1 + \frac{0.1}{2}, 1.1105 + \frac{0.1}{2}((0.2)^2 + (1.1105)^2))$  = 1.1105 + (0.1)f(0.15, 1.27321)  $= 1.1105 + 0.1((0.15)^2 + (1.27321)^2))$   $y_2 = 1.2749$   $y_2 = y(0.2) = 1.2749$ 

 $y_1 = 1.1105$ 

### **RUNGE-KUTTA METHOD FOR SOLVING FIRST AND SECOND ORDER EQUATIONS**

7. Use Runge-Kutta method of order 4 to find y(1.1) given  $\frac{dy}{dx} = y^2 + xy$ , y(1) = 1,

Solution:

*Let* n = 1*,* 

Given 
$$\frac{dy}{dx} = y^2 + xy$$
,  $x_0 = 1$ ,  $y_0 = 1$  and  $h = 0.1$ 

By Runge-kutta method

$$k_{1} = hf(x_{0}, y_{0})$$

$$= (0.1)f(1,1)$$

$$= (0.1)(11 + 1)$$

$$k_{1} = 0.2$$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$= (0.1)f\left(1 + \frac{0.1}{2}, 1 + \frac{0.2}{2}\right)$$

$$= (0.1)f(1.05, 1.1)$$

$$k_{2} = 0.2365$$

$$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$$

$$= (0.1)f\left(1 + \frac{0.1}{2}, 1 + \frac{0.2365}{2}\right)$$

$$= (0.1)f(1.05,1.118)$$

$$k_{3} = 0.2423$$

$$k_{4} = hf(x_{0} + h, y_{0} + k_{3})$$

$$= (0.1)f(1 + 0.1,1 + 0.2423)$$

$$= (0.1)f(1.1,1.12423)$$

$$k_{4} = 0.2909$$

$$\Delta y = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$= \frac{1}{6}(0.2 + 2(0.0.2365) + 2(0.2423) + 0.2909)$$

$$\Delta y = 0.2414$$

$$y_{1} = y_{0} + \Delta y$$

$$= 1 + 0.2414$$

$$y(1.05) = 1.2414$$

**To find y(1.1):** 

Here 
$$x_1 = 1.05$$
,  $y_1 = 1.2414$  and  $h = 0.1$   
 $k_1 = hf(x_1, y_1)$   
 $= (0.1)f(1.05, 1.2414)$   
 $= (0.1)(2.84454)$   
 $k_1 = 0.28445$   
 $k_2 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right)$   
 $= (0.1)f\left(1.05 + \frac{0.1}{2}, 1.2414 + \frac{0.28445}{2}\right)$   
 $= (0.1)f(1.1, 1.3836)$   
 $k_2 = 0.27133$   
 $k_3 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$   
 $= (0.1)f\left(1.05 + \frac{0.1}{2}, 1.2414 + \frac{0.27133}{2}\right)$   
 $= (0.1)f\left(1.05 + \frac{0.1}{2}, 1.2414 + \frac{0.27133}{2}\right)$   
 $= (0.1)f(1.1, 1.37706)$   
 $k_3 = 0.34110$   
 $k_4 = hf(x_1 + h, y_1 + k_3)$   
 $= (0.1)f(1.05 + 0.1, 1.2421 + 0.34110)$   
 $= (0.1)f(1.15, 1.5825)$   
 $k_4 = 0.43241$ 

$$\Delta y = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
  
=  $\frac{1}{6} (0.2844 + 2(0.27133) + 2(0.34110) + 0.43241)$   
 $\Delta y = 0.3236016$   
 $y_2 = y_1 + \Delta y$   
=  $1.2414 + 0.3236016$   
 $y(1.1) = 1.565001$ 

### **MILNE'S PREDICTOR AND CORRECTOR METHODS**

8. Use Milne's predictor – corrector formula to find y(0.4)

Given 
$$\frac{dy}{dx} = \frac{(1+x^2)y^2}{2}$$
,  $y(0) = 1$ ,  $y(0,1) = 1$ . 06,  $y(0,2) = 1$ . 12 and  $y(0,3) = 1$ . 21

Solution:

Given

h 
$$\frac{dy}{dx} = y' = \frac{1}{2}(1+x^2)y^2$$
 and  $h = 0.1$ 

 $x_0 = 0, x_1 = 0.1, x_2 = 0.2, x_3 = 0.3, x_4 = 0.4, x_5 = 0.5$ 

$$y_0 = 1, y_1 = 1.06, y_2 = 1.12, y_3 = 1.21, y_4 = ?$$

Milene's Predictor formula we have,

To get  $y_4$ , put n = 3 in (1) we get

Substituting (3),(4) and (5) in (2) we get,

$$y_{4,p} = 1 + \frac{4(0.1)}{2} [2(0.56742) - 0.65229 + 2(0.79793)]$$
$$= 1 + \frac{0.4}{3} [1.13484 - 0.65229 + 1.56586]$$
$$= 1 + 0.27712$$

y(0.4) = 1.27712

Milne's corrector formula we have

$$y_{n+1,c} = y_{n-1} + \frac{h}{3} (y'_{n-1} + 4y'_n + y_{n+1})$$

To get  $y_4$ , put n = 3 we get

$$= \frac{1}{2}(1+0.16)(1.63104)$$
$$= \frac{1}{2}(1.16)(1.63104)$$
$$= 0.94600.....(7)$$

Substituting (4), (5), (7) in (6) we get,

$$y_{4,c} = 1.12 + \frac{0.1}{3} [0.65229 + 4(0.79793) + 0.94600]$$
$$= 1.12 + \frac{0.1}{3} [4.79001]$$
$$= 1.12 + 0.159667$$
$$y(0.4) = 1.27966$$

9. Using Milne's predictor and corrector formulae , find y(4.4) given

$$5xy' + y^2 - 2 = 0, y(4) = 1, y(4, 1) = 1.0049, y(4, 2) = 1.0097, y(4, 3) = 1.0143$$

Solution:

Given 
$$y' = \frac{2-y^2}{5x}$$
,  $x_0 = 4$ ,  $x_1 = 4.1$ ,  $x_2 = 4.2$ ,  $x_3 = 4.3$ ,  $x_4 = 4.4$   
 $y_0 = 1$ ,  $y_1 = 1.0049$ ,  $y_2 = 1.0097$ ,  $y_3 = 1.0143$   
 $y_1' = \frac{2-y_1^2}{5x_1} = \frac{2-(1.0049)^2}{5(4.1)} = 0.0493$   
 $y_2' = \frac{2-y_2^2}{5x_2} = \frac{2-(1.0097)^2}{5(4.2)} = 0.0467$   
 $y_3' = \frac{2-y_3^2}{5x_3} = \frac{2-(1.0143)^2}{5(4.3)} = 0.0452$ 

By Mile's predictor formula is

$$y_{4, p} = y_0 + \frac{4h}{3} [2y'_1 - y'_2 + 2y'_3]$$
$$y_{4, p} = 1 + \frac{4(0.1)}{3} [2(0.0493 - 0.0467 + 2(0.0452)]$$

$$y_{4, p} = 1.01897$$
  
 $y'_{4} = \frac{2 - y_{4}^{2}}{5x_{4}} = \frac{2 - (1.1897)^{2}}{5(4.4)} = 0.0437$ 

By Mile's corrector formula is

$$y_{4, c} = y_2 + \frac{n}{3} [y'_2 + 4y'_3 + y'_4]$$
$$y_{4, c} = 1.0097 + \frac{0.1}{3} [0.0467 + 4(0.0452 + 0.0437]]$$

 $y_{4, c} = 1.01874$ 

$$= 1 + \frac{4(0.1)}{3} [2(1.3552) - 1.8535 + 2(2.6589)]$$
  
y_{4, p} = 1.8233

 $y'_4 = x_4 y_4 + {y_4}^2 = (0.4)(1.8233) + (1.8233)^2 = 4.0537$ 

By Mile's corrector formula is

$$y_{4, c} = y_2 + \frac{h}{3} [y'_2 + 4y'_3 + y'_4]$$
  

$$y_{4, c} = 1.2774 + \frac{0.1}{3} [1.8535 + 4(2.6589) + 4.0537]$$
  

$$y_{4, c} = 1.8165$$

10. Using Runge-kutta method of fourth order, find y for x = 0.1, 0.2, 0.3 given that  $\frac{dy}{dx} = xy + y^2, y(0) = 1$  Continue the solution at x=0.4 using Milne's method . Solution:

Given  $\frac{dy}{dx} = xy + y^2$ ,  $x_0 = 0$ ,  $y_0 = 1$ , h = 0.1By Runge –kutta method

$$k_{1} = hf(x_{0}, y_{0})$$

$$= (0.1)f(0,1)$$

$$= (0.1)(0 + 1)$$

$$k_{1} = 0.1$$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$= (0.1)f\left(0 + \frac{0.1}{2}, 1 + \frac{0.1}{2}\right)$$

$$= (0.1)f(0.05, 1.05)$$

$$= (0.1)\left((0.05)(1.05) + (1.05)^{2}\right)$$

$$k_{2} = 0.1155$$

$$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$$

$$= (0.1)f\left(0 + \frac{0.1}{2}, 1 + \frac{0.1155}{2}\right)$$

$$= (0.1)f(0.05, 1.50775)$$

$$= (0.1)\left((0.05)(1.50775) + (1.50775)^{2}\right)$$

$$k_{3} = 0.1172$$

$$k_{4} = hf(x_{0} + h, y_{0} + k_{3})$$

$$= (0.1)f(0 + 0.1, 1 + 0.1172)$$

$$103$$

$$= (0.1)f(0.1,1.4424)$$

$$= (0.1)((0.1)(1.4424) + (1.4424)^{2})$$

$$k_{4} = 0.1260$$

$$\Delta y = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$= \frac{1}{6}(0.1 + 2(0.1155) + 2(0.1172) + 0.1260)$$

$$\Delta y = 0.1152$$

$$y_{1} = y_{0} + \Delta y$$

$$= 1 + 0.1152$$

$$y(0.1) = 1.1152$$
To find y(0.2):  
Here  $x_{1} = 0.1, y_{1} = 1.1152$ 

$$k_{1} = hf(x_{1}, y_{1})$$

$$= (0.1)f(0.1, 1.1152) + (1.1152)^{2})$$

$$k_{1} = 0.1255$$

$$k_{2} = hf\left(x_{1} + \frac{h}{2}, y_{1} + \frac{k_{1}}{2}\right)$$

$$= (0.1)f(0.05, 1.1780)$$

$$= (0.1)f(0.05)(1.1780) + (1.1780)^{2})$$

$$k_{2} = 0.1355$$

$$k_{3} = hf\left(x_{1} + \frac{h}{2}, y_{1} + \frac{k_{2}}{2}\right)$$

$$= (0.1)f\left(0.1 + \frac{0.1}{2}, 1 + \frac{0.1355}{2}\right)$$

$$= (0.1)f(0.1 + \frac{0.1}{2}, 1 + \frac{0.1355}{2})$$

$$= (0.1)f(0.1 + \frac{0.1}{2}, 1 + \frac{0.1355}{2})$$

$$= (0.1)f(0.1 + 0.1, 1.152 + 0.1577)$$

$$k_{4} = hf(x_{1} + h_{y_{1}} + k_{3})$$

$$= (0.1)f(0.1 + 0.1, 1.152 + 0.1577)$$

$$= (0.1)f(0.1 + 0.1, 1.152 + 0.1577)$$

$$k_{4} = 0.1875$$

$$\Delta y = \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$= \frac{1}{6}(0.1255 + 2(0.1355) + 2(0.1577) + 0.1875)$$

$$\Delta y = 0.1499$$

$$y(0.2) = 1.2651$$

Here  $x_1$ 

To find y(0.3):  
Here 
$$x_2 = 0.2, y_2 = 1.2651$$
  

$$k_1 = hf(x_2, y_2) = (0.1)f(0.2, 1.2651) + (1.2651)^2)$$

$$k_1 = 0.1853$$

$$k_2 = hf\left(x_2 + \frac{h}{2}, y_2 + \frac{k_1}{2}\right)$$

$$= (0.1)f\left(0.2 + \frac{0.1}{2}, 1.2651 + \frac{0.1}{2}\right)$$

$$= (0.1)f\left(0.25, 1.3578\right)$$

$$= (0.1)((0.25)(1.3578) + (1.3578)^2)$$

$$k_2 = 0.2183$$

$$k_3 = hf\left(x_2 + \frac{h}{2}, y_2 + \frac{k_2}{2}\right)$$

$$= (0.1)f\left(0.2 + \frac{0.1}{2}, 1.2651 + \frac{0.2183}{2}\right)$$

$$= (0.1)f\left(0.2 + \frac{0.1}{2}, 1.2651 + \frac{0.2183}{2}\right)$$

$$= (0.1)f(0.25, 1.3742)$$

$$= (0.1)f(0.25, 1.3742)$$

$$= (0.1)f(0.2+0, 1, 1.2651 + 0.2232)$$

$$= (0.1)f(0.3, 1.4883)$$

$$= (0.1)f(0.1, 1.4883) + (1.4883)^2)$$

$$k_4 = 0.2662$$

$$\Delta y = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$= \frac{1}{6}(0.1853 + 2(0.2183) + 2(0.2232) + 0.2662)$$

$$\Delta y = 0.2224$$

$$y_3 = y_2 + \Delta y$$

$$= 1.2651 + 0.2224$$

$$y(0.3) = 1.4875$$

$$x_0 = 0, x_1 = 0.1, x_2 = 0.2, x_3 = 0.3, x_4 = 0.4$$

$$y_0 = 1, y_1 = 1.1152, y_2 = 1.2651, y_3 = 1.4875, y_4 = ?$$

$$y' = xy + y^2$$

$$y'_0 = x_0y_0 + y_0^2 = (0)(1) + (1)^2 = 1$$

$$y'_1 = x_1y_1 + y_1^2 = (0.1)(1.1152) + (1.152)^2 = 1.3535$$

$$y'_2 = x_2y_2 + y_2^2 = (0.2)(1.2651) + (1.2651)^2 = 1.8535$$

$$y'_3 = x_3y_3 + y_3^2 = (0.3)(1.4875) + (1.4875)^2 = 2.6589$$
By Mile's predictor formula is
$$y_{4, p} = y_0 + \frac{4h}{3}[2y'_1 - y'_2 + 2y'_3]$$

$$y_{4, p} = 1.4\frac{(0.1)}{3}[2(1.3552) - 1.8535 + 2(2.6589)]$$

$$y_{4, p} = 1.8233$$

 $y'_{4} = x_{4}y_{4} + y_{4}^{2} = (0.4)(1.8233) + (1.8233)^{2} = 4.0537$ By Mile's corrector formula is  $y_{4, c} = y_{2} + \frac{h}{3}[y'_{2} + 4y'_{3} + y'_{4}]$  $y_{4, c} = 1.2651 + \frac{0.1}{3}[1.8535 + 4(2.6589) + 4.0537]$  $y_{4, c} = 1.8165$