
AL-ameen Engg College CA 1

 AL-AMEEN ENGINEERING COLLEGE

((AAUUTTOONNOOMMOOUUSS))

 Accredited by NAAC with “A” Grade:: An ISO Certified Institution

(Affiliated to Anna University, Chennai & Approved by AICTE, New Delhi)

Karundevanpalayam, NanjaiUthukkuli Post, Erode – 638 104, Tamilnadu, INDIA.

DEPARTMENT OF EEE

COURSE TITLE: 20CSO02–COMPUTER ARCHITECTURE

III YEAR / V SEMESTER

REGULATION 2020

PREPARED BY

Mr.S.N.SYED JAMESHA, ME., AP / ECE

LECTURE NOTES

AL-ameen Engg College CA 2

Topic - 1
BASIC STRUCTUTRE OF COMPUTERS

9

Functional Units - Basic Operational Concepts - Bus Structures - Performance - Memory

Locations and Addresses - Memory Operations - Instruction and Instruction Sequencing –

Addressing Modes - Basic I/O Operations.

Introduction:

Computer types

A computer can be defined as a fast electronic calculating machine that accepts the

(data) digitized input information process it as per the list of internally stored instructions and

produces the resulting information.

List of instructions are called programs & internal storage is called computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools,

Business offices etc., It is the most common type of desk top computers with processing and

storage units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability,

but with same dimensions as that of desktop computer. These are used in engineering

applications of interactive design work.

4. Enterprise systems: - These are used for business data processing in medium to

large corporations that require much more computing power and storage capacity than work

stations. Internet associated with servers have become a dominant worldwide source of all

types of information.

5. Super computers: - These are used for large scale numerical calculations required

in the applications like weather forecasting etc.,

AL-ameen Engg College CA 3

Functional Units:

A computer consists of five functionally independent main parts input, memory, arithmetic

logic unit (ALU), outputand control unit.

Input Unit:-

Computers take coded information via input unit. The most famous input device is keyboard.

Whenever we press any key it is automatically being translated to corresponding binary code

& transmitted over a cable to memory or processor.

Memory Unit:-

It stores programs as well as data and there are two types- Primary and Secondary Memory

Primary Memory is quite fast which works at electronic speed. Programs should be stored in

memory before getting executed. Random Access Memory are those memory in which

location can be accessed in a shorter period of time after specifying the address. Primary

memory is essential but expensive so we went for secondary memory which is quite cheaper.

It is used when large amount of data & programs are needed to store, particularly the

information that we don’t access very frequently. Ex- Magnetic Disks, Tapes

AL-ameen Engg College CA 4

Arithmetic & Logic Unit:-

All the arithmetic & Logical operations are performed by ALU and this operation are

initiated once the operands are brought into the processor.

Output Unit: – It displays the processed result to outside world.

Basic Operational Concepts

 Instructions take a vital role for the proper working of the computer.

 An appropriate program consisting of a list of instructions is stored in the memory so

that the tasks can be started.

 The memory brings the Individual instructions into the processor, which executes the

specified operations.

 Data which is to be used as operands are moreover also stored in the memory.

Example:

Add LOCA, R0

 This instruction adds the operand at memory location LOCA to the operand which

will be present in the Register R0.

 The above mentioned example can be written as follows:

Load LOCA, R1

Add R1, R0

 First instruction sends the contents of the memory location LOCA into processor

Register R0, and meanwhile the second instruction adds the contents of Register R1 and

R0 and places the output in the Register R1.

The memory and the processor are swapped and are started by sending the address of the

memory location to be accessed to the memory unit and issuing the appropriate control

signals.

 The data is then transferred to or from the memory.

Analysing how processor and memory are connected:–

 Processors have various registers to perform various functions :-

 Program Counter: - It contains the memory address of next instruction to be fetched.

 Instruction Register:- It holds the instruction which is currently being executed.

AL-ameen Engg College CA 5

 MDR: - It facilities communication with memory. It contains the data to be written

into or read out of the addressed location.

 MAR :- It holds the address of the location that is to be accessed

 There are n general purpose registers that is R0 to Rn-1

Performance:-

 Performance means how quickly a program can be executed.

 In order to get the best performance it is required to design the compiler, machine

instruction set & hardware in a coordinated manner.

Connection B / W Processor & Memory

Connection B/W Processor & Memory

 The above mentioned block diagram consists of the following components

1) Memory

2) MAR

3) MDR

4) PC

5) IR

6) General Purpose Registers

7) Control Unit

8) ALU

 The instruction that is currently being executed is held by the Instruction Register.

 IR output is available to the control circuits, which generates the timing signal that

control the various processing elements involved in executing the instruction.

 The Memory address of the next instruction to be fetched and executed is contained

by the Program Counter.

 It is a specialized register.

 It keeps the record of the programs that are executed.

 Role of these registers is to handle the data available in the instructions. They store

the data temporarily.

 Two registers facilitate the communication with memory.

AL-ameen Engg College CA 6

These registers are:

1) MAR (Memory Address Register)

2) MDR (Memory Data Register)

Memory Address Register:

 The address of the location to be accessed is held by MAR.

Memory Data Register:

 It contains the data to be written into or to be read out of the addressed location.

Working Explanation

A PC is set to point to the first instruction of the program. The contents of the PC are

transferred to the MAR and a Read control signal is sent to the memory. The addressed word

is fetched from the location which is mentioned in the MAR and loaded into MDR. This post

thus contains all the important basic operational concepts.

Bus structures:

BUS:A group of lines(wires) that serves as a connecting path for several devices of a

computer is called abus.

The following are different types of busses:

AddressBus 2. DataBus 3. Control Bus

The Data busCarries(transfer) data from one component (source) to other component

(destination) connected to it. The data bus consists of 8, 16, 32 or more parallel signal lines.

The data bus lines are bi-directional. This means that CPU can read data on these lines from

memory or from a port, as well as send data out on these lines to a memorylocation.

The Address busis the set of lines that carry(transfer) address information about where in

memory the data is to be transferred to or from. It is an unidirectional bus. The address bus

consists of 16, 20, 24 or more parallel signal lines. On these lines CPU sends out the address

of the memory location.

The Control Buscarries the Control and timing information. Including these three the

following are various types of busses. They are

System Bus: A System Bus is usually a combination of address bus, data bus, and control bus

respectively.

Internal Bus: The bus that operates only with the internal circuitary of the CPU.

AL-ameen Engg College CA 7

MEMORY INPUT
PROCESSOR OUTPUT

External Bus: Buses which connects computer to external devices is nothing but external bus.

Back Plane: A Back Plane bus includes a rowpf connectors into which system modules can

be plugged in.

I/O Bus: The bus used by I/O devices to communicate with the CPU is usually reffered as I/O

bus. Synchronous Bus: While using Synchronous bus, data transmission between source and

destination units takes place in a given timeslot which is already known to these units.

Asynchronous Bus: In this case the data transmission is governed by a special concept. That

is handshaking control signals.

The Bus interconnection Scheme:-

Single bus structure :-

 A group of lines(wires) that serves as a connecting path for several devices of a

computer is called a bus.

In addition to the lines that carry the data, the bus must have lines for address and control

purposes.

The simplest way to interconnect functional units is to use a single bus, as shownbelow.

AL-ameen Engg College CA 8

 All units are connected to this bus. Because the bus can be used for only one transfer

at a time, only two units can actively use the bus at any giventime.

Bus control lines are used to arbitrate multiple requests for use of thebus.

ADVANTAGE:

Its is low cost and its flexibility for attaching peripheral devices

DISADVANTAGE:

low performance because at time only one transfer

Traditional / Multiple bus Structure: There is a local bus that connects the processor to cache

memory and that may support one or more local devices. There is also a cache memory

controller that connects this cache not only to this local bus but also to the system bus.

On the system, the bus is attached to the main memory modules. In this way, I/O transfers to

and from the main memory across the system bus do not interfere with the processor’s

activity. An expansionbus interface buffers data transfers between the system bus and the I/O

controllers on the expansionbus.

Some typical I/O devices that might be attached to the expansion bus include: Network cards

(LAN), SCSI (Small Computer System Interface), Modem, Serial Com etc..

AL-ameen Engg College CA 9

Performance

Performance: - The most important measure of the performance of a computer is how quickly

it can compute programs. The speed with which a computer executes programs is affected by

the design of its hardware and its machine language instructions. To represent the

performance of a processor, we should consider only the periods during which the processor

is active.

At the start of execution, all program instructions and the required data are stored in the

memory as shown below. As execution proceeds, instructions are fetched one by one over the

bus into the processor, and a copy is placed in the cache. When the execution of instruction

calls for data located in the main memory, the data are fetched and a copy is placed in the

cache. Later, if the same instruction or data item is needed a second time, it is read directly

from the cache.

AL-ameen Engg College CA 10

Computer performance is often described in terms of clock speed (usually in MHz or GHz).

This refers to the cycles per second of the main clock of the CPU. Performance of a computer

depends on the following factors.

Processorclock:-

Processor circuits are controlled by a timing signal called a clock. A clock is a microchip that

regulates speed and timing of all computerfunctions.

Clock Cycle is the speed of a computer processor, or CPU, which is the amount of time

between two pulses of an oscillator. Generally speaking, the higher number of pulses per

second, the faster the computer processor will be able to process information

CPU clock speed, or clock rate, is measured in Hertz — generally in gigahertz, or GHz. A

CPU's clock speed rate is a measure of how many clock cycles a CPU can perform persecond

To execute a machine instruction, the processor divides the action to be performed into a

sequence of basic steps, such that each step can be completed in one clockcycle.

The length P of one clock cycle is an important parameter that affects processorperformance.

Its inverse is the clock rate, R = 1/P, which is measured in cycles persecond.

If the clock rate is 500(MHz) million cycles per second, then the corresponding clock period

is 2 nanoseconds.

Basic performance equation:-The Performance Equation is a term used in computer science.

It refers to the calculation of the performance or speed of a central processing unit(CPU).

Basically the Basic Performance Equation [BPE] is an equation with 3 parameters which are

required for the calculation of "Basic Performance" of a given system. It is givenby

T = (N*S)/R

Where 'T' is the processor time [Program Execution Time] required to execute a given

program written in some high level language .The compiler generates a machine language

object program corresponding to the source program.

AL-ameen Engg College CA 11

'N' is the total number of steps required to complete program execution. 'N' is the actual

number of instruction executions, not necessarily equal to the total number of machine

language instructions in the object program. Some instructions are executed more than others

(loops) and some are not executed at all (conditions).

'S' is the average number of basic steps each instruction execution requires, where each basic

step is completed in one clock cycle. We say average as each instruction contains a variable

number of steps depending on theinstruction.

'R' is the clock rate [In cycles per second]

Pipelining and Super scalaroperation:-

A substantial improvement in performance can be achieved by overlapping the execution of

successive instructions, using a technique calledpipelining.

Consider theinstruction

Add R1, R2, R3

Which adds the contents of registers R1 and R2, and places the sum intoR3

The contents of R1 and R2 are first transferred to the inputs of theALU.

After the add operation is performed, the sum is transferred toR3.

Processor can read the next instruction from the memory while the addition operation is being

performed.

Then, if that instruction also uses the ALU, its operands can be transferred to the ALU inputs

at the same time that the result of add instruction is being transferred toR3.

Thus, pipelining increases the rate of executing instructionssignificantly.

Super scalaroperation:-

A higher degree of concurrency can be achieved if multiple instruction pipelines are

implemented in theprocessor.

AL-ameen Engg College CA 12

This means that multiple function units are used, creating parallel paths through which

different instructions can be executed inparallel.

With such an arrangement, it becomes possible to start the execution of several instructions in

every clockcycle.

This mode of execution is called super scalaroperation.

Clockrate:-

There are two possibilities for increasing the clock rate,R.

First, improving the Integrated Circuit technology makes logic circuit faster, which reduces

the needed to complete a basic step. This allows the clock period, P, to be reduced and the

clock rate, R, to beincreased.

Second, reducing the amount of processing done in one basic step also makes it possible to

reduce the clock period,P.

Instruction set: CISC andRISC:-

The terms CISC and RISC refer to design principles andtechniques.

RISC: Reduced instruction setcomputers.

Simple instructions require a small number of basic steps toexecute.

For a processor that has only simple instructions, a large number of instructions may by need

to perform a given programming task. This could lead to a large value of N and a small value

forS.

It is much easier to implement efficient pipelining in processors with simple instructionsets.

CISC: Complex instruction set computers.

Complex instructions involve a large number ofsteps.

If individual instructions perform more complex operations, fewer instructions will be

needed, leading to a lower value of N and a larger value ofS.

Complex instructions combined with pipelining would achieve goodperformance.

AL-ameen Engg College CA 13

Optimizing Compiler:-

A compiler translates a high-level language program into a sequence of machineinstructions.

To reduce N, we need to have a suitable machine instruction set and a compiler that makes

good use of it.

An optimizing compiler takes advantage of various features of the target processor to reduce

the product N *S.

The compiler may rearrange program instructions to achieve betterperformance.

Performancemeasurement:-

SPEC rating.

A nonprofit organization called” System Performance Evaluation Corporation” (SPEC)

selects and publishes representative application programs for different applicationdomains.

The SPEC rating is computed asfollows.

SPEC rating = Running time on the referencecomputer

Running time on the computer under test.

Thus SPEC rating of 50 means that the computer under test is 50 times faster than the

reference computer for these particularbenchmarks.

The test is repeated for all the programs in the SPEC suite, and the geometric mean of the

results is computed.

Let SPEC, be the rating for program ‘i’ in the suite. The overall SPEC rating for the computer

is givenby

Where n is the number of programs in the suite.

AL-ameen Engg College CA 14

Memory Locations:

Memory locations and addresses are fundamental concepts in computer architecture and

programming. They refer to the physical or logical locations where data and instructions are

stored in a computer's memory.

Memory Location: A memory location is a specific location in the computer's memory where

data can be stored or retrieved. Each memory location has a unique identifier known as an

address, which helps the computer's processor access and manipulate the data stored in that

location.

Memory Address: A memory address is a numerical value that represents the location of data

in memory. It is used by the processor to read or write data to/from a specific memory

location. Memory addresses are typically expressed in hexadecimal notation, and each

address corresponds to a byte (or a group of bytes) in memory.

For example, let's say a computer has 8 bits of memory (very simplified scenario for

illustration purposes). Each bit can store either 0 or 1, giving us 256 possible combinations

(2^8). The memory locations are numbered from 0 to 255, and each location contains 1 byte

(8 bits) of data.

In this case, the memory addresses would range from 0x00 to 0xFF (in hexadecimal) or from

0 to 255 (in decimal). To access the data stored at a specific memory location, the processor

sends the memory address along with a read or write signal to the memory unit.

When a program is executed, its instructions and data are loaded into specific memory

locations. The program counter, a special register, keeps track of the memory address of the

instruction being executed, allowing the processor to fetch the next instruction in sequence.

The concept of memory locations and addresses is crucial for understanding how computers

store and retrieve data during program execution, making it an essential aspect of computer

science and programming.

AL-ameen Engg College CA 15

Memory Operations:

Memory operations refer to the actions or processes involved in reading from or writing to

computer memory. In the context of computer systems, memory refers to the storage space

where data and instructions are temporarily stored during the execution of programs. Memory

operations play a crucial role in the functioning of a computer system, and they are essential

for the execution of any program.

There are several common memory operations:

Reading: During the execution of a program, the CPU (Central Processing Unit) needs to

fetch data or instructions from memory to process them further. This process involves reading

the content of a specific memory location and transferring it to the CPU for processing.

Writing: When data needs to be stored or updated in memory, the CPU performs a write

operation. The CPU sends the data to the specific memory location, and it gets stored there,

replacing the previous content if any.

Load: A load operation is used to fetch data from memory and transfer it into a CPU register,

where it can be manipulated or used by the CPU. Loading data from memory into registers is

faster than accessing data directly from memory.

Store: A store operation is used to take data from a CPU register and write it to a specific

memory location, effectively storing the data in memory.

Copy: Copying data from one memory location to another involves reading the data from the

source location and writing it to the destination location. This is a common operation used in

various algorithms and data manipulation tasks.

Move: Similar to copying, moving data also involves transferring data from one memory

location to another. However, in this case, the data is removed from the source location after

being transferred to the destination.

Allocate and Deallocate: Memory operations include allocating memory to a program or data

structure when it is needed and deallocating it when it is no longer required. Memory

allocation and deallocation are crucial for managing memory efficiently and avoiding

memory leaks.

AL-ameen Engg College CA 16

Initialize: Initializing memory means setting its content to a predefined value, typically 0 or

null. This is often done to ensure that the memory is in a known state before storing data in it.

Memory operations are fundamental to the proper functioning of computer programs and the

overall performance of a computer system.

Instruction and instruction sequencing:

Instruction and instruction sequencing are fundamental concepts in the field of computer

science and computer architecture. They play a crucial role in how computers execute tasks

and process data.

Instruction: In the context of computing, an instruction is a basic operation or command that a

computer processor can understand and execute. Instructions are the building blocks of

programs and represent specific tasks that the processor can perform, such as arithmetic

operations (addition, subtraction, etc.), logical operations (AND, OR, NOT), data movement

(load and store), and control flow (branching and jumping).

Instructions are encoded in binary form and are represented as sequences of 0s and 1s, which

the processor can interpret and execute. Each type of processor or CPU (Central Processing

Unit) has its own instruction set, which is a specific collection of instructions it can

understand and execute.

Instruction Sequencing: Instruction sequencing refers to the order in which instructions are

executed by the computer processor. In a typical computer program, a series of instructions

are arranged in a specific order to achieve the desired task or computation. The processor

fetches, decodes, and executes instructions one by one in the specified sequence.

The instruction sequencing is controlled by the program counter (PC), a special register in the

CPU that holds the memory address of the next instruction to be executed. During the

AL-ameen Engg College CA 17

execution of a program, the PC is incremented, and the processor fetches the instruction from

the memory location pointed by the PC, decodes it to understand the operation, and then

executes it. This process continues until the program is completed.

The ability to sequence instructions correctly is crucial to ensure that a program executes the

desired tasks accurately and efficiently. Incorrect sequencing or flow control can lead to

program errors and unintended behaviors.

Instruction sequencing is also affected by control flow instructions like branches and jumps,

which allow the program to change its flow and execute instructions conditionally or non-

sequentially based on certain conditions.

In summary, instructions and instruction sequencing are fundamental concepts in computer

architecture that enable computers to execute tasks and process data in a structured and

organized manner. They are essential to the functioning of a computer and the execution of

computer programs.

Addressing modes:

In computer architecture, an addressing mode is a technique used by a processor to specify

the location of operands in memory during instruction execution. The choice of addressing

mode can have a significant impact on the efficiency and flexibility of a computer's

instruction set architecture. Different addressing modes are designed to handle various

memory access requirements and optimize the execution of specific instructions. Here are

some common addressing modes:

AL-ameen Engg College CA 18

Immediate Addressing: The operand value is directly specified within the instruction itself.

For example, "MOV R1, #10" means move the value 10 into register R1.

Register Addressing: The operand is stored in a register. For example, "ADD R2, R3" means

add the value in register R3 to the value in register R2.

Direct Addressing: The memory address of the operand is explicitly given in the instruction.

For example, "LOAD R1, 0x1000" means load the value from memory address 0x1000 into

register R1.

Indirect Addressing: The memory address of the operand is stored in a register. The

instruction accesses the value in the memory address pointed to by the register. For example,

"LOAD R1, (R2)" means load the value from the memory address stored in register R2 into

register R1.

Register indirect addressing mode is a concept used in computer architecture and assembly

language programming. It is one of the addressing modes that processors use to access data

stored in memory.

Displacement addressing mode is a type of addressing mode used in computer architectures

and assembly languages. In this addressing mode, the effective address of an operand is

calculated by adding a constant displacement value to the base address or index register

value.

Effective Address = Base Address (or Index Register Value) + Displacement

AL-ameen Engg College CA 19

Stack Addressing: The operand is implicitly at the top of the stack. This mode is often used

for subroutine calls and managing function parameters and local variables.

Basic Input and output operations:

Basic Input/output (I/O) operations in computer architecture refer to the processes of

transferring data between the central processing unit (CPU) and external devices, such as

keyboards, monitors, hard drives, printers, and network interfaces. These operations allow the

computer to interact with its surroundings and enable users to input data and receive output

from the system.

There are two main types of I/O operations:

Input Operations: Input operations involve transferring data from external devices to the

computer's memory or registers for processing. Common input devices include keyboards,

mice, scanners, and sensors. When you press a key on the keyboard or move the mouse, the

corresponding data is sent to the CPU for further processing. The CPU then responds based

on the input data received.

Output Operations: Output operations involve transferring data from the computer's memory

or registers to external devices for display or storage. Common output devices include

monitors, printers, speakers, and storage devices (e.g., hard drives, USB drives). The CPU

sends data to these devices to display information on the screen or print documents, among

other tasks.

AL-ameen Engg College CA 20

The process of I/O operations typically involves the following steps:

Initiation: The computer's operating system or software initiates the I/O operation by sending

a request to read or write data to/from an external device.

Data Transfer: The data is transferred between the CPU and the external device through

specialized I/O channels or buses.

Control: The CPU communicates with the device controller to coordinate the data transfer

and manage the I/O process.

Interrupts: In many cases, I/O operations are slower than CPU operations. To avoid wasting

CPU cycles while waiting for I/O to complete, the CPU uses interrupts. An interrupt is a

signal that interrupts the normal flow of the CPU, allowing it to handle the I/O request and

then return to its previous task.

Modern computers use various techniques to optimize I/O operations, such as buffering,

direct memory access (DMA), and I/O scheduling algorithms. These techniques aim to

reduce the overall time spent on I/O operations and improve system performance.

Unit 2

ARITHMETIC FOR COMPUTER

INTRODUCTION:

An arithmetic unit, or ALU, enables computers to perform mathematical operations

on binary numbers. They can be found at the heart of every digital computer and are one of

the most important parts of a CPU (Central Processing Unit). This note explores their basic

function, anatomy and history.

AL-ameen Engg College CA 21

The operations performed by ALU are:

Logical Operations: The logical operations consist of NOR, NOT, AND, NAND, OR,

XOR, and more.

Bit-Shifting Operations: It is responsible for displacement in the locations of the bits

to the by right or left by a certain number of places that are known as a multiplication

operation.

Arithmetic Operations: Although it performs multiplication and division, this refers to

bit addition and subtraction. But multiplication and division operations are more costly to

make. In the place of multiplication, addition can be used as a substitute and subtraction for

division.

AL-ameen Engg College CA 22

Addition and Subtraction of Signed Numbers:

A signed-magnitude method is used by computers to implement floating-point

operations. Signed-2’s complement method is used by most computers for arithmetic

operations executed on integers. In this approach, the leftmost bit in the number is used

for signifying the sign; 0 indicates a positive integer, and 1 indicates a negative integer. The

remaining bits in the number supported the magnitude of the number.

Example: -2410 is defined as −

10011000

In this example, the leftmost bit 1 defines negative, and the magnitude is 24.

The magnitude for both positive and negative values is the same, but they change only with

their signs.

The range of values for the sign and magnitude representation is from -127 to 127.

There are eight conditions to consider while adding or subtracting signed numbers

 Addition and Subtraction of Signed Magnitude Numbers :

 Addition of Magnitudes Subtraction of Magnitudes

(+P) + (+Q) +(P+Q) P>Q P<Q P=Q

(+P) + (-Q) +(P-Q) -(Q-P) +(P-Q)

(-P) + (+Q) -(P-Q) +(Q-P) +(P-Q)

(-P) + (-Q) -(P+Q)

(+P) - (+Q) +(P-Q) -(Q-P) +(P-Q)

(+P) - (-Q) +(P+Q)

AL-ameen Engg College CA 23

 Addition of Magnitudes Subtraction of Magnitudes

(-P) - (+Q) -(P+Q)

(-P) - (-Q) -(P-Q) +(Q-P) +(P-Q)

0 1

UNIT-II

ARITHMETIC UNIT

Addition and Subtraction of Signed Numbers - Design of Fast Adders - Multiplication

of Positive Numbers - Signed Operand Multiplication - Fast Multiplication - Integer

Division - Floating Point Numbers and Operations. Positive Numbers and Operations.

INTRODUCTION:

An arithmetic unit, or ALU, enables computers to perform mathematical operations on

binary numbers. They can be found at the heart of every digital computer and are one of the most

important parts of a CPU (Central Processing Unit). This note explores their basic function,

anatomy and history.

The operations performed by ALU are:

o Logical Operations: The logical operations consist of NOR, NOT, AND, NAND, OR,

XOR, and more.

o Bit-Shifting Operations: It is responsible for displacement in the locations of the bits to the

by right or left by a certain number of places that are known as a multiplication operation.

o Arithmetic Operations: Although it performs multiplication and division, this refers to bit

addition and subtraction. But multiplication and division operations are more costly to

make. In the place of multiplication, addition can be used as a substitute and subtraction for

division.

Addition and Subtraction of Signed Numbers:

A signed-magnitude method is used by computers to implement floating-point operations.

Signed-2’s complement method is used by most computers for arithmetic operations executed on

integers. In this approach, the leftmost bit in the number is used for signifying the sign; 0 indicates

a positive integer, and 1 indicates a negative integer. The remaining bits in the number supported

the magnitude of the number.

Example: -2410 is defined as −

10011000

In this example, the leftmost bit 1 defines negative, and the magnitude is 24.

The magnitude for both positive and negative values is the same, but they change only with their

signs.

The range of values for the sign and magnitude representation is from -127 to 127.

There are eight conditions to consider while adding or subtracting signed numbers

 Addition and Subtraction of Signed Magnitude Numbers :

 Addition of Magnitudes Subtraction of Magnitudes

(+P) + (+Q) +(P+Q) P>Q P<Q P=Q

(+P) + (-Q) +(P-Q) -(Q-P) +(P-Q)

(-P) + (+Q) -(P-Q) +(Q-P) +(P-Q)

(-P) + (-Q) -(P+Q)

(+P) - (+Q) +(P-Q) -(Q-P) +(P-Q)

(+P) - (-Q) +(P+Q)

(-P) - (+Q) -(P+Q)

(-P) - (-Q) -(P-Q) +(Q-P) +(P-Q)

0 1

Flowchart of Addition and Subtraction with signed Magnitude Data:

Hardware for signed magnitude addition and subtraction:

Design of Fast Adders :

 A carry-look ahead adder (CLA) or fast adder is a type of adder used in digital logic.

 A carry-look ahead adder improves speed by reducing the amount of time required to

determine carry bits.

 It can be contrasted with the simpler, but usually slower, ripple-carry adder (RCA), for

which the carry bit is calculated alongside the sum bit, and each stage must wait until the

previous carry bit has been calculated to begin calculating its own sum bit and carry bit.

 The carry-lookahead adder calculates one or more carry bits before the sum, which reduces

the wait time to calculate the result of the larger-value bits of the adder

 A carry-Lookahead adder is a fast parallel adder as it reduces the propagation delay by more

complex hardware, hence it is costlier.

 This method makes use of logic gates so as to look at the lower order bits of the augend and

addend to see whether a higher order carry is to be generated or not.

Contents for fast addition are,

1. Carry Look Ahead Adder

2. Parallel Prefix Adder trees

3. Carry Skip Adder

4. Carry Increment Adder

5. Carry Select Adders

6. Carry Save Addition

7. BCD Addition

https://digitalsystemdesign.in/fast-addition/#fasta1
https://digitalsystemdesign.in/fast-addition/#fasta2
https://digitalsystemdesign.in/fast-addition/#fasta3
https://digitalsystemdesign.in/fast-addition/#fasta4
https://digitalsystemdesign.in/fast-addition/#fasta5
https://digitalsystemdesign.in/fast-addition/#fasta6
https://digitalsystemdesign.in/fast-addition/#fasta7

 16-bit adder Figure is the parallel prefix graph of a HanCarlson adder.

This adder has a hybrid design combining stages from the Brent-Kung and KoggeStone adder.

The Han-Carlson adder is efficient and suitable for VLSI implementation.

Carry skip adders:

A carry-skip adder consists of a simple ripple carry-adder with a special speed up carry

chain called a skip chain. This chain defines the distribution of ripple carry blocks, which compose

the skip adder. The addition of two binary digits at stage i, where i is not equal to 0, of the ripple

carry adder depends on the carry in, Ci , which in reality is the carry out, Ci-1, of the previous

stage. Therefore, in order to calculate the sum and the carry out, Ci+1 , of stage i, it is imperative

that the carry in, Ci, be known in advance.

It is interesting to note that in some cases Ci+1 can be calculated without knowledge of Ci.

Boolean Equations of a Full Adder:

Pi = Ai Bi Equ. 1 --carry propagate of ith stage

Si = Pi Ci Equ. 2 --sum of ith stage

Ci+1 = AiBi + PiCi Equ. 3 --carry out of ith stage

Supposing that Ai = Bi, then Pi in equation 1 would become zero (equation 4). This would

make Ci+1 to depend only on the inputs Ai and Bi, without needing to know the value of Ci.

Ai = Bi ; Pi = 0 Equ. 4 --from #Equation 1

If Ai = Bi = 0 ; Ci+1 = AiBi = 0 --from equation 3

If Ai = Bi = 1; Ci+1 = AiBi = 1 --from equation 3

Therefore, if Equation 4 is true then the carry out, Ci+1, will be one if Ai = Bi = 1 or zero if

Ai= Bi = 0. Hence the output can be computed with the carry out at any stage of the addition

provided equation 4 holds. These would enable to build an adder whose average time of

computation would be proportional to the longest chains of zeros and of different digits of A and B.

Carry Increment Adder:

Carry-select adder:

Above is the basic building block of a carry-select adder, where the block size is 4. Two 4-

bit ripple-carry adders are multiplexed together, where the resulting carry and sum bits are selected

by the carry-in. Since one ripple-carry adder assumes a carry-in of 0, and the other assumes a carry-

in of 1, selecting which adder had the correct assumption via the actual carry-in yields the desired

result.

Carry-save adder:

CSA is a type of digital adder, used to efficiently compute the sum of three or more

binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and

the answer of the original summation can be achieved by adding these outputs together. A carry

save adder is typically used in a binary multiplier, since a binary multiplier involves addition of

more than two binary numbers after multiplication.

A big adder implemented using this technique will usually be much faster than conventional

addition of those numbers.

https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Binary_numeral_system

BCD Addition:

BCD or Binary Coded Decimal is that number system or code which has the binary

numbers or digits to represent a decimal number.

 A decimal number contains 10 digits (0-9). Now the equivalent binary numbers can be found

out of these 10 decimal numbers. In case of BCD the binary number formed by four binary digits,

will be the equivalent code for the given decimal digits. In BCD we can use the binary number

from 0000-1001 only, which are the decimal equivalent from 0-9 respectively.

Multiplication of Positive Numbers:

https://digitalsystemdesign.in/fast-addition/#fasta7

Signed Operand Multiplication:

Fast Multiplication:

Integer Division:

Floating Point Numbers and Operations:

--*-*-*-*-*-*-*

 Unit-3

 Basic Processing Unit

Introduction:

Fundamental Concepts - Execution of a Complete Instruction - Multiple Bus Organization - Hardwired Control

– Micro programmed Control – Microinstructions- Microprogram Sequencing- Wide Branch Addressing

UNIT-IV: THE MEMORY SYSTEM

Basic Concepts, Semiconductor RAM, Types of Read-only Memory (ROM), Cache Memory,
Performance Considerations, Virtual Memory, Secondary Storage.

4.1 Basic Concepts:

The maximum size of the memory that can be used in any computer is determined by the

addressing scheme.

If MAR is k bits long and MDR is n bits long, then the memory may contain upto

2K addressable locations and the n-bits of data are transferred between the memory

and processor.

This transfer takes place over the processor bus.

The processor bus has,

 Address Line

 Data Line

 Control Line (R/W, MFC – Memory Function Completed)

The control line is used for co-ordinating data transfer.

The processor reads the data from the memory by loading the address of the required

memory location into MAR and setting the R/W line to 1.

The memory responds by placing the data from the addressed location onto the data lines
and confirms this action by asserting MFC signal.

Upon receipt of MFC signal, the processor loads the data onto the data lines into MDR

register.

 The processor writes the data into the memory location by loading the
address of this location into MAR and loading the data into MDR sets the R/W line
to 0.

 Measures for the speed of a memory:

 memory access time.

 It is the time that elapses between the initiation of an Operation and the

completion of that operation.
 memory cycle time.

 It is the minimum time delay that required between the initiation of the

two successive memory operations.

RAM (Random Access Memory):

In RAM, if any location that can be accessed for a Read/Write operation in fixed amount of

time, it is independent of the location’s address.

Cache Memory:

It is a small, fast memory that is inserted between the larger slower main memory and the

processor.

It holds the currently active segments of a program and their data.

Virtual memory:

The address generated by the processor does not directly specify the physical locations in

the memory.

The address generated by the processor is referred to as a virtual / logical address. The

virtual address space is mapped onto the physical memory where data are actually

stored.

The mapping function is implemented by a special memory control circuit is often called the

memory management unit.

Only the active portion of the address space is mapped into locations in the physical

memory.

The remaining virtual addresses are mapped onto the bulk storage devices used, which are

usually magnetic disk.

As the active portion of the virtual address space changes during program execution, the

memory management unit changes the mapping function and transfers the data between

disk and memory.

Thus, during every memory cycle, an address processing mechanism determines whether

the addressed in function is in the physical memory unit.

If it is, then the proper word is accessed and execution proceeds. If it is not, a page of

words containing the desired word is transferred from disk to memory.

This page displaces some page in the memory that is currently inactive.

Semiconductor RAM

Semi-Conductor memories are available is a wide range of speeds. Their cycle time ranges

from 100ns to 10ns.

INTERNAL ORGANIZATION OF MEMORY CHIPS:

Memory cells are usually organized in the form of array, in which each cell is capable of

storing one bit of information.

Each row of cells constitutes a memory word and all cells of a row are connected to a

common line called as word line.

The cells in each column are connected to Sense / Write circuit by two bit lines.

The Sense / Write circuits are connected to data input or output lines of the chip. During a

write operation, the sense / write circuit receive input information and store it in the cells of

the selected word.

The data input and data output of each senses / write ckt are connected to a single

bidirectional data line that can be connected to a data bus of the cptr.

R / W Specifies the required operation.

CS Chip Select input selects a given chip in the multi-chip memory system

Static Memories:

Memories that consist of circuits capable of retaining their state as long as power is applied

are known as static memory.

 Two inverters are cross connected to form a batch.

 The batch is connected to two bit lines by transistors T1 and T2.

 These transistors act as switches that can be opened / closed under the control of

the word line.

 When the word line is at ground level, the transistors are turned off and the latch

retain its state.

Read Operation:

 In order to read the state of the SRAM cell, the word line is activated to close

switches T1 and T2.

 If the cell is in state 1, the signal on bit line b is high and the signal on the bit line b

is low. Thus b and b are complements of each other.

 Sense / write circuit at the end of the bit line monitors the state of b and b’ and

set the output accordingly.

Write Operation:

 The state of the cell is set by placing the appropriate value on bit line b

and its complement on b and then activating the word line. This forces the

cell into the corresponding state.

 The required signal on the bit lines are generated by Sense / Write circuit.

 Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch.

 In state 1, the voltage at point X is high by having T5, T6 on and T4, T5 are OFF.

 Thus T1 and T2 returned ON (Closed), bit line b and b will have high and low

signals respectively.

 The CMOS requires 5V (in older version) or 3.3.V (in new version) of power supply

voltage.

 The continuous power is needed for the cell to retain its state

Merit :

 It has low power consumption because the current flows in the cell only when the

cell is being activated accessed.

 Static RAM’s can be accessed quickly. It access time is few Nano seconds.

Demerit:

 SRAM’s are said to be volatile memories because their contents are lost when the

power is interrupted.

Fast Page Mode:

Transferring the bytes in sequential order is achieved by applying the consecutive sequence

of column address under the control of successive CAS signals.

This scheme allows transferring a block of data at a faster rate. The block of transfer

capability is called as Fast Page Mode.

Synchronous DRAM:

 Here the operations are directly synchronized with clock signal.

 The address and data connections are buffered by means of registers.

 The output of each sense amplifier is connected to a latch.

 A Read operation causes the contents of all cells in the selected row to be loaded in

these latches.

 Data held in the latches that correspond to the selected columns are transferred into

the data output register, thus becoming available on the data output pins.

Latency:

 It refers to the amount of time it takes to transfer a word of data to or from the

memory.

 For a transfer of single word, the latency provides the complete indication of memory

performance.

 For a block transfer, the latency denotes the time it takes to transfer the first word of

data.

Bandwidth:

 It is defined as the number of bits or bytes that can be transferred in one second.

 Bandwidth mainly depends upon the speed of access to the stored data & on the

number of bits that can be accessed in parallel.

Double Data Rate SDRAM (DDR-SDRAM):

 The standard SDRAM performs all actions on the rising edge of the clock signal.

 The double data rate SDRAM transfer data on both the edges (loading edge,

trailing edge).

 The Bandwidth of DDR-SDRAM is doubled for long burst transfer.

 To make it possible to access the data at high rate, the cell array is organized

into two banks.

 Each bank can be accessed separately.

 Consecutive words of a given block are stored in different banks.

 Such interleaving of words allows simultaneous access to two words that are

transferred on successive edge of the clock.

Larger Memories:

Dynamic Memory System:

 The physical implementation is done in the form of Memory Modules.

 If a large memory is built by placing DRAM chips directly on the main system printed

circuit board that contains the processor, often referred to as Motherboard; it will

occupy large amount of space on the board.

 These packaging considerations have led to the development of larger memory unit s

known as SIMMs & DIMMs.

 SIMM-Single Inline memory Module

 DIMM-Dual Inline memory Module

 SIMM & DIMM consists of several memory chips on a separate small board that plugs

vertically into single socket on the motherboard.

4.3 Cache Memory

Ideally, computer memory should be fast, large and inexpensive. Unfortunately, it is

impossible to meet all the three requirements simultaneously. Increased speed and size are

achieved at increased cost. Very fast memory systems can be achieved if SRAM chips are

used. These chips are expensive and for the cost reason it is impracticable to build a large

main memory using SRAM chips. The alternative used to use DRAM chips for large main

memories. The processor fetches the code and data from the main memory to execute the

program. The DRAMs which form the main memory are slower devices. So it is necessary to

insert wait states in memory read/write cycles. This reduces the speed of execution. The

solution for this problem is in the memory system small section of SRAM is added along with

the main memory, referred to as cache memory. The program which is to be executed is

loaded in the main memory, but the part of the program and data accessed from the cache

memory. The cache controller looks after this swapping between main memory and cache

memory with the help of DMA controller, Such cache memory is called secondary cache.

Recent processors have the built in cache memory called primary cache.

The size of the memory is still small compared to the demands of the large programs with

the voluminous

data. A solution is provided by using secondary storage, mainly magnetic disks and

magnetic tapes to implement large memory spaces, which is available at reasonable prices.

To make efficient computer system it is not possible to rely on a single memory component,

but to employ a memory hierarchy which uses all different types of memory units that gives

efficient computer system. A typical memory hierarchy is illustrated below in the figure:

• Fastest access is to the data held in processor registers. Registers are at the top of

the memory hierarchy.

• Relatively small amount of memory that can be implemented on the processor chip.

This is processor cache.

• Two levels of cache. Level 1 (L1) cache is on the processor chip. Level 2 (L2) cache

is in between main memory and processor.

• Next level is main memory, implemented as SIMMs. Much larger, but much slower

than cache memory.

• Next level is magnetic disks. Huge amount of inexpensive storage.

• Speed of memory access is critical, the idea is to bring instructions and data that will

be used in the near future as close to the processor as possible.

The effectiveness of cache mechanism is based on the property of “ Locality of reference’.

Locality of Reference:

Many instructions in the localized areas of the program are executed repeatedly during

some time period and remainder of the program is accessed relatively infrequently.

It manifests itself in 2 ways. They are,

 Temporal(The recently executed instruction are likely to be executed again very

soon.)

 Spatial(The instructions in close proximity to recently executed instruction are also

likely to be executed soon.) If the active segment of the program is placed in cache

memory, then the total execution time can be reduced significantly.

The term Block refers to the set of contiguous address locations of some size.

The cache line is used to refer to the cache block.

 The Cache memory stores a reasonable number of blocks at a given time but this

number is small compared to the total number of blocks available in Main Memory.

 The correspondence between main memory block and the block in cache memory is

specified by a mapping function.

 The Cache control hardware decide that which block should be removed to create

space for the new block that contains the referenced word.

 The collection of rule for making this decision is called the replacement algorithm.

 The cache control circuit determines whether the requested word currently exists in

the cache.

 If it exists, then Read/Write operation will take place on appropriate cache location.

In this case Read/Write hit will occur.

 In a Read operation, the memory will not involve.

 The write operation is proceeding in 2 ways. They are,

o Write-through protocol

o Write-back protocol

Write-through protocol:

Here the cache location and the main memory locations are updated simultaneously.

Write-back protocol:

 This technique is to update only the cache location and to mark it as with associated

flag bit called dirty/modified bit.

 The word in the main memory will be updated later, when the block containing this

marked word is to be removed from the cache to make room for a new block.

 If the requested word currently not exists in the cache during read operation, then

read miss will occur.

 To overcome the read miss Load – through / Early restart protocol is used.

Read Miss:
The block of words that contains the requested word is copied from the main memory into
cache.
Load – through:

 After the entire block is loaded into cache, the particular word requested is forwarded
to the processor.

 If the requested word not exists in the cache during write operation, then Write Miss

will occur.

 If Write through protocol is used, the information is written directly into main

memory.
 If Write back protocol is used then block containing the addressed word is first

brought into the cache and then the desired word in the cache is over-written with
the new information.

Cache Memories – Mapping Functions

First generation processors, those designed with vacuum tubes in 1950 or
those designed with integrated circuits in 1965 or those designed as microprocessors
in 1980
were generally about the same speed as main memory. On such processors, this
naive

model was perfectly reasonable. By 1970, however, transistorized supercomputers

were being built where the central processor was significantly faster than the main memory,
and
by 1980, the difference had increased, although it took several decades for the performance
difference to reach today's extreme.

Solution to this problem is to use what is called a cache memory between
the

central processor and the main memory. Cache memory takes advantage of the fact that,

with any of the memory technologies available for the past half century, we have had a

choice between building large but slow memories or small but fast memories. This

was known as far back as 1946, when Berks, Goldstone and Von Neumann proposed the use

of a memory hierarchy, with a few fast registers in the central processor at the top

of the hierarchy, a large main memory in the middle, and a library of archival data, stored

off-line, at the very bottom.
A cache memory sits between the central processor and the main memory. During

any particular memory cycle, the cache checks the memory address being issued by the
processor. If this address matches the address of one of the few memory locations held in
the cache, the cache handles the memory cycle very quickly; this is called a cache hit. If the
address does not, then the memory cycle must be satisfied far more slowly by the main
memory; this is called a cache miss.

The correspondence between the main memory and cache is specified by a Mapping

function. When the cache is full and a memory word that is not in the cache is referenced,

the cache control hardware must decide which block should be removed to create space for

the new block that constitutes the Replacement algorithm.

Mapping Functions

There are three main mapping techniques which decides the cache organization:

1. Direct-mapping technique

2. Associative mapping Technique

3. Set associative mapping technique

To discuss possible methods for specifying where memory blocks are placed in the
cache, we use a specific small example, a cache consisting of 128 blocks of 16 word each,
for a total of 2048(2k) word, and assuming that the main memory is addressable by a 16-

bit address. The main memory has 64k word, which will be viewed as 4K blocks of 16 word
each, the consecutive addresses refer to consecutive word.
Direct Mapping Technique

The cache systems are divided into three categories, to implement cache system. As

shown in figure, the lower order 4-bits from 16 words in a block constitute a word field.

The second field is known as block field used to distinguish a block from other blocks. Its
length is 7-bits, when a new block enters the cache; the 7-bit cache block field determines
the cache position in which this block must be stored. The third field is a Tag field, used to
store higher order 5-bits of the memory address of the block, and to identify which of the

32blocks are mapped into the cache.

It is the simplest mapping technique, in which each block from the main memory has

only one possible location in the cache organization. For example, the block I of the main

memory maps on to block i module128 of the cache. Therefore, whenever one of the main

memory blocks 0, 128, 256, ……. Is loaded in the cache, it is stored in the block 0. Block 1,

129, 257,….. are stored in block 1 of the cache and so on.

Associative Mapping Technique

The figure shows the associative mapping, where in which main memory block can be

placed into any cache block position, in this case, 12 tag bits are required to identify a
memory block when it is resident in the cache. The tag bits of an address received from the

processor are compared to the tag bits of each block of the cache, to see if the desired

block is present. This is called associative-mapping technique. It gives the complete
freedom in choosing the cache location in which to place the memory block.

Set-Associative Mapping

It is a combination of the direct and associative-mapping techniques can be used.

Blocks of the cache are grouped into sets and the mapping allows a block of main memory
to reside in any block of the specific set. In this case memory blocks 0,
64,128……4032 mapped into cache set 0, and they can occupy either of the two block
positions within this set. The cache might contain the desired block. The tag field of the
address must then be

associatively compared to the tags of the two blocks of the set to check if the desired block is

present this two associative search is simple to implement.

Replacement Algorithms
In a direct-mapped cache, the position of each block is fixed, hence no replacement

strategy exists. In associative and set-associative caches, when a new block is to be
brought into the cache and all the Positions that it may occupy are full, the cache controller

must decide which of the old blocks to overwrite. This is important issue because

the decision can be factor in system performance.
The objective is to keep blocks in the cache that are likely to be referenced in the near

future. Its not easy to determine which blocks are about to be referenced. The
property of locality of reference gives a clue to a reasonable strategy. When a block is to be
over written, it is sensible to overwrite the one that has gone the longest time without being

referenced. This block is called the least recently used(LRU) block, and technique is called the
LRU Replacement algorithm.

The LRU algorithm has been used extensively for many access patterns, but it can

lead to poor performance in some cases. For example, it produces disappointing

results when accesses are made to sequential elements of an array that is slightly too large

to fit into the cache. Performance of LRU algorithm can be improved by introducing a

small amount of randomness in deciding which block to replace.

Example of mapping techniques

Direct mapped Cache:

Associate mapped cache:

Set Associative mapped cache:

4.5 Performance Considerations:

 Two Key factors in the commercial success are the performance & cost ie the best

possible performance at low cost.

 A common measure of success is called the Price/ Performance ratio. Performance

depends on how fast the machine instruction are brought to the processor and how

fast they are executed.

 To achieve parallelism(ie. Both the slow and fast units are accessed in the same

manner),interleaving is used.

Interleaving:

 If the main memory system is divided into a number of memory modules. Each

module has its own address buffer register (ABR) and data buffer register (DBR).

 Memory access operations may proceed in more than one module at the same time.

Thus the aggregate rate of transmission of words to and from the main memory

system can be increased.

 Two methods of address layout are indicated they are

 Consecutive words in a module

 Consecutive words in a consecutive module

 Consecutive words in a module

 Consecutive words are placed in a module.

 High-order k bits of a memory address determine the module.

 Low-order m bits of a memory address determine the word within a module.

 When a block of words is transferred from main memory to cache, only one module

is busy at a time.

 Consecutive words in a consecutive module

 Consecutive words are located in consecutive modules.

 Consecutive addresses can be located in consecutive modules.

 While transferring a block of data, several memory modules can be kept busy at the

same time.

 This is called interleaving

 When requests for memory access involve consecutive addresses, the access will be

to different modules.

 Since parallel access to these modules is possible, the average rate of fetching

words from the Main Memory can be increased.

Example:

Hit Rate and Miss Penalty

An excellent indicator of the effectiveness of a particular implementation of the memory

hierarchy is the success rate in accessing information at various level of the hierarchy. A

successful access to data in a cache is called a hit.

The number of hits stated as fraction of all attempted access is called the hit rate, and the

miss rate is the number of misses stated as a fraction of attempted accesses.

 Hit rate can be improved by increasing block size, while keeping cache size constant.

 Block sizes that are neither very small nor very large give best results.

 Miss penalty can be reduced if load-through approach is used when loading new

blocks into cache.

Example:

Example 2:

Caches on processor chip:

Other enhancements:

Write buffer

 Write-through:

• Each write operation involves writing to the main memory.

• If the processor has to wait for the write operation to be complete, it slows down the

processor.

• Processor does not depend on the results of the write operation.

• Write buffer can be included for temporary storage of write requests.

• Processor places each write request into the buffer and continues execution.

• If a subsequent Read request references data which is still in the write buffer, then

this data is referenced in the write buffer.

 Write-back:

• Block is written back to the main memory when it is replaced.

• If the processor waits for this write to complete, before reading the new block, it is

slowed down.

• Fast write buffer can hold the block to be written, and the new block can be read

first.

Prefetching

• New data are brought into the processor when they are first needed.

• Processor has to wait before the data transfer is complete.

• Prefetch the data into the cache before they are actually needed, or a before a Read

miss occurs.

• Prefetching can be accomplished through software by including a special instruction

in the machine language of the processor.

 Inclusion of prefetch instructions increases the length of the programs.

• Prefetching can also be accomplished using hardware:

 Circuitry that attempts to discover patterns in memory references and then

prefetches according to this pattern.

Lockup-Free Cache

• Prefetching scheme does not work if it stops other accesses to the cache until the

prefetch is completed.

• A cache of this type is said to be “locked” while it services a miss.

• Cache structure which supports multiple outstanding misses is called a lockup free

cache.

• Since only one miss can be serviced at a time, a lockup free cache must include

circuits that keep track of all the outstanding misses.

• Special registers may hold the necessary information about these misses.

4.6 VIRTUAL MEMORY:

 Techniques that automatically move program and data blocks into the physical main

memory when they are required for execution is called the Virtual Memory.

 The binary address that the processor issues either for instruction or data are called

the virtual / Logical address.

 The virtual address is translated into physical address by a combination of hardware

and software components. This kind of address translation is done by MMU (Memory

Management Unit).

 When the desired data are in the main memory, these data are fetched /accessed

immediately.

 If the data are not in the main memory, the MMU causes the Operating system to

bring the data into memory from the disk.

 Transfer of data between disk and main memory is performed using DMA scheme.

Fig: Virtual Memory Organization

• Memory management unit (MMU) translates virtual addresses into physical

addresses.

• If the desired data or instructions are in the main memory they are fetched as

described previously.

• If the desired data or instructions are not in the main memory, they must be

transferred from secondary storage to the main memory.

• MMU causes the operating system to bring the data from the secondary storage into

the main memory.

Address Translation:

In address translation, all programs and data are composed of fixed length units

called

Pages.

The Page consists of a block of words that occupy contiguous locations in the main

memory.

The pages are commonly range from 2K to 16K bytes in length. The cache bridge speed up

the gap between main memory and secondary storage and it is implemented in software

techniques.

Each virtual address generated by the processor contains virtual Page number (Low order

bit) and offset(High order bit) Virtual Page number+ Offset Specifies the location of

a particular byte (or word) within a page.

Page Table:

It contains the information about the main memory address where the page is stored & the

current status of the page.

Page Frame:

An area in the main memory that holds one page is called the page frame.

Page Table Base Register:

 It contains the starting address of the page table.

 Virtual Page Number+Page Table Base register Gives the address of the

corresponding entry in the page table.ie)it gives the starting address of the page if

that page currently resides in memory.

Control Bits in Page Table:

 The Control bit specifies the status of the page while it is in main memory. Function:

 The control bit indicates the validity of the page ie) it checks whether the page is

actually loaded in the main memory.

 It also indicates that whether the page has been modified during its residency in the

memory; this information is needed to determine whether the page should be

written back to the disk before it is removed from the main memory to make room

for another page.

Fig: Virtual Memory Address Translation

 The Page table information is used by MMU for every read & write access.

 The Page table is placed in the main memory but a copy of the small portion of the

page table is located within MMU.

 This small portion or small cache is called Translation Look Aside Buffer (TLB).

 This portion consists of the page table entries that corresponds to the most recently

accessed pages and also contains the virtual address of the entry.

 When the operating system changes the contents of page table , the control bit in TLB

will invalidate the corresponding entry in the TLB. Given a virtual address, the MMU

looks in TLB for the referenced page.

 If the page table entry for this page is found in TLB, the physical address is obtained

immediately. If there is a miss in TLB, then the required entry is obtained from the

page table in the main memory & TLB is updated.

 When a program generates an access request to a page that is not in the

main memory, then Page Fault will occur.

 The whole page must be brought from disk into memory before an access

can proceed. When it detects a page fault, the MMU asks the operating

system to generate an interrupt.

 The operating System suspend the execution of the task that caused the page fault

and begin execution of another task whose pages are in main memory because the

long delay occurs while page transfer takes place.

 When the task resumes,either the interrupted instruction must continue from

the point of interruption or the instruction must be restarted.

 If a new page is brought from the disk when the main memory is full,it must replace

one of the resident pages.In that case,it uses LRU algorithm which removes the least

referenced Page.

 A modified page has to be written back to the disk before it is removed from the

main memory. In that case,write – through protocol is used.

MEMORY MANAGEMENT REQUIREMENTS:

Management routines are part of the Operating system. Assembling the OS routine into

virtual address sp ace is called “System Space”. The virtual space in which the

user application programs reside is called the “User Space”. Each user space has a

separate page table. The MMU uses the page table to determine the address of the table to

be used in the translation process. Hence by changing the contents of this register,

the OS can switch from one space to another. The process has two stages. They are,

 User State

 Supervisor state.

User State: In this state, the processor executes the user program.

Supervisor State: When the processor executes the operating system routines, the

processor will be in supervisor state. Privileged Instruction:

In user state, the machine instructions cannot be executed. Hence a user program

is prevented from accessing the page table of other user spaces or system spaces.

The control bits in each entry can be set to control the access privileges granted to each

program. ie) One program may be allowed to read/write a given page, while the

other programs may be given only red access.

UNIT 5

Processor Memory

Bus

I/O device 1 I/O device n

•Multiple I/O devices may be connected to the processor and the memory via a bus.
•Bus consists of three sets of lines to carry address, data and control signals.
•Each I/O device is assigned an unique address.
•To access an I/O device, the processor places the address on the address lines.
•The device recognizes the address, and responds to the control signals.

Accessing I/O devices (contd..)

 I/O devices and the memory may share the same
address space:

Memory-mapped I/O.

 Any machine instruction that can access memory can be used to transfer data
to or from an I/O device.

Simpler software.

 I/O devices and the memory may have different
address spaces:

Special instructions to transfer data to and from I/O devices.

I/O devices may have to deal with fewer address lines.

I/O address lines need not be physically separate from memory address lines.

 In fact, address lines may be shared between I/O devices and memory, with a
control signal to indicate whether it is a memory address or an I/O address.

4

Bus

Address lines

Data lines

Control lines

Address
decoder

Control
circuits

Data and
status registers

I/O
interface

Input device

•I/O device is connected to the bus using an I/O interface circuit which has:
- Address decoder, control circuit, and data and status registers.

•Address decoder decodes the address placed on the address lines thus enabling the
device to recognize its address.
•Data register holds the data being transferred to or from the processor.
•Status register holds information necessary for the operation of the I/O device.
•Data and status registers are connected to the data lines, and have unique addresses.
•I/O interface circuit coordinates I/O transfers.

Accessing I/O devices (contd..)

Recall that the rate of transfer to and from I/O
devices is slower than the speed of the processor. This
creates the need for mechanisms to synchronize data
transfers between them.

Program-controlled I/O:
 Processor repeatedly monitors a status flag to achieve the necessary
synchronization.

 Processor polls the I/O device.

Two other mechanisms used for synchronizing
data transfers between the processor and memory:

 Interrupts.

 Direct Memory Access.

Interrupts

In program-controlled I/O, when the processor
continuously monitors the status of the device, it does
not perform any useful tasks.

An alternate approach would be for the I/O device
to alert the processor when it becomes ready.

 Do so by sending a hardware signal called an interrupt to the processor.

 At least one of the bus control lines, called an interrupt-request line is
dedicated for this purpose.

Processor can perform other useful tasks while it
is waiting for the device to be ready.

Program 1 Interrupt Service routine

1

2

Interrupt
occurs
here

i

i + 1

M

•Processor is executing the instruction located at address i when an interrupt occurs.
•Routine executed in response to an interrupt request is called the interrupt-service routine.
•When an interrupt occurs, control must be transferred to the interrupt service routine.
•But before transferring control, the current contents of the PC (i+1), must be saved in a known
location.
•This will enable the return-from-interrupt instruction to resume execution at i+1.
•Return address, or the contents of the PC are usually stored on the processor stack.

Interrupts (contd..)

Treatment of an interrupt-service routine is
very similar to that of a subroutine.

However there are significant differences:
 A subroutine performs a task that is required by the calling program.
 Interrupt-service routine may not have anything in common with the
program it interrupts.
 Interrupt-service routine and the program that it interrupts may belong to
different users.

 As a result, before branching to the interrupt-service routine, not only the
PC, but other information such as condition code flags, and processor
registers used by both the interrupted program and the interrupt service
routine must be stored.
 This will enable the interrupted program to resume execution upon return
from interrupt service routine.

Interrupts (contd..)

 Saving and restoring information can be done
automatically by the processor or explicitly by program
instructions.

 Saving and restoring registers involves memory transfers:
Increases the total execution time.

 Increases the delay between the time an interrupt request is received, and the
start of execution of the interrupt-service routine. This delay is called interrupt
latency.

 In order to reduce the interrupt latency, most
processors save only the minimal amount of
information:

 This minimal amount of information includes Program Counter and processor
status registers.

 Any additional information that must be saved, must
be saved explicitly by the program instructions at the
beginning of the interrupt service routine.

Interrupts (contd..)

When a processor receives an interrupt-request,
it must branch to the interrupt service routine.

It must also inform the device that it has
recognized the interrupt request.

This can be accomplished in two ways:
 Some processors have an explicit interrupt-acknowledge control signal for
this purpose.

 In other cases, the data transfer that takes place between the device and

the processor can be used to inform the device.

Interrupts (contd..)

 Interrupt-requests interrupt the execution of a
program, and may alter the intended sequence of
events:

Sometimes such alterations may be undesirable, and must not be allowed.
 For example, the processor may not want to be interrupted by the same
device while executing its interrupt-service routine.

 Processors generally provide the ability to enable
and disable such interruptions as desired.

 One simple way is to provide machine instructions
such as Interrupt-enable and Interrupt-disable for this
purpose.

 To avoid interruption by the same device during
the execution of an interrupt service routine:

First instruction of an interrupt service routine can be Interrupt-disable.

Last instruction of an interrupt service routine can be Interrupt-enable.

Interrupts (contd..)

 Multiple I/O devices may be connected to the
processor and the memory via a bus. Some or all of
these devices may be capable of generating interrupt
requests.

 Each device operates independently, and hence no definite order can be
imposed on how the devices generate interrupt requests?

 How does the processor know which device
has generated an interrupt?

 How does the processor know which interrupt
service routine needs to be executed?

 When the processor is executing an interrupt service
routine for one device, can other device interrupt the
processor?

 If two interrupt-requests are received
simultaneously, then how to break the tie?

Interrupts (contd..)

 Consider a simple arrangement where all devices send
their interrupt-requests over a single control line in the
bus.

 When the processor receives an interrupt request over
this control line, how does it know which device is
requesting an interrupt?

 This information is available in the status register of
the device requesting an interrupt:

 The status register of each device has an IRQ bit which it sets to 1 when it
requests an interrupt.

 Interrupt service routine can poll the I/O devices
connected to the bus. The first device with IRQ equal to 1
is the one that is serviced.

 Polling mechanism is easy, but time consuming to query
the status bits of all the I/O devices connected to the bus.

Interrupts (contd..)

The device requesting an interrupt may identify
itself directly to the processor.

 Device can do so by sending a special code (4 to 8 bits) the processor over
the bus.

 Code supplied by the device may represent a part of the starting address of
the interrupt-service routine.

 The remainder of the starting address is obtained by the processor based
on other information such as the range of memory addresses where
interrupt service routines are located.

Usually the location pointed to by the
interrupting device is used to store the starting
address of the interrupt-service routine.

Interrupts (contd..)

 Multiple I/O devices may be connected to the
processor and the memory via a bus. Some or all of
these devices may be capable of generating interrupt
requests.

 Each device operates independently, and hence no definite order can be
imposed on how the devices generate interrupt requests?

 How does the processor know which device
has generated an interrupt?

 How does the processor know which interrupt
service routine needs to be executed?

 When the processor is executing an interrupt service
routine for one device, can other device interrupt the
processor?

 If two interrupt-requests are received
simultaneously, then how to break the tie?

Interrupts (contd..)

 Consider a simple arrangement where all devices send
their interrupt-requests over a single control line in the
bus.

 When the processor receives an interrupt request over
this control line, how does it know which device is
requesting an interrupt?

 This information is available in the status register of
the device requesting an interrupt:

 The status register of each device has an IRQ bit which it sets to 1 when it
requests an interrupt.

 Interrupt service routine can poll the I/O devices
connected to the bus. The first device with IRQ equal to 1
is the one that is serviced.

 Polling mechanism is easy, but time consuming to query
the status bits of all the I/O devices connected to the bus.

Interrupts (contd..)

The device requesting an interrupt may identify
itself directly to the processor.

 Device can do so by sending a special code (4 to 8 bits) the processor over
the bus.

 Code supplied by the device may represent a part of the starting address of
the interrupt-service routine.

 The remainder of the starting address is obtained by the processor based
on other information such as the range of memory addresses where
interrupt service routines are located.

Usually the location pointed to by the
interrupting device is used to store the starting
address of the interrupt-service routine.

Interrupts (contd..)

 Previously, before the processor started executing
the interrupt service routine for a device, it disabled
the interrupts from the device.

 In general, same arrangement is used when
multiple devices can send interrupt requests to the
processor.

 During the execution of an interrupt service routine of device, the processor
does not accept interrupt requests from any other device.

 Since the interrupt service routines are usually short, the delay that this causes
is generally acceptable.

 However, for certain devices this delay may not
be acceptable.

 Which devices can be allowed to interrupt a processor when it is executing an
interrupt service routine of another device?

Interrupts (contd..)

I/O devices are organized in a priority structure:
 An interrupt request from a high-priority device is accepted while the
processor is executing the interrupt service routine of a low priority
device.

A priority level is assigned to a processor that can
be changed under program control.

 Priority level of a processor is the priority of the program that is currently
being executed.

 When the processor starts executing the interrupt service routine of a
device, its priority is raised to that of the device.

 If the device sending an interrupt request has a higher priority than the
processor, the processor accepts the interrupt request.

Interrupts (contd..)

Processor’s priority is encoded in a few bits of
the processor status register.

 Priority can be changed by instructions that write into the processor
status register.

 Usually, these are privileged instructions, or instructions that can be
executed only in the supervisor mode.

 Privileged instructions cannot be executed in the user mode.

 Prevents a user program from accidentally or intentionally changing the
priority of the processor.

If there is an attempt to execute a privileged
instruction in the user mode, it causes a special type
of interrupt called as privilege exception.

P
ro

ce
ss

o
r

INTR 1 INTRp

Device 1 Device 2 Device p

INTA1 INTAp

Priority arbitration

•Each device has a separate interrupt-request and interrupt-acknowledge line.
•Each interrupt-request line is assigned a different priority level.
•Interrupt requests received over these lines are sent to a priority arbitration circuit
in the processor.
•If the interrupt request has a higher priority level than the priority of the processor,
then the request is accepted.

Interrupts (contd..)

Which interrupt request does the processor accept
if it receives interrupt requests from two or more
devices simultaneously?.

If the I/O devices are organized in a priority
structure, the processor accepts the interrupt request
from a device with higher priority.

 Each device has its own interrupt request and interrupt acknowledge line.
 A different priority level is assigned to the interrupt request line of each
device.

However, if the devices share an interrupt
request line, then how does the processor decide
which interrupt request to accept?

P
ro

ce
ss

o
r

Polling scheme:
•If the processor uses a polling mechanism to poll the status registers of I/O devices
to determine which device is requesting an interrupt.
•In this case the priority is determined by the order in which the devices are polled.
•The first device with status bit set to 1 is the device whose interrupt request is
accepted.

Daisy chain scheme:

INTR

INTA
Device 1 Device 2 Device n

•Devices are connected to form a daisy chain.
•Devices share the interrupt-request line, and interrupt-acknowledge line is connected
to form a daisy chain.
•When devices raise an interrupt request, the interrupt-request line is activated.
•The processor in response activates interrupt-acknowledge.
•Received by device 1, if device 1 does not need service, it passes the signal to device 2.
•Device that is electrically closest to the processor has the highest priority.

P
ro

ce
ss

o
r

•When I/O devices were organized into a priority structure, each device had its own
interrupt-request and interrupt-acknowledge line.
•When I/O devices were organized in a daisy chain fashion, the devices shared an
interrupt-request line, and the interrupt-acknowledge propagated through the devices.
•A combination of priority structure and daisy chain scheme can also used.

INTR1

INTA1
Device Device

INTR p

Priority arbitration
circuit

INTAp
Device Device

•Devices are organized into groups.
•Each group is assigned a different priority level.
•All the devices within a single group share an interrupt-request line, and are
connected to form a daisy chain.

Interrupts (contd..)

 Only those devices that are being used in a
program should be allowed to generate interrupt
requests.

 To control which devices are allowed to generate
interrupt requests, the interface circuit of each I/O device
has an interrupt-enable bit.

 If the interrupt-enable bit in the device interface is set to 1, then the device is
allowed to generate an interrupt-request.

 Interrupt-enable bit in the device’s interface circuit
determines whether the device is allowed to generate an
interrupt request.

 Interrupt-enable bit in the processor status register or
the priority structure of the interrupts determines
whether a given interrupt will be accepted.

Exceptions

 Interrupts caused by interrupt-requests sent by I/O
devices.

 Interrupts could be used in many other situations where
the execution of one program needs to be suspended and
execution of another program needs to be started.

 In general, the term exception is used to refer to any
event that causes an interruption.

Interrupt-requests from I/O devices is one type of an exception.

 Other types of exceptions are:

Recovery from errors

Debugging

Privilege exception

Exceptions (contd..)

Many sources of errors in a processor.
For example:

 Error in the data stored.

 Error during the execution of an instruction.

When such errors are detected,
exception processing is initiated.

 Processor takes the same steps as in the case of I/O interrupt-request.
 It suspends the execution of the current program, and starts
executing an exception-service routine.

Difference between handling I/O interrupt-
request and handling exceptions due to errors:

 In case of I/O interrupt-request, the processor usually completes the
execution of an instruction in progress before branching to the
interrupt-service routine.

 In case of exception processing however, the execution of an
instruction in progress usually cannot be completed.

Exceptions (contd..)

Debugger uses exceptions to provide
important features:

 Trace,

 Breakpoints.

Trace mode:
 Exception occurs after the execution of every instruction.

 Debugging program is used as the exception-service routine.

Breakpoints:
 Exception occurs only at specific points selected by the user.

 Debugging program is used as the exception-service routine.

Exceptions (contd..)

Certain instructions can be executed only when the
processor is in the supervisor mode. These are called
privileged instructions.

If an attempt is made to execute a privileged
instruction in the user mode, a privilege exception
occurs.

Privilege exception causes:
 Processor to switch to the supervisor mode,

 Execution of an appropriate exception-servicing routine.

Direct Memory Access (contd..)

Direct Memory Access (DMA):
 A special control unit may be provided to transfer a block of data directly
between an I/O device and the main memory, without continuous
intervention by the processor.

Control unit which performs these transfers is a
part of the I/O device’s interface circuit. This control
unit is called as a DMA controller.

DMA controller performs functions that would
be normally carried out by the processor:

 For each word, it provides the memory address and all the control signals.
 To transfer a block of data, it increments the memory addresses and keeps
track of the number of transfers.

Direct Memory Access (contd..)

 DMA controller can transfer a block of data from an
external device to the processor, without any intervention
from the processor.

 However, the operation of the DMA controller must be under the control of a
program executed by the processor. That is, the processor must initiate the

DMA transfer.

 To initiate the DMA transfer, the processor informs

the
DMA controller of:

Starting address,

Number of words in the block.

Direction of transfer (I/O device to the memory, or memory to the I/O
device).

 Once the DMA controller completes the DMA transfer,
it informs the processor by raising an interrupt signal.

Processor
Main

memory

System bus

Disk/DMA
controller

DMA
controller

Printer

Keyboard

Disk Disk Network

Interface

•DMA controller connects a high-speed network to the computer bus.
•Disk controller, which controls two disks also has DMA capability. It provides two
DMA channels.
•It can perform two independent DMA operations, as if each disk has its own DMA
controller. The registers to store the memory address, word count and status and
control information are duplicated.

Direct Memory Access (contd..)

 Processor and DMA controllers have to use the bus in
an interwoven fashion to access the memory.

DMA devices are given higher priority than the processor to access the bus.

 Among different DMA devices, high priority is given to high-speed peripherals
such as a disk or a graphics display device.

 Processor originates most memory access cycles on
the bus.

 DMA controller can be said to “steal” memory access cycles from the bus. This
interweaving technique is called as “cycle stealing”.

 An alternate approach is the provide a DMA controller an
exclusive capability to initiate transfers on the bus, and
hence exclusive access to the main memory. This is known
as the block or burst mode.

Bus arbitration

 Processor and DMA controllers both need to initiate
data transfers on the bus and access main memory.

 The device that is allowed to initiate transfers on the
bus at any given time is called the bus master.

 When the current bus master relinquishes its status as
the bus master, another device can acquire this status.

 The process by which the next device to become the bus master is selected and
bus mastership is transferred to it is called bus arbitration.

 Centralized arbitration:

A single bus arbiter performs the arbitration.

 Distributed arbitration:

All devices participate in the selection of the next bus master.

Centralized Bus Arbitration

B BS Y

B R

Processor

BG1

DMA

controller

1

BG2

DMA

controller

2

Centralized Bus Arbitration(cont.,)

• Bus arbiter may be the processor or a separate unit connected to
the bus.

• Normally, the processor is the bus master, unless it grants bus
membership to one of the DMA controllers.

• DMA controller requests the control of the bus by asserting the
Bus Request (BR) line.

• In response, the processor activates the Bus-Grant1 (BG1) line,
indicating that the controller may use the bus when it is free.

• BG1 signal is connected to all DMA controllers in a daisy chain
fashion.

• BBSY signal is 0, it indicates that the bus is busy. When BBSY
becomes 1, the DMA controller which asserted BR can acquire
control of the bus.

DMA controller 2
asserts the BR signal.

BR

Processor asserts
the BG1 signal

Time

BG1

BG2

BG1 signal propagates
to DMA#2.

BBSY

Bus
master

Processor DMA controller 2 Processor

Processor relinquishes control
of the bus by setting BBSY to 1.

Distributed arbitration

 All devices waiting to use the bus share the
responsibility of carrying out the arbitration process.

 Arbitration process does not depend on a central arbiter and hence distributed
arbitration has higher reliability.

 Each device is assigned a 4-bit ID number.

 All the devices are connected using 5 lines, 4
arbitration lines to transmit the ID, and one line for the
Start- Arbitration signal.

 To request the bus a device:
Asserts the Start-Arbitration signal.
Places its 4-bit ID number on the arbitration lines.

 The pattern that appears on the arbitration lines is
the logical-OR of all the 4-bit device IDs placed on the
arbitration lines.

Distributed arbitration

Distributed arbitration(Contd.,)

Arbitration process:

 Each device compares the pattern that appears on
the arbitration lines to its own ID, starting with MSB.

 If it detects a difference, it transmits 0s on the
arbitration lines for that and all lower bit positions.

 The pattern that appears on the arbitration lines is
the logical-OR of all the 4-bit device IDs placed on the
arbitration lines.

•Device A has the ID 5 and wants to request the bus:
- Transmits the pattern 0101 on the arbitration lines.

•Device B has the ID 6 and wants to request the bus:
- Transmits the pattern 0110 on the arbitration lines.

•Pattern that appears on the arbitration lines is the logical OR of the patterns:
- Pattern 0111 appears on the arbitration lines.

Arbitration process:
•Each device compares the pattern that appears on the arbitration lines to its own
ID, starting with MSB.
•If it detects a difference, it transmits 0s on the arbitration lines for that and all lower
bit positions.
•Device A compares its ID 5 with a pattern 0101 to pattern 0111.
•It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the
arbitration lines.
•The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110,
which is 0110.
•This pattern is the same as the device ID of B, and hence B has won the arbitration.

Buses

Processor, main memory, and I/O devices
are interconnected by means of a bus.

Bus provides a communication path for the transfer
of data.

 Bus also includes lines to support interrupts and arbitration.

A bus protocol is the set of rules that govern the

behavior of various devices connected to the bus, as
to when to place information on the bus, when to
assert control signals, etc.

Buses (contd..)

 Bus lines may be grouped into three types:

Data

Address

Control

 Control signals specify:

Whether it is a read or a write operation.

Required size of the data, when several operand sizes (byte, word, long word)
are possible.

 Timing information to indicate when the processor and I/O devices may place
data or receive data from the bus.

 Schemes for timing of data transfers over a bus can
be classified into:

Synchronous,

Asynchronous.

Synchronous bus

Bus clock

Bus cycle

Bus clock

Time

Address and

command

Data

Master places the

device address and

command on the bus,

and indicates that
it is a Read operation.

t0 t1 t2

Bus cycle

Addressed slave places

data on the data lines Master “strobes” the data

on the data lines into its

input buffer, for a Read
operation.

•In case of a Write operation, the master places the data on the bus along with the
address and commands at time t0.

•The slave strobes the data into its input buffer at time t2.

Synchronous bus (contd..)

Once the master places the device address
and command on the bus, it takes time for this
information to propagate to the devices:

 This time depends on the physical and electrical characteristics of the bus.

Also, all the devices have to be given enough time
to decode the address and control signals, so that
the addressed slave can place data on the bus.

Width of the pulse t1 - t0 depends on:

 Maximum propagation delay between two devices connected to the bus.

 Time taken by all the devices to decode the address and control signals, so
that the addressed slave can respond at time t1.

Synchronous bus (contd..)

At the end of the clock cycle, at time t2, the master

strobes the data on the data lines into its input buffer
if it’s a Read operation.

 “Strobe” means to capture the values of the data and store them into a
buffer.

When data are to be loaded into a storage
buffer register, the data should be available for a
period longer than the setup time of the device.

Width of the pulse t2 - t1 should be longer than:

 Maximum propagation time of the bus plus

 Set up time of the input buffer register of the master.

1 t

Address &
command

appear on the
bus.

Bus clock

Seen by

master
Address and

command

tAM

Time

Data reaches
the master.

Address &
command reach

the slave.

Data

Seen by slave

Address and

command

tAS

tDM

Data appears
on the bus.

Data

tDS

t t
0 2

•Signals do not appear on the bus as soon as they are placed on the bus, due to the
propagation delay in the interface circuits.
•Signals reach the devices after a propagation delay which depends on the
characteristics of the bus.
•Data must remain on the bus for some time after t2 equal to the hold time of the buffer.

Synchronous bus (contd..)

Data transfer has to be completed within one
clock cycle.

 Clock period t2 - t0 must be such that the longest propagation delay on
the bus and the slowest device interface must be accommodated.

 Forces all the devices to operate at the speed of the slowest device.

Processor just assumes that the data are available at
t2 in case of a Read operation, or are read by the
device
in case of a Write operation.

 What if the device is actually failed, and never really responded?

Synchronous bus (contd..)

Most buses have control signals to represent
a response from the slave.

Control signals serve two purposes:
 Inform the master that the slave has recognized the address, and is ready
to participate in a data transfer operation.

 Enable to adjust the duration of the data transfer operation based on the
speed of the participating slaves.

High-frequency bus clock is used:
 Data transfer spans several clock cycles instead of just one clock cycle as in
the earlier case.

Address & command
requesting a Read

operation appear on
the bus.

1 2 3 4

Time

Clock

Address

Command

Data

Slave-ready

Master strobes data
into the input buffer.

Slave places the data on the bus,
and asserts Slave-ready signal.

Clock changes are seen by all the devices
at the same time.

Asynchronous bus

 Data transfers on the bus is controlled by a
handshake between the master and the slave.

 Common clock in the synchronous bus case is replaced
by two timing control lines:

Master-ready,

Slave-ready.

 Master-ready signal is asserted by the master to indicate
to the slave that it is ready to participate in a data transfer.

 Slave-ready signal is asserted by the slave in response to
the master-ready from the master, and it indicates to the
master that the slave is ready to participate in a data
transfer.

Asynchronous bus (contd..)

Data transfer using the handshake protocol:
 Master places the address and command information on the bus.

 Asserts the Master-ready signal to indicate to the slaves that the address
and command information has been placed on the bus.

 All devices on the bus decode the address.

 Address slave performs the required operation, and informs the processor
it has done so by asserting the Slave-ready signal.

 Master removes all the signals from the bus, once Slave-ready is asserted.

 If the operation is a Read operation, Master also strobes the data into its
input buffer.

Address

and command

Time

Master-ready

Slave-ready

Data

t0 t1 t2 t3 t4 t5

Bus cycle

t0 - Master places the address and command information on the bus.
t1 - Master asserts the Master-ready signal. Master-ready signal is asserted at t1 instead of t0

t2 - Addressed slave places the data on the bus and asserts the Slave-ready signal.

t3 - Slave-ready signal arrives at the master.

t4 - Master removes the address and command information.

t5 - Slave receives the transition of the Master-ready signal from 1 to 0. It removes the data

and the Slave-ready signal from the bus.

Asynchronous vs. Synchronous bus

Advantages of asynchronous bus:
 Eliminates the need for synchronization between the sender and the
receiver.

 Can accommodate varying delays automatically, using the Slave-ready

signal.

Disadvantages of asynchronous bus:
 Data transfer rate with full handshake is limited by two-round trip delays.

 Data transfers using a synchronous bus involves only one round trip delay,

and hence a synchronous bus can achieve faster rates.

Interface circuits
 I/O interface consists of the circuitry required to
connect an I/O device to a computer bus.

 Side of the interface which connects to the computer
has bus signals for:

Address,
Data
Control

 Side of the interface which connects to the I/O device
has:

 Datapath and associated controls to transfer data between the interface and
the I/O device.

This side is called as a “port”.
 Ports can be classified into two:

Parallel port,
Serial port.

Interface circuits (contd..)

Parallel port transfers data in the form of a number
of bits, normally 8 or 16 to or from the device.

Serial port transfers and receives data one bit at
a time.

Processor communicates with the bus in the
same way, whether it is a parallel port or a serial
port.

 Conversion from the parallel to serial and vice versa takes place inside the
interface circuit.

Data

Processor

Address

R / W

Master-ready

Slave-ready

DATAI

N

SIN

Input

interface

Data

Valid

Encoder

and

debouncing

circuit

Keyboard

switches

•Keyboard is connected to a processor using a parallel port.
•Processor is 32-bits and uses memory-mapped I/O and the asynchronous bus
protocol.
•On the processor side of the interface we have:

- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

Data

Processor

Address

R / W

Master-ready

Slave-ready

DATAI

N

SIN

Input

interface

Data

Valid

Encoder

and

debouncing

circuit

Keyboard

switches

•On the keyboard side of the interface:
- Encoder circuit which generates a code for the key pressed.
- Debouncing circuit which eliminates the effect of a key bounce (a single key
stroke may appear as multiple events to a processor).

- Data lines contain the code for the key.
- Valid line changes from 0 to 1 when the key is pressed. This causes the code to
be loaded into DATAIN and SIN to be set to 1.

•Output lines of DATAIN are
are connected to the data lines of
the bus by means of 3 state drivers
•Drivers are turned on when the
processor issues a read signal and
the address selects this register.

•SIN signal is generated using a status flag circuit.
•It is connected to line D0 of the processor bus
using a three-state driver.
•Address decoder selects the input interface based
on bits A1 through A31.
•Bit A0 determines whether the status or data
register is to be read, when Master-ready is
active.
•In response, the processor activates the Slave-ready
signal, when either the Read-status or Read-data
is equal to 1, which depends on line A0.

CPU

Data

Address

DATAOU

T

Data

Processor
R / W

Master-ready

Slave-ready

SOUT

Output

interface

Valid

Idle

Printer

•Printer is connected to a processor using a parallel port.
•Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.
•On the processor side:

- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

CPU

Data

Address

DATAOU

T

Data

Processor
R / W

Master-ready

Slave-ready

SOUT

Output

interface

Valid

Idle

Printer

•On the printer side:
- Idle signal line which the printer asserts when it is ready to accept a character.
This causes the SOUT flag to be set to 1.

- Processor places a new character into a DATAOUT register.
- Valid signal, asserted by the interface circuit when it places a new character
on the data lines.

•Data lines of the processor bus
are connected to the DATAOUT
register of the interface.
•The status flag SOUT is connected
to the data line D1 using a three-state
driver.
•The three-state driver is turned on,
when the control Read-status line is
1.
•Address decoder selects the output
interface using address lines A1
through A31.
•Address line A0 determines whether
the data is to be loaded into the
DATAOUT register or status flag is
to be read.
•If the Load-data line is 1, then the
Valid line is set to 1.
•If the Idle line is 1, then the status
flag SOUT is set to 1.

CB1

Bus
D7

PA7

D1

D0

SIN

Input
status

DATAIN

PA0

•Combined I/O interface circuit.

CA
•Address bits A2 through A31, that is

Slave-
Ready

Master-
Ready

R/ W

A31

A2

A1

A0

SOUT

1

Address
decoder

RS1

RS0

DATAOUT

Handshake
control

My-address

30 bits are used to select the overall
PB7

interface.
•Address bits A1 through A0, that is, 2

PB0bits select one of the three registers,
namely, DATAIN, DATAOUT, and

CB2the status register.
•Status register contains the flags SIN and
SOUT in bits 0 and 1.
•Data lines PA0 through PA7 connect the
input device to the DATAIN register.
•DATAOUT register connects the data
lines on the processor bus to lines PB0
through PB7 which connect to the output
device.
•Separate input and output data lines for
connection to an I/O device.

D7

D0

My-address

RS2

RS1

RS0

R/W

Ready

Accept

DATAOUT

Data

Direction

Register

Register

select

DATAIN

Status

and

control

P•7
Data lines to I/O device are

bidirectional.
•Data lines P7 through P0 can be used for

P0
both input, and output.
•In fact, some lines can be used for input &
some for output depending on the pattern
in the Data Direction Register (DDR).
•Processor places an 8-bit pattern into a DDR
•If a given bit position in the DDR is 1, the
corresponding data line acts as an output
line, otherwise it acts as an input line.
•C1 and C2 control the interaction between
the interface circuit and the I/O devices.
•Ready and Accept lines are the handshake
control lines on the processor bus side, and
are connected to Master-ready & Slave-ready
•Input signal My-address is connected to the

C1

output of an address decoder.
•Three register select lines that allow up to 8

C2 registers to be selected.

INTR

Serial port

Serial port is used to connect the processor to I/O
devices that require transmission of data one bit at a
time.

Serial port communicates in a bit-serial fashion on
the device side and bit parallel fashion on the bus side.

 Transformation between the parallel and serial formats is achieved with

shift registers that have parallel access capability.

Input shift register

DATAIN

D7

D0

Serial
input

•Input shift register accepts input one bit
at a time from the I/O device.
•Once all the 8 bits are received, the
contents of the input shift register are
loaded in parallel into DATAIN register.
•Output data in the DATAOUT register
are loaded into the output shift register.
•Bits are shifted out of the output shift
register and sent out to the I/O device one
bit at a time.
•As soon as data from the input shift reg.

My-address

RS1

RS0

R /W

Ready

Accept

INTR

Chip and
register
select

Status

and

DATAOUT

Output shift re gister

Receiving clock

are loaded into DATAIN, it can start
accepting another 8 bits of data.
•Input shift register and DATAIN register

Seriaal re both used at input so that the
input

shift register can start receiving another
set of 8 bits from the input device after
loading the contents to DATAIN, before
the processor reads the contents of
DATAIN. This is called as double-control ransmission clock

T

buffering.

Serial port (contd..)

 Serial interfaces require fewer wires, and hence serial
transmission is convenient for connecting devices that are
physically distant from the computer.

 Speed of transmission of the data over a serial interface
is known as the “bit rate”.

Bit rate depends on the nature of the devices connected.

 In order to accommodate devices with a range of speeds, a
serial interface must be able to use a range of clock speeds.

 Several standard serial interfaces have been developed:
 Universal Asynchronous Receiver Transmitter (UART) for low-speed serial
devices.

RS-232-C for connection to communication links.

Standard I/O interfaces

 I/O device is connected to a computer using an
interface circuit.

 Do we have to design a different interface for
every combination of an I/O device and a
computer?

 A practical approach is to develop standard interfaces
and protocols.

 A personal computer has:
A motherboard which houses the processor chip, main memory and some I/O
interfaces.
A few connectors into which additional interfaces can be plugged.

 Processor bus is defined by the signals on the
processor chip.

 Devices which require high-speed connection to the processor are connected
directly to this bus.

Standard I/O interfaces (contd..)

 Because of electrical reasons only a few devices can
be connected directly to the processor bus.

 Motherboard usually provides another bus that
can support more devices.

 Processor bus and the other bus (called as expansion bus) are interconnected
by a circuit called “bridge”.

 Devices connected to the expansion bus experience a small delay in data
transfers.

 Design of a processor bus is closely tied to the
architecture of the processor.

No uniform standard can be defined.

 Expansion bus however can have uniform
standard defined.

Standard I/O interfaces (contd..)

A number of standards have been developed for
the expansion bus.

 Some have evolved by default.

 For example, IBM’s Industry Standard Architecture.

Three widely used bus

standards:
 PCI (Peripheral Component Interconnect)

 SCSI (Small Computer System Interface)

 USB (Universal Serial Bus)

76

Processor
Main

memory

Processor bus

Bridge circuit translates
signals and protocols from
processor bus to PCI bus.

Additional

memory

SCSI
controller

Bridge

Ethernet
Interface

PCI bus

USB

controller

ISA
Interface

Expansion bus on
the motherboard

Disk

controller

SCSI bus

CD-ROM
controller

Video

IDE
disk

CD-
Disk 1 Disk 2 ROM

K eyboard Game

PCI Bus
Peripheral Component Interconnect

Introduced in 1992
Low-cost bus
Processor independent
Plug-and-play capability

 In today’s computers, most memory transfers involve a burst of data rather
than just one word. The PCI is designed primarily to support this mode of
operation.

 The bus supports three independent address spaces: memory, I/O, and
configuration.

 we assumed that the master maintains the address information on the bus
until data transfer is completed. But, the address is needed only long enough
for the slave to be selected. Thus, the address is needed on the bus for one
clock cycle only, freeing the address lines to be used for sending data in
subsequent clock cycles. The result is a significant cost reduction.

 A master is called an initiator in PCI terminology. The addressed device that
responds to read and write commands is called a target.

Data transfer signals on the PCI bus.

Name F unction

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a transaction.

AD 32 address/data lines, which may be optionally increased to

64.

C/BE# 4command/byte-enable lines (8 for a 64-bit bus). IRD Y#,

TRD Y# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has recognized

its address and is ready for a data transfer transaction.

IDSEL# Initialization Device Select.

1 2 3 4 5 6 7

CLK

Frame#

AD Adress #1 #2 #3 #4

C/BE#

IRDY#

TRD Y#

DEVSEL#

Cmnd Byte enable

A read operation on the PCI bus

Device Configuration
 When an I/O device is connected to a computer, several actions are
needed to configure both the device and the software that
communicates with it.
PCI incorporates in each I/O device interface a small configuration
ROM memory that stores information about that device.

 The configuration ROMs of all devices are accessible in the
configuration address space. The PCI initialization software reads
these ROMs and determines whether the device is a printer, a
keyboard, an Ethernet interface, or a disk controller. It can further
learn bout various device options and characteristics.

Devices are assigned addresses during the initialization process.

 This means that during the bus configuration operation, devices
cannot be accessed based on their address, as they have not yet been
assigned one.
Hence, the configuration address space uses a different mechanism.
Each device has an input signal called Initialization Device Select,
IDSEL#
Electrical characteristics:

 PCI bus has been defined for operation with either a 5 or 3.3 V power
supply

SCSI Bus
 The acronym SCSI stands for Small Computer System

Interface.
 It refers to a standard bus defined by the American National
Standards Institute (ANSI) under the designation X3.131 .

 In the original specifications of the standard, devices such as
disks are connected to a computer via a 50-wire cable, which
can be up to 25 meters in length and can transfer data at rates
up to 5 megabytes/s.

 The SCSI bus standard has undergone many revisions, and
its data transfer capability has increased very rapidly, almost
doubling every two years.

 SCSI-2 and SCSI-3 have been defined, and each has
several options.
 Because of various options SCSI connector may have 50, 68 or

80 pins.

SCSI Bus (Contd.,)

 Devices connected to the SCSI bus are not part of the address space of the
processor

 The SCSI bus is connected to the processor bus through a SCSI controller. This
controller uses DMA to transfer data packets from the main memory to the device,
or vice versa.

 A packet may contain a block of data, commands from the processor to the device,
or status information about the device.

A controller connected to a SCSI bus is one of two types – an initiator or a target.

 An initiator has the ability to select a particular target and to send commands
specifying the operations to be performed. The disk controller operates as a target.
It carries out the commands it receives from the initiator.

The initiator establishes a logical connection with the intended target.

 Once this connection has been established, it can be suspended and restored as
needed to transfer commands and bursts of data.

 While a particular connection is suspended, other device can use the bus to
transfer information.
This ability to overlap data transfer requests is one of the key features of the SCSI

bus that leads to its high performance.

SCSI Bus (Contd.,)

Data transfers on the SCSI bus are always
controlled by the target controller.

To send a command to a target, an initiator

requests control of the bus and, after winning
arbitration, selects the controller it wants to
communicate with and hands control of the bus
over to it.

Then the controller starts a data transfer operation
to receive a command from the initiator.

SCSI Bus (Contd.,)

 Assume that processor needs to read block of data from a disk drive and
that data are stored in disk sectors that are not contiguous.

 The processor sends a command to the SCSI controller, which causes the
following sequence of events to take place:
1. The SCSI controller, acting as an initiator, contends for control of the

bus.
2. When the initiator wins the arbitration process, it selects the target

controller and hands over control of the bus to it.
3. The target starts an output operation (from initiator to target); in

response to this, the initiator sends a command specifying the required
read operation.

4. The target, realizing that it first needs to perform a disk seek operation,
sends a message to the initiator indicating that it will temporarily
suspend the connection between them. Then it releases the bus.

5. The target controller sends a command to the disk drive to move the
read head to the first sector involved in the requested read operation.
Then, it reads the data stored in that sector and stores them in a data
buffer. When it is ready to begin transferring data to the initiator, the
target requests control of the bus. After it wins arbitration, it reselects
the initiator controller, thus restoring the suspended connection.

SCSI Bus (Contd.,)

1. The target transfers the contents of the data buffer to the
initiator and then suspends the connection again

2. The target controller sends a command to the disk drive to
perform another seek operation. Then, it transfers the
contents of the second disk sector to the initiator as
before. At the end of this transfers, the logical connection
between the two controllers is terminated.

3. As the initiator controller receives the data, it stores them
into the main memory using the DMA approach.

4. The SCSI controller sends as interrupt to the processor to
inform it that the requested operation has been completed

Operation of SCSI bus from H/W point of

view

Category Name Function

Data –DB(0)to

–DB(7)

Datalines:Carry onebyte of information

duringtheinformation transfer phase and

iden tify deviceduringarbitration,selection and

reselection phases

Phase

–DB(P) Paritybit forthedatabus

–BSY Busy:Asserted when thebus isnotfree

–SEL Selection:Assertedduringselection and

reselection

Information

type

–C/D Control/Data:Asserted duringtransfer of

control information (command,status or

message)

–MSG Message:indicates thattheinformation being

transferred is amessage

Table 4. The SCSI bus signals.

Table 4. The SCSI bus signals.(cont.)

Category Name Function

Handshake – REQ Request:Assertedby atargettorequestadata

transfercycle

– ACK Acknowledge: Asserted bythe initiator when it

hascompleted adata transfer operation

Direction of

transfer

– I/O Input/Output:Assertedtoindicatean input

operation (relative to the initiator)

Other – ATN Attention: Asserted by an initiatorwhen it

wishestosendamessageto a target

–

R

S

T

R

e

s

e

t

:

C

a

usesalldevicecontrols todisconnect fromthe

bus andassumetheir start-upstate

Main Phases involved
 Arbitration

A controller requests the bus by asserting BSY and by asserting it’s
associated data line

When BSY becomes active, all controllers that are requesting bus
examine data lines

 Selection

Controller that won arbitration selects target by asserting SEL and
data line of target. After that initiator releases BSY line.

Target responds by asserting BSY line
Target controller will have control on the bus from then

 Information Transfer
Handshaking signals are used between initiator and target
At the end target releases BSY line

 Reselection

Targets examine ID

DB 2

DB 5

DB 6

BS Y

S EL

Free Arbitration Selection

Figure 42. Arbitration and selection on the SCSI bus.

Device 6 wins arbitration and selects device 2.

USB

Universal Serial Bus (USB) is an industry standard
developed through a collaborative effort of several
computer and communication companies, including
Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
Nortel Networks, and Philips.

Speed
 Low-speed(1.5 Mb/s)
 Full-speed(12 Mb/s)
 High-speed(480 Mb/s)

Port Limitation
Device Characteristics
Plug-and-play

d e d e d e d e

d e d e

Universal Serial Bus tree structure

Host computer

Root
hub

Hub Hub

Hub I/O
e vic

I/O
e vic

I/O
e vic

I/O
e vic

I/O
e vic

I/O
e vic

Universal Serial Bus tree structure

 To accommodate a large number of devices that can be added or
removed at any time, the USB has the tree structure as shown in the
figure.

 Each node of the tree has a device called a hub, which acts as an
intermediate control point between the host and the I/O devices. At
the root of the tree, a root hub connects the entire tree to the host
computer. The leaves of the tree are the I/O devices being served (for
example, keyboard, Internet connection, speaker, or digital TV)

 In normal operation, a hub copies a message that it receives from its
upstream connection to all its downstream ports. As a result, a
message sent by the host computer is broadcast to all I/O devices, but
only the addressed device will respond to that message. However, a
message from an I/O device is sent only upstream towards the root of
the tree and is not seen by other devices. Hence, the USB enables the
host to communicate with the I/O devices, but it does not enable
these devices to communicate with each other.

Addressing

 When a USB is connected to a host computer, its root hub is attached to the
processor bus, where it appears as a single device. The host software
communicates with individual devices attached to the USB by sending packets of
information, which the root hub forwards to the appropriate device in the USB
tree.

 Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit
address. This address is local to the USB tree and is not related in any way to the
addresses used on the processor bus.

 A hub may have any number of devices or other hubs connected to it, and
addresses are assigned arbitrarily. When a device is first connected to a hub, or
when it is powered on, it has the address 0. The hardware of the hub to which this
device is connected is capable of detecting that the device has been connected,
and it records this fact as part of its own status information. Periodically, the host
polls each hub to collect status information and learn about new devices that may
have been added or disconnected.

 When the host is informed that a new device has been connected, it uses a
sequence of commands to send a reset signal on the corresponding hub port, read
information from the device about its capabilities, send configuration information
to the device, and assign the device a unique USB address. Once this sequence is
completed the device begins normal operation and responds only to the new
address.

USB Protocols
All information transferred over the USB is organized in packets,
where a packet consists of one or more bytes of information. There are
many types of packets that perform a variety of control functions.

 The information transferred on the USB can be divided into two broad
categories: control and data.

 Control packets perform such tasks as addressing a device to initiate
data transfer, acknowledging that data have been received correctly, or
indicating an error.

Data packets carry information that is delivered to a device.

 A packet consists of one or more fields containing different kinds of
information. The first field of any packet is called the packet
identifier, PID, which identifies the type of that packet.

 They are transmitted twice. The first time they are sent with their true
values, and the second time with each bit complemented

 The four PID bits identify one of 16 different packet types. Some
control packets, such as ACK (Acknowledge), consist only of the PID
byte.

PID0 PID1 PID2 PID3 PID0 PID1 PID2 PID3

(a) Packet identifier field

Bits 8 7 4 5

PID ADDR ENDP CRC16

(b) Token packet, IN or OUT

Control packets used for
controlling data transfer
operations are called token
packets.

Bits 8 0 to 8192 16

PID DATA CRC16

(c) Data packet

Figure 45. USB packet format.

Host Hub I/O Device

Token

Data0

Time

Token

Data0

ACK

ACK

Token

Data1

ACK

Figure: An output

transfer

Token

Data1

ACK

Isochronous Traffic on USB

 One of the key objectives of the USB is to support the transfer of
isochronous data.

 Devices that generates or receives isochronous data require a time
reference to control the sampling process.

 To provide this reference. Transmission over the USB is divided into
frames of equal length.

A frame is 1ms long for low-and full-speed data.

 The root hub generates a Start of Frame control packet (SOF) precisely
once every 1 ms to mark the beginning of a new frame.

 The arrival of an SOF packet at any device constitutes a regular clock
signal that the device can use for its own purposes.

 To assist devices that may need longer periods of time, the SOF packet
carries an 11-bit frame number.

 Following each SOF packet, the host carries out input and output
transfers for isochronous devices.

 This means that each device will have an opportunity for an input or
output transfer once every 1 ms.

Electrical Characteristics

 The cables used for USB connections consist of four

wires.

 Two are used to carry power, +5V and Ground.

 Thus, a hub or an I/O device may be powered directly
from the bus, or it may have its own external power
connection.

 The other two wires are used to carry data.

 Different signaling schemes are used for different
speeds of transmission.

 At low speed, 1s and 0s are transmitted by sending a high
voltage state (5V) on one or the other o the two signal wires.
For high-speed links, differential transmission is used.

	16-bit adder Figure is the parallel prefix graph of a HanCarlson adder.
	This adder has a hybrid design combining stages from the Brent-Kung and KoggeStone adder.
	The Han-Carlson adder is efficient and suitable for VLSI implementation.
	Carry-select adder:
	Carry-save adder:

