

AL-AMEEN ENGINEERING COLLEGE

(Autonomous)

(Accredited by NAAC with "A" Grade :: An ISO Certified Institution)
(Affiliated to Anna University, Chennai & Approved by AICTE, New Delhi)
Karundevanpalayam, Nanjai Uthukkuli Post, Erode – 638 104, Tamilnadu, INDIA.

CURRICULUM & SYLLABI

SEMESTERS – I to IV (Regulations 2020)

CHOICE BASED CREDIT SYSTEM M.E. VLSI DESIGN

Applicable to the Students from the AY 2021-22 onwards

VISION

To develop quality, innovative and confident engineers in the field of Electronics and Communication with research focus and social responsibilities those who can adhere and face the global challenges.

MISS	ION
	To create a unique learning environment equipped to face different challenges in industry and research areas in the related field.
	To develop soft skills and solve the complex technological problems of the modern society.
	To create competent professionals by imparting wide analysed methodology and to develop the spirit of innovative communication by establishing the centre of excellence.

PROGR	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)										
PEO 1	Attain mastery in applying VLSI concepts to Engineering problems so as to meet the need of the industry, teaching, higher education or research.										
PEO 2	Creation of expertise in the microelectronics domain to deal with design, development, analysis, testing and evaluation of the critical aspects of integrated circuits and its core concepts.										
PEO 3	To exhibit professional competence and leadership qualities with harmonious blend of ethics leading to an integrated personality development.										

PROGR	PROGRAM OUTCOMES (POs)									
PO 1 Acquire in-depth knowledge in the field of VLSI Design with an ability to evaluate and analyse the existing knowledge for enhancement										
PO 2	Analyse critical complex engineering problems and provide solutions through research									
PO 3	Identity the areas for the development of Electronic hardware design for the benefit of the society									

PO 4	Extract information pertinent to challenging problems through literature survey and by applying appropriate research methodologies, techniques and tools to the development of technological knowledge
PO 5	Select, learn and apply appropriate techniques, resources and modern engineering tools to complex engineering activities with an understanding of limitations
PO 6	Understand group dynamics, recognise opportunities and contribute positively to multidisciplinary work to achieve common goals for further learning
PO 7	Demonstrate engineering principles and apply the same to manage projects efficiently as a team after considering economical and financial factors
PO 8	Communicate with engineering community and society regarding complex engineering activities effectively through reports, design documentation and presentations
PO 9	Engage with commitment in life-long learning independently to improve knowledge and competence
PO 10	Acquire professional and intellectual integrity, professional code and conduct, ethics of research and scholarship by considering the research outcomes to the community for sustainable development of society
PO 11	Observe and examine critically the outcomes and make corrective measures, and learn from mistakes without depending on external feedback
PO 12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGR	AM SPECIFIC OUTCOMES (PSOs)
PSO 1	To design and develop VLSI circuits to optimise power and area requirements, free from faults and dependencies by modelling, simulation and testing.
PSO 2	To develop VLSI systems by learning advanced algorithms, architectures and software –hardware co –design.

CURR ICULUM

SEMESTER I

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
1	20MV1T1	Applied Mathematics for Electronics Engineers	FC	40	60	3	1	0	4
2	20MV1T2	Advanced Digital System Design	PC	40	60	3	0	0	3
3	20MV1T3	CMOS VLSI Design	PC	40	60	3	0	0	3
4	20MV1T4	System Design using FPGA	PC	40	60	3	0	0	3
5	20MV1T5	Device Modeling and Simulation	PC	40	60	3	0	0	3
6	20MV1E1 to 20MV1E3	Professional Elective-I	PE	40	60	3	0	0	3
		LABORA	ГORY						
7	20MV1L1	VLSI Design Laboratory –I	PC	60	40	0	0	3	1.5
8	20MV1L2	Seminar and Technical Writing	EEC	100		0	0	2	1
		Total				18	1	5	21.5

SEMESTER II

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
	THEORY								
1	20MV2T1	Low power CMOS Circuits and Memories	PC	40	60	3	0	0	3
2	20MV2T2	Mixed Signal Circuit Design	PC	40	60	3	0	0	3
3	20MV2T3	Testing of VLSI Circuits	PC	40	60	3	0	0	3
4	20MV2T4	CAD for VLSI Circuits	PC	40	60	3	0	0	3
5	20MV2E1 to 20MV2E3	Professional Elective-II	PE	40	60	3	0	0	3
6	20MV2E4 to 20MV2E6	Professional Elective-III	PE	40	60	3	0	0	3
		LABORA	ΓORY						
7	20MV2L1	VLSI Design Laboratory – II	PC	60	40	0	0	3	1.5
8	20MV2L2	Mini project	EEC	100		0	0	3	1.5
	Total							6	21

SEMESTER III

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C		
	THEORY										
1	20MV3E1 to 20MV3E3	Professional Elective-IV	PE	40	60	3	0	0	3		
2	20MV3E4 to 20MV3E6	Professional Elective-V	PE	40	60	3	0	0	3		
		LABORA	TORY	7							
3	20MV3L1	Project work Phase –I	EEC	60	40	0	0	20	10		
	Total							20	16		

SEMESTER IV

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
		LABORA	TORY	7					
1	20MV4L1	Project work Phase –II	EEC	60	40	0	0	30	15
		Total				0	0	30	15

FUNDAMENTAL COURSE (FC)

Sl.No.	Course Code	Course Title	L	T	P	С
1.	20MV1T1	Applied Mathematics for Electronics Engineers	3	1	0	4

PROFESSIONAL CORE (PC)

Sl.No.	Course Code	Course Title	L	Т	P	C
1.	20MV1T2	Advanced Digital System Design	3	0	0	3
2.	20MV1T3	CMOS VLSI Design	3	0	0	3
3.	20MV1T4	System Design using FPGA	3	0	0	3
4.	20MV1T5	Device Modeling and Simulation	3	0	0	3
5.	20MV1L1	VLSI Design Laboratory –I	0	0	3	1.5
6.	20MV2T1	Low power CMOS Circuits and Memories	3	0	0	3
7.	20MV2T2	Mixed Signal Circuit Design	3	0	0	3
8.	20MV2T3	Testing of VLSI Circuits	3	0	0	3
9.	20MV2T4	CAD for VLSI Circuits	3	0	0	3
10.	20MV2L1	VLSI Design Laboratory – II	0	0	3	1.5

PROFESSIONAL ELECTIVES (PE)

	Semester – I (Elective I)											
Sl.No.	Course Code	Course Title	L	Т	P	С						
1	20MV1E1	Advanced Computer Architecture and Parallel Processing	3	0	0	3						
2	20MV1E2	Semiconductor Device Modeling	3	0	0	3						
3	20MV1E3	Nano Electronics	3	0	0	3						

	Semester – II (Elective II)										
Sl.No.	Course Code	L	T	P	C						
1	20MV2E1	Signal Integrity for High Speed Devices	3	0	0	3					
2	20MV2E2	High Speed Digital Design	3	0	0	3					
3	20MV2E3	DSP Integrated Circuits	3	0	0	3					

	Semester – II (Elective III)										
Sl.No.	Course Code	L	T	P	C						
1	20MV2E4	ASIC Design	3	0	0	3					
2	20MV2E5	Microsensors and MEMS		0	0	3					
3	20MV2E6	Advanced Embedded System Design	3	0	0	3					

	Semester – III (Elective IV)										
Sl.No.	Course Code	L	Т	P	С						
1	20MV3E1	Data Converters	3	0	0	3					
2	20MV3E2	VLSI Technology		0	0	3					
3	20MV3E3	VLSI for Wireless Communication	3	0	0	3					

	Semester – III (Elective V)										
Sl.No.	Course Code	L	Т	P	C						
1	20MV3E4	Analog VLSI Circuits	3	0	0	3					
2	20MV3E5	Radio Frequency IC Design		0	0	3					
3	20MV3E6	Baseband Algorithms on FPGA	3	0	0	3					

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

Sl. No.	Course Code	Course Title	L	Т	P	C
1.	20MV1L2	Seminar and Technical Writing	0	0	2	1
2.	20MV2L2	Mini project	0	0	3	1.5
3.	20MV3L1	Project work Phase –I	0	0	20	10
4.	20MV4L1	Project work Phase –II	0	0	32	15

CURRICULUM BREAKDOWN STRUCTURE

Subject	Total number of credits	% of Credits
Fundamental Course (FC)	4	5.44
Professional Core (PC)	27	36.73
Professional Electives (PE)	15	20.41
Employability Enhancement Courses (EEC)	27.5	37.41
Total	73.5	100

CREDIT SUMMARY

Sl. No.	Subject Area	Cr	Total			
51. 110.	Subject Area	I	п	Ш	IV	Credits
1	FC	4				4
2	PC	13.5	13.5			27
3	PE	3	6	6		15
4	EEC	1	1.5	10	15	27.5
	TOTAL	21.5	21	16	15	73.5

SEMESTER I

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
1	20MV1T1	Applied Mathematics for Electronics Engineers	FC	40	60	3	1	0	4
2	20MV1T2	Advanced Digital System Design	PC	40	60	3	0	0	3
3	20MV1T3	CMOS VLSI Design	PC	40	60	3	0	0	3
4	20MV1T4	System Design using FPGA	PC	40	60	3	0	0	3
5	20MV1T5	Device Modeling and Simulation	PC	40	60	3	0	0	3
6	20MV1E1 to 20MV1E3	Professional Elective-I	PE	40	60	3	0	0	3
		LABORA	ГORY						
7	20MV1L1	VLSI Design Laboratory –I	PC	60	40	0	0	3	1.5
8	20MV1L2	Seminar and Technical Writing	EEC	100		0	0	2	1
		18	1	5	21.5				

Semester	Programme	Course Code	Course Name		Т	P	С
I	M.E. VLSI DESIGN	20MV1T1	APPLIED MATHEMATICS FOR ELECTRONICS ENGINEERS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)		
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered
CO1	Interpret the concept of fuzzy logic, matrix theory, random variables, dynamic programming and queuing models for applying the interpretations in selection and use of appropriate mathematical techniques	K2	1,2,3,4,5
CO2	Concepts of fuzzy sets, knowledge representation using fuzzy rules, fuzzy logic, fuzzy prepositions and fuzzy quantifiers and applications of fuzzy logic.	К3	1
CO3	Apply various methods in matrix theory to solve system of linear equations.	К3	2
CO4	Analyze the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.	K4	4
CO5	Relate and apply the concept of probability and random variables and predict probabilities of events in models following normal distribution.	К3	3
CO6	Choose the appropriate methods in a queue discipline to develop a relationship between the queue length and service time distribution Laplace transforms for $M/G/1$ queue.	K6	5

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PS	PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3		1	1				1			1	1	
CO2	1	2							1				1	
CO3	1	1	1									1	1	
CO4	1	1							1				1	
CO5	1	1		1								1	1	
CO6	2	1							1				1	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2 Assignments									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

	COURSE CONTENT										
Topic - 1					FUZZY	Y LOGIC				9+3	
Classical log	Classical logic – Multivalued logics – Fuzzy propositions – Fuzzy quantifiers										
Topic - 2					MATRIX	THEORY				9+3	
manufacture diesel oil - ce	Fuels: Introduction - classification of fuels - Combustion- coal - Analysis of coal - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol.										
Topic - 3			PROBAI	BILI	ΓY AND	RANDOM VAR	IABI	LES		9+3	
Probability 1	unctio	n – M	loments – Mom	ent g	enerating	robability — Baye functions and the distributions — Fo	eir pro	operties	– Binomial, l	Poisson,	
Topic - 4			DYN	IAM	IC PROC	GRAMMING				9+3	
dynamic pro	Dynamic programming – Principle of optimality – Forward and backward recursion – Applications of dynamic programming: Cargo loading method – Workforce size model – Equipment replacement model. – Problem of dimensionality										
Topic - 5	QUEUEING MODELS 9+3										
	Poisson Process – Markovian queues – Single and multi server models – Little"s formula - Machine interference model – Steady state analysis – Self service queue										
THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	45	

E	OOK REFERENCES
	Bronson, R., "Matrix Operations", Schaum's Outline Series, McGraw Hill, 2011
2	George, J. Klir. and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and Applications", Prentice Hall of India Pvt. Ltd., 2015
3	Gross, D., Shortle J. F., Thompson, J.M., and Harris, C. M., "Fundamentals of Queueing Theory", 4th Edition, John Wiley, 2014
	Johnson, R.A., Miller, I and Freund J., "Miller and Freund"s Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015
4	Taha, H.A., "Operations Research: An Introduction", 9th Edition, Pearson Education, Asia, New Delhi, 2016.

O	OTHER REFERENCES							
1	https://www.cuemath.com/learn/mathematics/probability-in-real-life/							
2	https://sciencing.com/examples-of-real-life-probability-12746354.html							
3	http://www.iraj.in/journal/journal_file/journal_pdf/14-358-149822091462-64.pdf							

Semester	Programme	Course Code	Course Name	L	Т	P	С
I	M.E. VLSI DESIGN	20MV1T2	ADVANCED DIGITAL SYSTEM DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Explain and articulate the concepts of advanced digital system design	K2	1,2,3,4,5								
CO2	Apply the concept of synchronous and asynchronous circuits in building digital systems	К3	1,2								
CO3	Compare the synchronous and asynchronous circuits design to rate the performance	K4	1,2								
CO4	Analyze the design to infer its limitations	K4	3,4,5								
CO5	Evaluate the applications and recommend a suitable design	K5	3,5								
CO6	Design a digital system for a given application	K6	3,5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2		1		1				2	
CO2	2	2	1				1					1	1	
CO3	3	2	2	2	2		2					1	1	
CO4	2	1	2	2	1		2		1					2
CO5	2	2	2	1	1							1	1	
CO6	3	2	1	2	1		1		1				3	

	COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests										
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

COURSE CONTENT

Topic - 1 SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9

Analysis of clocked synchronous sequential circuits - Moore / Mealy State diagrams - State table - State Reduction and Assignment - Design of synchronous sequential circuits.

Topic - 2 ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9

Analysis of asynchronous sequential circuit - Cycles - Races - Static, Dynamic and Essential hazards - Primitive Flow Table - State Reductions and State Assignment - Design of asynchronous sequential circuits.

Topic - 3 DESIGN OF SYSTEM CONTROLLER USING COMBINATIONAL AND SEQUENTIAL CIRCUIT

9

System Controllers - Design Phases - Choosing the controller architecture - State Assignment - Next State decoder - Examples of 2s complement system and Pop Vending Machine - Decoders and Multiplexers in system controllers - Indirect-Addressed MUX configuration - System controllers using ROM, Shift Registers and Counters - General requirements of a programmable controller - Microinstructions - Programmable controllers with fixed instruction set.

Topic - 4 INTRODUCTION TO VHDL 9

VHDLDescription of Combinational circuits - VHDL Modules - Sequential Statements and VHDLProcesses-Modeling Flip-Flops - Processes Using Wait Statements - Transport and Inertial Delays - Data Types and Operators - Modeling Multiplexers, registers and Counters -Behavioral and structural VHDL - Variables, Signals, Constants - Arrays-loops.

Topic - 5 SM CHARTS AND FLOATING -POINT ARITHMETIC 9

State Machine Chart - Derivation of SM Charts - Realization of SM Charts - Implementation of the Dice-Game - Microprogramming - Linked state machines - Representation of Floating-Point Numbers - Floating-point Multiplication - Floating-Point Addition - Other Floating-Point Operations.

	THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
--	--------	----	----------	---	-----------	---	-------	----

BOOK REFERENCES

- 1 William I. Fletcher, "An Engineering Approach to Digital Design", Prentice Hall India, 2011.
- 2 | Charles H.Roth Jr "Digital Systems Design using VHDL," Cengage Learning, 2013.
- 3 Nripendra N Biswas "Logic Design Theory" Prentice Hall, 2001.
- 4 Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", 2nd Edition, Prentice Hall, 2002.
- 5 | Mark Zwolinski, "Digital System Design with VHDL, 2nd Edition, Pearson Education, 2004.
- 6 Stephen Brown, Zvonko Vranesic, "Digital system Design Using VHDL", 3rd Edition, Tata Mc Graw Hill, 2009.

ОТ	OTHER REFERENCES							
1	https://youtube.com/playlist?list=PLrkWJ9TJRalSSuRSF-ni9aPRZgQdPqdq-							
2	https://youtu.be/NfXkffUivKQ							
3	https://youtube.com/playlist?list=PLyqSpQzTE6M_dZdF7Bd-UncI5_L_1VkXF							
4	https://youtu.be/aduM2zyf6p4							
5	https://youtu.be/BeJOb6-Q904							

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	M.E. VLSI DESIGN	20MV1T3	CMOS VLSI DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Explain and articulate the concepts of CMOS VLSI design	K2	1,2,3,4,5							
CO2	Apply the concept of design in building VLSI Modules	К3	1,2,3,4,5							
CO3	Compare the design to rate the performance combinational and sequential logic design	K4	2,3							
CO4	Analyze the design to infer its limitations	K4	4,5							
CO5	Evaluate the applications and recommend a suitable design to built a prototype	K5	5							
CO6	Design a VLSI module for a given application	K6	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										1	1
CO2	3	3	2	1									3	
CO3	3	1	2	2								1	3	
CO4	3	2	1	2					1				2	
CO5	3	2	2	1					1				2	
CO6	3	3	2	1									3	

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2 Assignment									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

COURSE CONTENT

Topic - 1 MOS CIRCUIT DESIGN PROCESS

9

Overview of VLSI Design Process - MOSFET Enhancement Transistors - MOS Physics - nFETCurrent-Voltage Equations - CMOS Inverter - DC Characteristics - Switching Characteristics - Dynamic Behavior-Power, Energy and Energy delay - Interconnects.

Topic - 2 COMBINATIONAL CMOS LOGIC DESIGN

9

Static CMOS Design- Complementary CMOS- Pass Transistor Logic- Transmission Gate Logic -Dynamic CMOS Design- Signal Integrity Issues.

Topic - 3 SEQUENTIAL CMOS LOGIC DESIGN

9

Static Latches and Registers - Dynamic Latches and Registers - Pulse Registers - Sense Amplifier based Registers - Pipelining - Non-bistable Sequential Circuits

Topic - 4 TIMING ISSUES IN VLSI CIRCUITS

9

Timing Classification of Digital Systems - Timing Issues in Synchronous Design - Self Timed Circuit Design - Synchronizers and Arbiters.

Topic - 5 DESIGN OF ARITHMETIC BUILDING BLOCKS

9

Datapaths in Digital Processor Architecture - Design of Adders: Binary Adder and Full Adder – Multiplier - Barrel and Logarithmic Shifters - Magnitude and Equality Comparators - Power and Speed Trade-offs in Datapath Structures

THEORY	45	TUTORIAL	0		PRACTICAL	0	TOTA	L 45
--------	----	----------	---	--	-----------	---	------	------

`	
1	Jan M Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits - ADesign Perspective", 2nd Edition, Prentice Hall, 2012.
2	John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, 2012.
3	Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design - A Systems Perspective", 2nd Edition, Pearson Education, 2010.

- 4 Kamran Eshraghian, Douglas A. Pucknell, "Essentials of VLSI Circuits and Systems", PrenticeHall, 2011
- 5 C.Mead and L.Conway, "Introduction to VLSI Systems", Addison Wesley, 2003.
- 6 Kang, "CMOS Digital Integrated Circuits", McGraw Hill, 2002.

OTHER REFERENCES

BOOK REFERENCES

- 1 https://youtu.be/oL8SKNxEaHs
- 2 https://youtu.be/faiEVOOCe-s
- 3 https://youtu.be/-AW9zksRuRE
- 4 https://youtu.be/vDqP4S4Jj1E
- 5 https://youtu.be/2t1M8ouI5pw

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	M.E. VLSI DESIGN	20MV1T4	SYSTEM DESIGN USING FPGA	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered							
CO1	Explain and articulate the concepts related to verilog HDL features and modelling	K2	1							
CO2	Apply the types of PLD's and FPGA's in ASIC design	К3	2							
CO3	Compare the FPGA systems and fabrics to rate its performance	K4	3							
CO4	Analyze the combinational and sequential networks to infer its limitations	K4	4							
CO5	Evaluate a situation based application and recommend a suitable FPGA architecture	K5	5							
CO6	Design a FPGA prototype for a given application	K6	5							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2						1				1	1
CO2	3	3	2	1									3	
CO3	3	2	2									1	3	
CO4	3	2	1	1					1				2	
CO5	3	2	1	2					1				2	
CO6	3	2	2	1								1	3	

		COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests											
	2	2 Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course End Survey									

COURSE CONTENT

Topic - 1 VERILOG HDL FEATURES AND MODELLING

9

Overview of Digital design with Verilog HDL - Hierarchical Modelling Concepts -Lexical Conventions - Data types - Modules and Ports - Gate Level Modelling: Gate Types - Gate Delays - Data flow Modelling: Continuous Assignments - Expressions - Operator Types - Behavioural Modelling: Structures Procedures - Procedural Assignments - Conditional Statements - Multiway Branching - Loops - Tasks and Functions-Switch level Modelling -Design of combinational, sequential digital circuits using Verilog HDL.

Topic - 2 COMPLEX PROGRAMMABLE LOGIC DEVICES AND FGPAs

9

Programmable Logic to ASICs - PROMS, PLAs, PALs, MGA ASICs, CPLDs and FPGAs - CPLDs - CPLD Architectures - Function Blocks - I/O Blocks - Clock Drivers - Interconnects - CPLD Technology and Programmable Elements - Embedded devices. FPGAs - FPGA Architectures - Configurable Logic Blocks - Configurable I/O Blocks - Programmable interconnects - Clock Circuitry - SRAM vs Antifuse Programming - Emulating and prototyping ASICs. Comparison of CPLDs and FPGAs.

Topic - 3 FPGA BASED SYSTEMS AND FABRICS

9

9

Introduction - Basic Concepts - Digital Design and FPGAs - Role of FPGAs - FPGA Types - FPGA Based System Design - Registers and RAM. Introduction to FPGA Fabrics - FPGA Architectures - SRAM Based FPGAs - Permanently Programmed FPGAs - Chip I/O - Circuit Design of FPGA Fabrics - Architecture of FPGA Fabrics.

Topic - 4 | COMBINATIONAL AND SEQUENTIAL LOGIC NETWORKS DESIGN

Logic design Process - Modelling with HDLs - Combinational Network Delay - Power and Energy Optimization - Arithmetic Logic - Logic implementation for FPGAs - Physical Design for FPGAs - Sequential Machine Design Process - Sequential Design styles - Rules for Clocking - Performance analysis – Power Optimization.

Topic - 5 FPGA ARCHITECTURE DESIGN AND LARGE SCALE SYSTEMS

9

Behavioural Design - Data path controller Architectures - Scheduling and Allocation - Power - Pipelining - Design Methodologies - Design Example - Digital Signal Processor. Introduction to Large scale systems - Busses - Platform FPGAs - Multi FPGA systems, Novel Architectures.

THEORY	45	TUTORIAL	0	PRACTICAL	0	ТО	TAL	45
			~		_	~		

BOOK REFERENCES

- 1 | Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2004.
- 2 | Wayne Wolf, "FPGA- based System Design", Pearson Education, International Edition, 2004.
- 3 Bob Zeidman, "Designing with FPGAs and CPLDs, Elsevier, CMP Books, 2002.
- 4 | Ion Grout, "Digital Systems Design with FPGAs and CPLDs", Elsevier, 2008.
- 5 | Michael D. Ciletti, Advanced Digital Design with the Verilog HDL, 2nd Edition, Prentice Hall, 2002
- 6 Charles H.Roth Jr "Digital Systems Design using VHDL", Cengage Learning, 2013.

Ol	OTHER REFERENCES							
1	https://youtu.be/ht7nEjNydDU							
2	https://youtu.be/CLUoWkJUnN0							
3	https://youtu.be/jrQ1YYgiOTo							
4	https://youtu.be/esuXfqhXaS8							
5	https://youtu.be/qYqrh7axNx0							

Semester	Programme	Course Code	Course Name	L	Т	P	С
I	M.E. VLSI DESIGN	20MV1T5	DEVICE MODELLING AND SIMULATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Explain and articulate the concepts related to MOSFET device physics	K2	1						
CO2	Apply the types of noise models in simulation	К3	2						
CO3	Compare the other MOSFET models with BSIM4 models to rate its performance	K4	3						
CO4	Analyze the mathematical techniques for simulation to infer its limitations	K4	4						
CO5	Evaluate a situation based application and recommend a suitable modelling process for quality assurance	K5	5						
CO6	Design a quality model prototype for a given application	K6	5						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)												Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2						1				1	1
CO2	3	3	2	1									3	
CO3	3	2	2									1	3	
CO4	3	1	1	2					1				2	
CO5	3	2	2	1					1				2	
CO6	3	2	2	2								1	3	

		COURSE ASSESSMENT METHODS				
DIRECT	1	Continuous Assessment Tests				
	2 Assignment					
	3	End Semester Examinations				
INDIRECT	1	Course End Survey				

	COURSE CONTENT	
Topic - 1	MOSFET DEVICE PHYSICS	9

MOSFET capacitor, Basic operation, Basic modelling, Advanced MOSFET modelling, RF modelling of MOS transistors, Equivalent circuit representation of MOS transistor, High frequency behaviour of MOS transistor and A.C small signal modelling, model parameter extraction, modelling parasitic BJT, Resistors, Capacitors, Inductors.

Topic - 2 NOISE MODELS AND BSIM4 MOSFET MODEL 9

Noise sources in MOSFET-flicker noise modelling thermal noise modelling- BSIM4 MOSFET model-gate dielectric model-enhanced models for Effective dc and ac channel length and width-threshold voltage model-i-v model.

Topic - 3 OTHER MOSFET MODELS 9

The EKV model, model features, long channel drain current model, modelling second order effects of the drain current, modelling of charge storage effects, Non- quasi-static modelling, noise temperature effects, MOS model 9, MOSAI model.

Topic - 4 MATHEMATICAL TECHNIQUES FOR DEVICE SIMULATIONS 9

Poisson equation, continuity equation, drift-diffusion equation, Schrodinger equation, hydrodynamic equations, trap rate, finite difference solutions to these equations in 1D and 2D space, grid generation.

Topic - 5 | MODELLING OF PROCESS VARIATION AND QUALITY ASSURANCE 9

Influence of process variation, modelling of device mismatch for Analog/RF Applications, Benchmark circuits for quality assurance, Automation of the tests.

	THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--	--------	----	--	----------	---	--	-----------	---	--	-------	----

BC	OOK REFERENCES
1	Philip E. Allen, Douglas R.Hoberg, —CMOS Analog Circuit Design, Second Edition, Oxford Press-2002.
2	Trond Ytterdal, Yuhua Cheng and Tor A. Wayne Wolf, —Device Modeling for Analog and RF CMOS Circuit Design, John Wiley & Sons Ltd.
3	Kiat Seng Yeo, Samir S. Rofail, Wang-Ling Gob, —CMOS / BiCMOS CLSI Low Voltage Powerl, Person education low price edition2002
4	S.M.Sze, —Semiconductor Devices –Physics and Technology, John Wiley and sons 1985.
5	Grasser, T., "Advanced Device Modeling and Simulation", World Scientific PublishingCompany., 2003.
6	Arora, N., "MOSFET Models for VLSI Circuit Simulation", Springer-Verlag, 1993.

OT	THER REFERENCES						
1	https://youtu.be/zSVrTXHNbMQ						
2	https://youtu.be/dyO5DPcL09g						
3	https://youtu.be/HE-CXvevpBU						
4	https://youtu.be/-6xN0iWOPrY						
5	https://youtu.be/5KygwcZ545U						

Semester	Programme	Course Code	Course Name	L	Т	P	С
I	M.E. VLSI DESIGN	20MV1E1	ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Explain and articulate the concepts related to parallel processing, memory allocation in cache memories.	K2	1,2,3,4,5								
CO2	Apply the types of parallel algorithm design using performance measures.	К3	2,4,5								
CO3	Compare the parallelism in hardware/software to rate its performance.	K4	1,3,4								
CO4	Analyze memory organization and mapping techniques to infer its limitations.	K4	3,4,5								
CO5	Evaluate a situation based application and recommend a suitable modelling process for architectural features of advanced processors.	K5	4,5								
CO6	Design different pipelined processors for a given application.	K6	3,4,5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs		Programme Learning Outcomes (POs)											PS	SOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	2								2		2	
CO2	3	2	3		2					2		2		2	
CO3	3	2	2	2	3										
CO4	3	2	2		2					2		2			
CO5	3	2	2	2	2					2		2		2	
CO6	3	2	2	2	2					2		2			

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignment
	3	End Semester Examinations
INDIRECT	1	Course End Survey

	COURSE CONTENT	
Topic - 1	PARALLEL PROCESSING, MEMORY AND I/O SUBSYSTEMS	9

Generation of computer systems - Trends towards parallel processing - Parallel processing mechanisms Parallel computer structure - Architectural classification schemes - Hierarchical Memory structure - Virtual memory system - Cache memory management - Memory allocation and management - I/O subsystems.

Topic - 2 PIPELINING AND VECTOR PROCESSING 9

Principles - Classification of pipeline processors - Reservation tables - Interleaved memory organization Design of arithmetic pipeline - Design of instruction pipeline - Basic vector processing architecture - Issues in vector processing - Vectorization and optimization methods.

Topic - 3 ARRAY PROCESSING 9

SIMD Array processors - SIMD interconnection networks - Parallel algorithms for array processors - Associative array processing.

Topic - 4 MULTIPROCESSOR ARCHITECTURE 9

Functional structures - Interconnection network - Multi cache problems and solutions - Exploiting concurrency for multiprocessing.

Topic - 5 PRINCIPLES OF PARALLEL ALGORITHM DESIGN 9

Design approaches - Design issues-Performance measures and analysis - Complexities - Anomalies in parallel algorithms - Pseudo code conventions for parallel algorithms - Comparison of SIMD and MIMD algorithms.

THEORY 45 TUTORIAL 0 PRA	CTICAL 0 TOTAL 45
--------------------------	-------------------

BC	OOK REFERENCES
1	Philip E. Allen, Douglas R.Hoberg, —CMOS Analog Circuit Design, Second Edition, Oxford Press-2002.
2	Trond Ytterdal, Yuhua Cheng and Tor A. Wayne Wolf, —Device Modeling for Analog and RF CMOS Circuit Design, John Wiley & Sons Ltd.
3	Kiat Seng Yeo, Samir S. Rofail, Wang-Ling Gob, —CMOS / BiCMOS CLSI Low Voltage Powerl, Person education low price edition2002
4	S.M.Sze, —Semiconductor Devices –Physics and Technology, John Wiley and sons 1985.
5	Grasser, T., "Advanced Device Modeling and Simulation", World Scientific Publishing Company., 2003.
6	Arora, N., "MOSFET Models for VLSI Circuit Simulation", Springer-Verlag, 1993.

OT	OTHER REFERENCES							
1	https://youtu.be/NqgpZ_v4Ne8							
2	https://youtu.be/uzECa-TZ0cw							
3	https://youtu.be/aRN-uqSxgxs							
4	https://youtu.be/EoONr6VZExA							
5	https://youtu.be/o_n4AKwdfiA							

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	M.E. VLSI DESIGN	20MV1E2	SEMICONDUCTOR DEVICE MODELING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered							
CO1	Explain and articulate the concepts related to integrated diode and BJT.	K2	1,2,3,4,5							
CO2	Apply the network equations to analyze the convergence and stability and use mathematical techniques for device simulations.	К3	2,3,5							
CO3	Compare the knowledge of semiconductors to illustrate the functioning of basic electronic devices to rate its performance.	K4	2,3,4							
CO4	Analyze amplification Application of the semiconductor devices to infer its limitations.	K4	1,4,5							
CO5	Evaluate a fabrication method of integrated circuits of advanced processors.	K5	4,5							
CO6	Design semiconductor devices for a given application.	K6	2,4,5							

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)											PSOs		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	3	2					3		2		2
CO2	3	2	3	2	2					3		3		2
CO3	3	2	3							2		2		
CO4	3	2	3							2				
CO5	3	3	3	3						3		3		2
CO6	3	2	2	2				·		2		3		

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

	COURSE CONTENT	
Topic - 1	INTRODUCTION TO SEMICONDUCTOR PHYSICS & INTEGRATED PASSIVE DEVICES	9

Review of Quantum Mechanics, Boltzmann transport equation. Continuity equation, Poisson equation. Types and Structures of resistors and capacitors in monolithic technology - dependence of model parameters on structure.

Topic - 2 INTEGRATED DIODES AND BIPOLAR TRANSISTOR 9

Junction and Schottky diodes in monolithic technologies - static and dynamic behavior - small and large signal models - SPICE models.

Topic - 3 INTEGRATED MOS TRANSISTOR 9

nMOS and pMOS Transistor - Threshold voltage - Threshold voltage equations - MOS device equations-Basic DC equations Second order effects - MOS models - Small signal AC Characteristics - MOSFET SPICE model level 1,2,3 and 4.

Topic - 4 DEVICE MODELLING 9

importance of circuit and device simulations in VLSI - Nodal, mesh, modified nodal and hybrid analysis equations - Solution of network equations - Sparse matrix techniques - solution of nonlinear networks through Newton-Raphson technique - convergence and stability.

Topic - 5 MATHEMATICAL TECHNIQUES FOR DEVICE SIMULATIONS 9

Poisson equation - continuity equation - drift-diffusion equation - Schrodinger equation - hydrodynamic equations - trap rate, finite difference solutions to these equations in 1D and 2D space - grid generation.

THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	--	----------	---	--	-----------	---	--	-------	----

BC	OOK REFERENCES
1	Sze S M, "Physics of Semiconductor Devices", 2nd Edition McGraw Hill, New York, 1981.
2	Tyagi M S, "Introduction to Semi-conductor Materials and Devices", John Wiley ,2003.
3	Tor A Fijedly, "Introduction to Device Modelling and Circuit Simulation", Wiley-Interscience, 1997.
4	Arora, N, "MOSFET Models for VLSI Circuit Simulation", Springer-Verlag, 1993.
5	Selberherr.S, "Analysis and Simulation of Semiconductor Devices", Springer-Verlag., 1984.
6	Grasser, T., "Advanced Device Modelling and Simulation", World Scientific Publishing Company, 2003.

ОТ	THER REFERENCES
1	https://youtu.be/FHzx4Y1Gzf0
2	https://youtu.be/nV3bBrQnws0
3	https://youtu.be/rAoISKIQ8
4	https://youtu.be/I5Atvm3wRvg
5	https://youtu.be/MdpmhN8byvo

Semester	Programme	Course Code	Course Name	L	Т	P	С
I	M.E. VLSI DESIGN	20MV1E3	NANO ELECTRONICS	3	0	0	3

COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to							
CO1	Explain and articulate the concepts related to nano device fabrication technology.	K2	1,2,3,4,5					
CO2	Apply the types of nano devices for memories using Data Transmission and Interfacing Displays.	К3	1,4,5					
CO3	Compare the nano electronic devices to rate its performance.	K4	2,3,4					
CO4	Analyze density of states / modes to infer its limitations.	K4	2,4,5					
CO5	Evaluate a density of states / modes based application and recommend a suitable modelling process for architectural features of advanced processors.	K5	3,4,5					
CO6	Design different density of states / modes for a given application.	K6	3,4,5					

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)											PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3					3	3		2		2
CO2	2	3	3	3								2		2
CO3	3	2	3	3						2		2		
CO4	3	2	3	3					2					
CO5	3	2	3	3						2		2		2
CO6	2	3	3	3								2		

	COURSE ASSESSMENT METHODS								
DIRECT	TECT 1 Continuous Assessment Tests								
	2	Assignment							
	3	End Semester Examinations							
INDIRECT	1	Course End Survey							

	COVER COVERNIE								
	COURSE CONTENT								
Topic - 1	TECHNOLOGY AND ANALYSIS	9							
	erroelectric and Optical properties - Film Deposition Methods - Lithography- Material re Etchingand Chemical Mechanical Polishing - Scanning Probe Techniques.	moving							
Topic - 2	CARBON NANO STRUCTURES								
Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechanical and Vibration Properties - Applications of Carbon Nano tubes.									
Topic - 3	LOGIC DEVICES								
Novel materials and alternative concepts - Single electron devices for logic applications - Super conductor digital electronics - Carbon Nano tubes for data processing.									
Topic - 4	MEMORY DEVICES AND MASS STORAGE DEVICES	9							
	ories - Capacitor based Random Access Memories - Magnetic Random Access Mostorage based on phase change materials - Resistive RandomAccess Memories - Hologra								
Topic - 5	DATA TRANSMISSION AND INTERFACING DISPLAYS								
Photonia Na	tworks - RF and Microwave Communication System - Liquid Crystal Displays - Organ	in Linkt							

BC	BOOK REFERENCES						
1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic materials and novel devices", 3rd Edition, Wiley VCH, 2012.						
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.						
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003.						
4	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.						
5	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.						
6	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.						

PRACTICAL

TOTAL

45

O	OTHER REFERENCES					
1	https://youtu.be/5L78ZItmxIA					
2	https://youtu.be/SIif11QOsRI					
3	https://youtu.be/-bsHP4DB3XQ					
4	https://youtu.be/r787m_IaR1I					

TUTORIAL 0

THEORY 45

Semester	Programme	Course Code	Course Name	L	Т	P	C
I	M.E. VLSI Design	20MV1L1	VLSI DESIGN LABORATORY I	0	0	3	1.5

	COURSE LEARNING OUTCOMES (COs)								
Af	ter Successful completion of the course, the students should be able to	RBT Level	Topics Covered						
CO1	Design and simulate the CMOS digital and analog VLSI Circuits using Modern Tools, interface peripheral boards with FPGA, design layout of CMOS Circuits using back end tool and perform RTL synthesis using Xilinx Tool.	К3	1,2,3,4,5,6						
CO2	Develop skills to communicate effectively	K2	1,2						
CO3	Design layout of CMOS Circuits using back end tool Xilinx Tool	К3	8						
CO4	Perform RTL synthesis using Xilinx Tool	K4	6						
CO5	Design and simulation of FSM.	K5	2,5,6,7						
CO6	Design of operational amplifiers	K5	9,10						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
	Programme Learning Outcomes (POs)]	PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2		1					1		3
CO2	2	1	1										3	
CO3	2	1	2	1	3								2	
CO4	3	2	1	1	3									2
CO5	2	3	1	1	2									2
CO6	3	2	2	1	1								2	

COURSE ASSESSMENT METHODS								
DIRECT	1	Laboratory Record						
	2	Model Practical Examinations						
	3	End Semester Examinations						
INDIRECT	1	Course End Survey						

	LIST OF EXPERIMENTS									
1	Writing Test benches using HDL for combinational and sequential circuits									
2	Design and simulation of 4-bit barrel shifter using HDL									
3	Design and simulation of 4-bit carry save adder using HDL									
4	Design and simulation of Booth multiplier using HDL									
5	Design and simulation of FSM using HDL									
6	RTL Synthesis using Xilinx Tool									
7	Design and Implementation of Matrix keyboard/ Stepper Motor controller using VHDL									
8	IC Layout Design using EDA Tools (CMOS NOT, NAND & NOR Gates)									
9	Design and simulation of differential amplifiers									
10	Design and simulation of operational amplifiers									
THE	ORY 0 TUTORIAL 0 PRACTICAL 45 TOTAL 45									

BC	BOOK REFERENCES						
1	VLSI Lab Manual – I, Al-Ameen Publications, 2020.						
2	John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, 2012.						
3	Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design - A Systems Perspective", 2nd Edition, Pearson Education, 2010.						
4	Kamran Eshraghian, Douglas A. Pucknell, "Essentials of VLSI Circuits and Systems", Prentice Hall, 2011						
5	C.Mead and L.Conway, "Introduction to VLSI Systems", Addison Wesley, 2003.						

OT	OTHER REFERENCES						
1	https://youtu.be/LNYR0yFbfuI						
2	https://youtu.be/KMoczJ_p7Gc						
3	https://youtu.be/vYvtdn7ij70						
4	https://youtu.be/BxXTy3PXLVs						
5	https://youtu.be/Qw3Q8BnqcAU						

SEMESTER II

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C
	THEORY								
1	20MV2T1	Low power CMOS Circuits and Memories	3	0	0	3			
2	20MV2T2	Mixed Signal Circuit Design	PC	40	60	3	0	0	3
3	20MV2T3	Testing of VLSI Circuits	40	60	3	0	0	3	
4	20MV2T4	CAD for VLSI Circuits	PC	40	60	3	0	0	3
5	20MV2E1 to 20MV2E3	Professional Elective-II	PE	40	60	3	0	0	3
6	20MV2E4 to 20MV2E6	Professional Elective-III PE 40 6		60	3	0	0	3	
	LABORATO	RY							
7	20MV2L1	VLSI Design Laboratory – II PC 60 40				0	0	3	1.5
8	20MV2L2	Mini project EEC 100					0	3	1.5
			18	0	6	21			

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	M.E. VLSI DESIGN	20MV2T1	LOW POWER CMOS CIRCUITS AND MEMORIES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Illustrate the low power analysis of VLSI Circuits using various methods.	K2	1						
CO2	Exemplify the basic and advanced memory technologies, types of memories and its reliability issues.	К3	1,2						
CO3	Design and Analyze random access memory.	K4	2,3						
CO4	Design the logic and circuit level low power circuits and impact of power on clock distribution.	K4	3,4						
CO5	Design and Analyze FRAMs.	K5	4,5						
CO6	Design and Analyze non volatile memory.	K5	3,4,5						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	1	1			1		1	1	2			1		
CO2	2	1	1	1				1		1			1		
CO3	3	3	2	1		1	1		1	2		1		2	
CO4	2	2	1	1			1				1	1		2	
CO5	3	2	2	1		2		1	1			1		2	
CO6	3	3	1	1			2	1	1	1		1		2	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2 Assignment									
	3 End Semester Examinations									
INDIRECT	1	Course End Survey								

COURSE CONTENT							
Topic - 1	INTRODUCTION TO LOW POWER VLSI DESIGN AND POWER ANALYSIS METHODS	9					

Need for low power VLSI chips - Sources of power dissipation on Digital Integrated circuits - Physics of power dissipation in CMOS devices - Dynamic dissipation in CMOS - Technology impact on Low power-SPICE circuit simulators - Gate level logic simulation - Capacitive power estimation - Static state power - Gate level capacitance estimation

Topic - 2 CIRCUIT AND LOGIC LEVEL LOW POWER DESIGN AND CLOCK DISTRIBUTION 9

Circuit level: Power consumption in circuits - Flip Flops and Latches design - High capacitance nodes - Low power digital cells library - Logic level: Gate reorganization - signal gating - logic encoding - state machine encoding - pre-computation logic.

Power dissipation in clock distribution - Single driver Vs Distributed buffers - Zero skew Vs tolerable skew-Chip and package co-design of clock network.

Topic - 3 RANDOM ACCESS MEMORY TECHNOLOGIES 9

SRAM cell structures - MOS SRAM Architecture and peripheral Circuit Operation - Advanced SRAM Architectures and Technologies - DRAM - CMOS DRAM - DRAM cell structures - BiCMOS DRAM - soft error failures in DRAM - Advanced DRAM Design and Architecture - Application Specific SRAMs and DRAMs

Topic - 4 NON-VOLATILE MEMORIES 9

Masked ROMs - High Density ROMs - CMOS Programmable EPROMs - Floating Gate and One time Programmable ROMs - Electrically Erasable PROMS - Non volatile SRAM - Flash Memories - Advanced Flash Memory Architecture

Topic - 5 ADVANCED MEMORY TECHNOLOGIES AND ITS RELIABILITY ISSUES 9

Ferroelectric Random Access Memories (FRAMs) - Gallium Arsenide (GaAs) FRAMs - Analog Memories- Magnetoresistive Random Access Memories (MRAMs) - Memory Cards. Reliability Issues: RAM Failure Modes and Mechanism - Nonvolatile Memory - Modelling and Failure Rate Prediction - Design for Reliability - Test Structures-Screening and Qualification

THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	--	----------	---	--	-----------	---	--	-------	----

BOOK REFERENCES

- Gary K. Yeap ,Farid N. Najm, "Low power VLSI design and Technology", World Scientific Publishing Ltd., 1996.
- Dimitrios Soudris, Christian Piguet, Costas Goutis, "Designing CMOS Circuits for LowPower", Kluwer Academic Publishers, 2002.
- 3 Kaushik Roy, Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley-Interscience, 2000
- Ashok K Sharma, "Semiconductor Memories Technology, Testing and Reliability", Wiley,2002.
- 5 Etienne Sicard and Sonaia Delmas Bendhia, "Advanced CMOS Cell Design", Tata McGrawHill Publishing, 2007

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/106/105/106105034/
- 2 https://www.youtube.com/watch?v=6XTYoZymbwE
- 3 https://www.youtube.com/watch?v=MP6VlAE_7WY

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	M.E. VLSI DESIGN	20MV2T2	MIXED SIGNAL CIRCUIT DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Analyze and Design submicron CMOS circuits.	K2	1						
CO2	Analyze and Design switched capacitor circuits.	К3	1,2						
CO3	Analyze of Nonlinearity circuits.	K4	2,3						
CO4	Analyze and Design of continuous time filters.	K4	3,4						
CO5	Design of Digital to Analog converters.	К3	4,5						
CO6	Design of Oscillators and PLLs.	К3	3,4,5						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs			PSOs											
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1		1		2		1		1		2
CO2	2	2	1	1	1		2		1		1			1
СОЗ	3	2	1	1		1		1		1	1	1		2
CO4	2	2	1	1	1		2	1	1				2	
CO5	2	1	2	1		2	1	2	1		1	1	2	
CO6	2	1	1	1	2	1	1			1	1	1	1	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
2 Assignment										
	3 End Semester Examinations									
INDIRECT	1	Course End Survey								

	COURSE CONTENT	
Topic - 1	SUBMICRON CMOS CIRCUIT DESIGN	9

CMOS Process flow - Capacitors and resistors -Digital circuit design: MOSFET switch - Delay elements - adder- Analog circuit design: Biasing - Op amp Design - Mixed-Signal Layout Issues: Floor Planning-Power Supply and Grounding Issues- Fully Differential Design- Guard Rings- Shielding –Interconnect

Topic - 2 CONTINUOUS TIME FILTERS 9

First order filters-Second order filters- Gm-C filters- Transconductors Using Fixed Resistors- CMOS Transconductors Using Triode Transistors- CMOS Transconductors Using Active Transistors- Bipolar Transconductors - Bicmos Transconductors - Active RC And MOSFET-C Filters- Tuning Circuitry-Complex Filters

Topic - 3 NONLINEARITY AND SWITCHED CAPACITOR CIRCUITS 9

Basic building blocks - Basic operation and analysis - Noise in Switched Capacitor Circuits - First-Order Filters - Biquad Filters - Charge Injection- Switched Capacitor Gain Circuits- Correlated Double-Sampling Techniques- Switched capacitor amplifiers - Switched capacitor integrator - Nonlinearity - Mismatch

Topic - 4 DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS 9

Introduction and characterization of DAC - Parallel DAC - Extending the resolution of parallel DAC - Serial DAC - Introduction and characterization of ADC - Serial ADC - Medium ADC - High speed ADC

Topic - 5 OSCILLATORS AND PLLs 9

Oscillatory system - Ring oscillators - LC oscillators - Voltage Controlled Oscillators (VCO) - Mathematical model of VCO - Simple PLL - Charge pump PLLs - Non ideal effects in PLLs: PFD/CP non idealities - jitter in PLLs - Delay locked loops - PLL applications

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

BOOK REFERENCES

- 1 B. Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2002
- 2 R.J. Baker, "CMOS Mixed-Signal Circuit Design", Wiley Publications, 2002
- R.J. Baker, H.W. Li, D.E. Boyce, "CMOS Circuit design, Layout, and Simulation", Wiley-IEEEPress, 3rd Edition, 2010
- Tony Chan Carusone, David A. Johns and Ken Martin, "Analog Integrated Circuit Design", John Wiley and Sons, 2nd Edition, 2011
- 5 Phillip E.Allen and Douglas R.Holberg, "CMOS Analog Circuit Design", Oxford UniversityPress, 2002

OTHER REFERENCES

- 1 https://www.youtube.com/watch?v= nEt8ZONIPI
- 2 https://www.youtube.com/watch?v=C4zctTkPxxw
- 3 https://www.allaboutcircuits.com/technical-articles/what-is-mixed-signal-ic-design/

Semester	Programme	Course Code	('ourse Name				С
П	M.E. VLSI DESIGN	20MV2T3	TESTING OF VLSI CIRCUITS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered								
CO1	Design of Testing and Fault Modelling. K3										
CO2	Analyze and Design of Testable Sequential Circuits.	K4	1,2								
CO3	Analyze and Design of Testable Combinational circuits.	K4	2,3								
CO4	Verify Test Algorithms.	K4	3,4								
CO5	Design of Fault Diagnosis for Combinational Circuits.	К3	4,5								
CO6	Design for Testability.	K4	3,4,5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs			PSOs											
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1		1			1		1		2	
CO2	3	2	1	1	1			1		1	2		2	
CO3	2	2	2	1								1	2	
CO4	3	1	1	1	2	1		1		1	1			2
CO5	3	2	1	2	1				1		2			2
CO6	3	2	1	1						1	1	1	2	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2 Assignment									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

					CC	OURSE C	ONTENT					
T	opic - 1			BASICS OF	тЕ	STING A	ND FAULT MO	DEL	LING		9	
det	Introduction to Testing - Faults in Digital Circuits - Modelling of faults - Logical Fault Models - Fault detection - Fault Location - Fault dominance - Logic simulation - Types of simulation - Delay models - Gate Level Event-driven simulation.											
T	opic - 2	7	TEST GENERATION FOR COMBINATIONAL AND SEQUENTIAL CIRCUITS									
	Test generation for Combinational logic circuits - Testable Combinational logic circuit design - Test generation for Sequential circuits - Design of Testable sequential circuits											
T	opic - 3		DESIGN FOR TESTABILITY									
	sign for T el DFT ap			Ad-hoc design -	Gen	eric Scan	based design - Cla	assica	ıl scan ba	ased design -	System	
T	opic - 4			SELF - '	ГES	T AND T	EST ALGORITI	HMS			9	
							Circular BIST - BI Embedded RAM		rchitectu	ıres - Testable	3	
T	opic - 5]	FAULT D	DIAGNOSIS				9	
				- Diagnosis by lesign - System			est reduction - Fa	ult E	Diagnosis	for Combina	ational	
TH	IEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45	
BC	OK REF	TEREN	NCES									
1		movici	, M.A	.Breuer and A.	D. F	riedman, '	'Digital systems a	and T	estable I	Design", Jaico)	
2	P.K. Lal	a, "Dig	gital C	ircuit Testing ar	nd Te	estability",	, Academic Press,	2002				
3				Agrawal, "Esser wer Academic P			onic Testing for I 2.	Digita	l, Memo	ry and Mixed	l-Signal	
4	A.L.Cro 2002	ouch, "	Desig	1 Test for Digita	al IC	s and Em	nbedded Core Sys	tems'	', Prentic	ee HallInterna	itional,	

O	THER REFERENCES
1	https://www.youtube.com/watch?v=MP6VlAE_7WY
2	https://www.youtube.com/watch?v=6XTYoZymbwE

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	M.E. VLSI DESIGN	20MV2T4	CAD FOR VLSI CIRCUITS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Outline the VLSI design Methodologies; apply the algorithms for VLSI Automation.	К3	1								
CO2	Explain and evaluate the various physical design concepts, simulation and high level synthesis issues in CAD of VLSI.	К3	1,2								
CO3	Design advanced electronics systems.	K4	2,3								
CO4	Evaluate and analyze the systems in VLSI design environments.	K4	3,4								
CO5	Apply advanced technical knowledge in multiple contexts.	К3	4,5								
CO6	Conduct an organized and systematic study on significant research topic within the field of VLSI and its allied field.	K4	3,4,5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	1				2	1			1	2
CO2	3	2	1	1	1	1			1		1		2	
СОЗ	3	2	1	1			1	1		1				2
CO4	3	2	1			1	1				1			2
CO5	3	2	1				1		1	1			1	
CO6	3	2	1	1		1		1			1	2		1

		COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests									
	2 Assignment										
	3	End Semester Examinations									
INDIRECT	1	Course End Survey									

COURSE CONTENT Topic - 1 INTRODUCTION TO VLSI DESIGN METHODOLOGIES 9 VLSI Design Cycle - Physical Design Cycle - Design Styles and comparison of different Design Styles Fabrication of VLSI Circuits Topic - 2 VLSI DESIGN AUTOMATION VLSI Design Automation Tools - Algorithmic Graph Theory and Computational Complexity - Tractable and Intractable Problems - General Purpose Methods for Combinational Optimization - Back tracking and Branch and Bound - Local Search - Simulated annealing and genetic algorithms. Topic - 3 PHYSICAL DESIGN 9 Layout Compaction - Placement and Partitioning - Circuit Representation - placement algorithms -Partitioning - Floor Planning Concepts - Shape Functions and Floor Planning Sizing - types of local routing problems - Area Routing - Channel Routing - Global Routing. 9 Topic - 4 SIMULATION AND SYNTHESIS Simulation - Gate Level Modelling and Simulation - Switch Level Modelling and Simulation -Combinational Logic Synthesis - Binary Decision Diagrams - Two Level Logic Synthesis. Topic - 5 HIGH LEVEL SYNTHESIS 9 Hardware Models - Internal Representation - Allocation assignment and scheduling - Simple Scheduling Algorithm - Assignment Problem. **THEORY** 45 **TUTORIAL** PRACTICAL **TOTAL** 45

BC	OOK REFERENCES
1	S.H.Gerez, "Algorithms for VLSI Design Automation", John Wiley and Sons, 2002.
2	N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar AcademicPublishers, 2002
3	Drechsler,R., "Evolutionary Algorithms for VLSI CAD", Kluwer Academic Publishers,Boston,1998
4	Glyn James., "Advanced Modern Engineering Mathematics", Pearson Education Limited,2007.
5	Hill,D.D.Shugard, J. Fishburn and K. Kuetzer, "Algorithms and Techniques for VLSI Layout Synthesis", Kluwer Accademic Publishers, Boston, 1989.

O	THER REFERENCES
1	https://www.youtube.com/watch?v=MP6VlAE_7WY
2	https://www.youtube.com/watch?v=6XTYoZymbwE

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	M.E. VLSI DESIGN	20MV2E1	SIGNAL INTEGRITY FOR HIGH SPEED DEVICES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	To Apply the concepts of Signal Integrity in Electromagnetic Fields	K3	1								
CO2	To Analyse the Inductance and Capacitance values in Signal Propagation.	K4	2								
CO3	To Analyse the characteristics of Dielectric material in Signal Propagation	K4	3								
CO4	To Analyse the characteristics of noise models in Signals	K4	4								
CO5	To evaluate the different model of Physical transmission line.	K5	5								
CO6	To Design the new methods to improve the signal transmission characteristics	K6	5								

PRE-REQUISITE	20MV2T2 - Mixed Signal Circuit Design
---------------	---------------------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)													Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2					3				3
CO2	2	3	2	2			2			3	3			3
CO3	2	3	2	2	1			2		2				2
CO4	1	3	2	2			2			1	3			2
CO5	2	2	3	2	1					2				1
CO6	1	2	2	3		3				2				3

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course End Survey									

	COURSE CONTENT	
Topic - 1	SIGNAL INTEGRITY	9

The importance of signal integrity - new realm of bus design - Electromagnetic fundamentals for signal integrity - Maxwell equations common vector operators - wave propagations - Electrostatics - magneto statics - Power flow and the poynting vector - Reflections of electromagnetic waves.

Topic - 2 CROSS TALK 9

Introduction - mutual inductance and capacitance-coupled wave equation - coupled line analysis - modal analysis - cross talk minimization signal propagation in unbounded conductive media - classic conductor model for transmission model.

Topic - 3 DI-ELECTRIC MATERIALS 9

Polarization of Dielectric - Classification of Dielectric material - frequency dependent dielectric material - Classification of Dielectric material fiber - Wave effect - Environmental variation in dielectric behavior Transmission line parameters for loose dielectric and realistic conductors

Topic - 4 DIFFERENTIAL SIGNALING 9

Removal of common mode noise - Differential Cross talk - Virtual reference plane-Propagation of model voltages common terminology - drawbacks of differential signalling.

Topic - 5 PHYSICAL TRANSMISSION LINE MODEL 9

Introduction - non ideal return paths - Vias - IO design consideration - Push-pull transmitter - CMOS receivers - ESSD protection circuits - On chip Termination

THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	--	----------	---	--	-----------	---	--	-------	----

BOOK REFERENCES Stephen H. Hall, Howard L. Heck, "Advanced Signal Integrity for High-Speed DigitalDesigns", Wiley IEEE Press, 2009.

- 2 James Edgar Buchanan, "Signal and power integrity in digital systems: TTL, CMOS, and BiCMOS", Mc Graw Hill,1996.
- Greg Edlund, "Timing Analysis and Simulation for Signal Integrity Engineers", Prentice Hallof India, 2008
- 4 Stephen C. Thierauf, "Understanding Signal Integrity", Pages displayed by permission Artech Publishing House, 2011.
- Eric Bogatin, "Signal and Power Integrity Simplified", 2nd Edition, Prentice Hall of India,2010
- 6 Mike Peng Li, "Jitter, Noise and Signal Integrity at High-Speed", Prentice Hall of India, 2008.

ОТ	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=oxrXfIimy_Q						
2	https://www.youtube.com/watch?v=TExobD7vDUY						
3	https://www.youtube.com/watch?v=anX8QZMhVjI						
4	https://www.youtube.com/watch?v=A6W5A8L9vu8						
5	https://www.youtube.com/watch?v=ZFYESaEE5D0						

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	M.E. VLSI DESIGN	20MV2E2	HIGH SPEED DIGITAL DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)											
A	After Successful completion of the course, the students should be able to											
CO1	To understand the concepts of Transmission Lines and Crosstalk in signal propagation	K2	1									
CO2	To analyse the inductance and capacitance values in Transmission Lines	K4	2									
CO3	To evaluate the Synchronization of clock signals	K5	3									
CO4	To analyse the noise level and cross talk in signal transmission	K4	4									
CO5	To analyse the ground systems in signal transmission	K4	5									
CO6	To design a new model of high speed transmission lines without any losses	K6	5									

PRE-REQUISITE	20MV1T2 - Advanced Digital System Design
---------------	--

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	2					3				3	
CO2	2	3	2	2			2			3	3			3	
CO3	2	2	3	2	1			2		2				2	
CO4	1	3	2	2			2			1	3			2	
CO5	2	3	2	2	1					2				1	
CO6	1	2	2	3		3				2				3	

	COURSE ASSESSMENT METHODS											
DIRECT	DIRECT 1 Continuous Assessment Tests											
	2	Assignment										
	3	End Semester Examinations										
INDIRECT	1	Course End Survey										

	Topic - 1 TRANSMISSION LINES AND CROSSTALK 9														
T	opic - 1	TRANSMISSION LINES AND CROSSTALK													
Transmission line structures, signal propagation, transmission line parameters, line impedant propagation delay, Transmission line reflections, Cross talk- Mutual inductance, Mutual capacitance, crottalk induced noise, minimizing cross talk															
T	opic - 2	POWER DISTRIBUTION													
Los	Losses, the need for low-impedance planes and decoupling capacitors and their selection.														
T	Topic - 3 CLOCK DISTRIBUTION AND TIMING														
	High-quality clock signals to components - boards and systems - Common clock timing and source synchronous timing														
T	opic - 4	INT	ΓERC	ONNECTS & 1	ELE	CTROM	AGNETIC COM	IPAT	IBILIT	Y (EMC)	9				
De		or EM	C - E	MC regulations			rconnects - propa se path - method								
T	opic - 5					GROU	INDING				9				
fun	ctional gr	ound l	ayout,		eque	ncy groun	stems, multi-poin ding, hardware g								
TH	IEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45				
BC	OK REF	ERE	NCES												
1					High	speed Dig	gital design", Pear	son, 2	005						
2				McCall J, "His", Wiley Interso			gital System Desi	gn: A	A Handb	ook of Inter	connect				
3	Hartmut	Grabi	nski, '	' Interconnects i	n VI	SI design	", Kluwer, 2000.								
4	Goel A	K , "H	igh sp	eed VLSI interc	onne	ections", W	/iley 2007.								
5	Bogatin	E, "Si	gnal ir	ntegrity-simplifi	ed",	Prentice H	Iall, 2003								
6	Paul CR	, "Intro	oducti	on t Electromag	netic	compatib	ility", Wiley 2006	5.							

Ol	OTHER REFERENCES						
1	http://www.digimat.in/nptel/courses/video/117106089/L36.html						
2	https://nptel.ac.in/courses/117/106/117106089/						
3	http://www.nptelvideos.in/2012/12/high-speed-devices-circuit.html						
4	https://www.digimat.in/nptel/courses/video/117106089/L01.html						

Semester	Code		Course Name	L	T	P	С
II	M.E. VLSI DESIGN	20MV2E3	DSP INTEGRATED CIRCUITS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	To understand the concepts of DSP and DSP algorithms	K2	1,2							
CO2	To Analyze Multirate systems and finite word length effects	K4	3							
CO3	To Analyze the filters Specifications in DSP Processors	K4	3							
CO4	To Analyze the basic DSP processor architectures and the synthesis of the processing elements	K4	4							
CO5	To evaluate the numbering systems in DSP Processors	K5	5							
CO6	To Design a new DSP algorithms for different input numbering system	K6	5							

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2					3				3
CO2	2	3	2	2			2			3	3			3
CO3	2	3	2	2	1			2		2				2
CO4	1	3	2	2			2			1	3			2
CO5	2	2	3	2	1					2				1
CO6	1	2	2	3		3				2				3

	COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2	Assignment							
	3	End Semester Examinations							
INDIRECT	1	Course End Survey							

Topic - 1 DSP INTEGARTED CIRCUITS AND VLSI CIRCUIT TECHNOLOGIES

9

Standard digital signal processors - Application specific IC's for DSP - DSP systems - DSP system design - Integrated circuit design - MOS transistors - MOS logic - VLSI process technologies

Topic - 2

DIGITAL SIGNAL PROCESSING

9

Digital signal processing - Sampling of analog signals - Selection of sample frequency - Signal processing systems - Frequency response - Transfer functions - Signal flow graphs - Filter structures- Adaptive DSP algorithms - DFT - FFT - Image coding - Discrete cosine transforms.

Topic - 3 DIGITAL FILTERS AND FINITE WORD LENGTH EFFECTS

9

FIR filters - FIR filter structures - IIR filters - Specifications of IIR filters - Mapping of analog transfer functions - Mapping of analog filter structures - Multirate systems - Interpolation with an integer factor L Sampling rate change with a ratio L/M - Multirate filters - Finite word length effects - Parasitic oscillations - Scaling of signal levels - Roundoff noise - Measuring round-off noise - Coefficient sensitivity - Sensitivity and noise

Topic - 4 DSP ARCHITECTURES AND SYNTHESIS OF DSP ARCHITECTURES

9

DSP system architectures - Ideal DSP architectures - Multiprocessors and multicomputers - Systolic and Wave front arrays - Shared memory architectures - Mapping of DSP algorithms onto hardware - Implementation based on complex PEs - Shared memory architecture with Bit - serial PEs..

Topic - 5 NUMBER SYSTEMS - ARITHMETIC UNITS AND INTEGARTED CIRCUIT DESIGN

9

Conventional number system - Redundant Number system - Residue Number System - Bit-parallel and Bit-Serial arithmetic - Basic shift accumulator - Reducing the memory size - Complex multipliers - Layout of VLSI circuits

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

- 1 | Lars Wanhammer, "DSP Integrated Circuits", Academic press, New York, 1999.
- Barrett Hazeltine, Lars Wanhammar, Christopher Bull, "Appropriate Technology: Tools, Choices and Implications, Academic Publishers, 1999
- 3 A.V. Oppenheim et.al, "Discrete-time Signal Processing", Pearson Education, 2000
- 4 Keshab K.Parhi, "VLSI digital Signal Processing Systems design and Implementation", John Wiley & Sons, 1999
- Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing, A Practical Approach", 2nd Edition, Prentice Hall, 2001
- 6 K. Padmanabhan, S. Anandhi, R. Vijayarajeswaran "A Practical Approach to Digital Signal Processing", New Age International, 2001

ОТ	OTHER REFERENCES							
1	https://www.youtube.com/watch?v=tvOF1wIL7dw							
2	https://www.youtube.com/watch?v=vcCpeNeavUM							
3	https://www.youtube.com/watch?v=Iw77CYUT74c							
4	https://www.youtube.com/watch?v=a4C5vpiBm4Q							
5	https://www.youtube.com/watch?v=03j4ZvQCKWY&list=PL36E832F4CA46D233							

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	M.E. VLSI DESIGN	20MV2E4	ASIC DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Describe the design flow, types and the programming technologies of an ASIC and its construction.	K1	1								
CO2	Ability to know ASIC interconnects, design software, synthesize and construct ASICs.	K2	2								
CO3	Understand the basics of ASIC design flow and library design.	K2	3								
CO4	Gain a well founded knowledge of logical cells and i/o cells.	К3	4								
CO5	Apply various logic synthesis techniques, simulation and testing in digital system design.	K5	5								
CO6	Implement the ASIC construction, floor planning, placement and routing.	K4	4,5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1							1				1	
CO2	3	1	1	1	1							2	1	
CO3	3	2	1	1					1				1	
CO4	3	1							1				1	
CO5	3	1	2	1	1								1	
CO6	3	2	1	1								1	1	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

COURSE CONTENT Topic - 1 FUNDAMENTALS OF ASICs, CMOS LOGIC AND ASIC LIBRARY 9 **DESIGN** Types of ASICs - Design flow-CMOS Transistors CMOS Design Rules - Combinational Logic Cell -Sequential Logic cell - Data path Logic Cell -Transistors as Resistors -Transistor Parasitic Capacitance-Logical effort - Library Cell Design-Library Architecture. PROGRAMMABLE ASICs Topic - 2 Anti fuse - Static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC and AC inputs and outputs - Clock and Power inputs - Xilinx I/O blocks PROGRAMMABLE ASIC INTERCONNECT, DESIGN SOFTWARE AND LOW Topic - 3 9 LEVEL DESIGN ENTRY Actel ACT - Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX - Design Systems - Logic Synthesis - Half gate ASIC - Schematic entry - Low level design language - PLA tools - EDIF-CFI design representation LOGIC SYNTHESIS - SIMULATION AND TESTING 9 Topic - 4 Verilog and Logic Synthesis - VHDL and Logic Synthesis - Types of Simulation - Boundary Scan Test -Fault simulation - Automatic Test Pattern Generation. ASIC CONSTRUCTION Topic - 5 9 System partition - FPGA partitioning - Partitioning methods - Floor planning - placement - Physical Design Flow - Global Routing - Detailed Routing - Special Routing - Circuit extraction – DRC. **THEORY** 45 **TUTORIAL PRACTICAL TOTAL** 45

BC	BOOK REFERENCES								
1	Smith M.J.S.,"Application Specific Integrated Circuits", Addison, Wesley Longman Inc.,1997.								
2	Farzad Nekoogar and Faranak Nekoogar, "From ASICs to SoCs - A Practical Approach", Prentice Hall, 2003								
3	Rajsuman R., "System-on-a-Chip Design and Test", Santa Clara, CA, Artech HousePublishers, 2000.								
4	Wayne Wolf, "FPGA-Based System Design", Prentice Hall, 2004								
5	Nekoogar F.,"Timing Verification of Application-Specific Integrated Circuits", Prentice Hall,1999								

ОТ	OTHER REFERENCES							
1	https://youtu.be/1m-jgtGetl4							
2	https://youtu.be/QP-4FlwNTvw							
3	https://youtu.be/5fESTph5gA8							
4	https://youtu.be/mZItfJIEFMk							
5	https://youtu.be/t3thKRqMK2M							

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	M.E VLSI DESIGN	20MV2E5	MICROSENSORS AND MEMS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Ability to understand the operation of micro devices, micro systems and their applications.	K2	1								
CO2	Ability to design the micro devices, micro systems using the MEMS fabrication process.	К3	2								
CO3	Gain knowledge of basic approaches for various sensor designs.	K3	3								
CO4	Gain a knowledge of basic approaches for various actuator design	К3	4								
CO5	Develop experience on micro system for photonics	K4	5								
CO6	Gain the technical knowledge required for computer-aided design, fabrication, analysis and characterization of nano-structured materials, micro- and nano-scale devices.	K4	1,2,3,4,5								

PRE-REQUISITE NIL	
-------------------	--

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1							1				1	
CO2	3	1										2	1	
CO3	3	2	1	1					1				1	
CO4	3	1							1				1	
CO5	3	1											1	
CO6	3	2	1	1								1	1	

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

Topic - 1 MEMS AND MICROSYSTEMS

9

MEMS and Microsystems - Evaluation of micro fabrication - micro-systems and microelectronics - applications - working principles of Microsystems - micro-sensors - micro actuators - micro accelerometers-Scaling Laws In Miniaturization - scaling in geometry, rigid body dynamics, trimmer force, electrostatic forces, Electromagnetic forces, electricity and fluidic dynamics and heat -conducting and heat convection.

Topic - 2 MATERIALS FOR MEMS AND MICROSYSTEMS

9

Substrates and wafers - silicon as a substrate material - Ideal substrates for MEMS - single crystal silicon and wafers crystal structure - mechanical properties of Si, silicon compounds, SiO2, SiC, Si3N4 and polycrystalline Silicon - silicon piezo resistors, gallium arsenide, quartz, piezoelectric crystals - polymers for MEMS - conductive polymers.

Topic - 3 MICRO SENSORS 9

Introduction to micro-sensors - biomedical sensors - pressure sensors - thermal sensors - chemical sensors - moptical sensors - micro-actuation - MEMS with micro actuators.

Topic - 4 ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN

Static bending of thin plates - circular plates with edge fixed - rectangular plates with all edges fixed and square plates with all edges fixed - Mechanical vibration - resonant vibration - micro accelerometers - design theory of damping coefficients - Thermo mechanics - thermal stresses - Fracture mechanics - stress intensity factors - fracture toughness and interfacial fracture machine.

Topic - 5 MICROSYSTEM DESIGN 9

Design considerations - design constraints - selection of materials - manufacturing process - signal transduction - packaging - process design - photolithography - Thin film fabrications - geometry shaping mechanical design - design of silicon die for micro-pressure sensor

THE	ORY 4	15	TUTORIAL	0		PRACTICAL	0		TOTAL	45
-----	-------	----	----------	---	--	-----------	---	--	-------	----

- Tai Ran Hsu, "MEMS & Micro systems Design, Manufacture and Nano scale Engineering"John Wiley and sons, New Jersey, 2nd Edition, 2008
- 2 | Chang Liu, "Foundation of MEMS", Pearson Edition, 2nd Edition, 2011
- 3 Stephen Beeby, Graham Ensell, "MEMS, Mechanical Sensors", Artech House Publishers, 2004.
- Wanjun Wang, Steven A. Soper," Bio-MEMS Technologies and Applications", CRC Press,2007.
- 5 | Sergey Edward Lyshevski, "Nano and Micro Electro Mechanical System", CRC Press, 2001

ОТ	OTHER REFERENCES								
1	https://youtu.be/t3thKRqMK2M								
2	https://youtu.be/TtAsMwhVcAs								
3	https://youtu.be/QVBgKAZIvpI								
4	https://youtu.be/98gmOUItrPk								
5	https://youtu.be/0PLyBaZ6MCU								

5	Semester	Programme	Course Code	Course Name	L	Т	P	C
	II	M.E. VLSI DESIGN	20MV2E6	ADVANCED EMBEDDED SYSTEM DESIGN	3	0	0	3

COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to									
CO1	Explain and articulate the basic concepts related to embedded hardware.	K2	1,3							
CO2	Apply the Real time operating system in embedded system	К3	2							
СОЗ	Compare hardware and software relation and rate to their performance of peripherals.	K4	3							
CO4	Analyse the memory and interfacing of embedded system	K4	4							
CO5	Evaluate the situation based on concurrent process model and hardware, software co design to an embedded system.	K5	3,5							
CO6	Design a embedded equipment for given application	K6	2,3,4							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2											2	2
CO2	3	2	3		3						2		2	
CO3	2	2				2								
CO4	3		2					2					2	
CO5	2	2	3				1						2	
CO6		2	2	2							2		2	

	COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests										
	Assignment									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

Topic - 1 INTRODUCTION TO EMBEDDED HARDWARE

9

Terminology - Gates - Timing diagram - Memory - Microprocessor buses - Direct memory access Interrupts-Built interrupts - Interrupts basis - Shared data problems - Interrupt latency - Embedded system evolution trends - Round robin - Round robin with interrupt function - Rescheduling architecture - algorithm

Topic - 2

REAL TIME OPERATING SYSTEM

9

Task and Task states - Task and data - Semaphore and shared data operating system services - Message queues timing functions - Events - Memory management - Interrupt routines in an RTOS environment - Basic design using RTOS

Topic - 3 EMBEDDED HARDWARE, SOFTWARE AND PERIPHERALS

9

Custom single purpose processors: Hardware - Combination Sequence - Processor design - RT level design - optimizing software: Basic Architecture - Operation - Programmers view - Development Environment - ASIP - Processor Design - Peripherals - Timers, counters and watch dog timers - UART - Pulse width modulator - LCD controllers - Key pad controllers - Stepper motor controllers - A/D converters-Real time clock

Topic - 4

MEMORY AND INTERFACING

9

Memory: Memory write ability and storage performance - Memory types - Composing memory Advance RAM interfacing communication basic - Microprocessor interfacing I/O addressing Interrupts - Direct memory access - Arbitration multilevel bus architecture - Serial protocol - Parallel protocols - Wireless protocols - Digital camera example..

Topic - 5 | CONCURREN

CONCURRENT PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN

9

Modes of operation - Finite state machines - Models - HCFSL and state charts language - State machine models - Concurrent process model - Concurrent process - Communication among process - Synchronization among process - Implementation - Data Flow model. Design technology - Automation synthesis - Hardware software co - simulation - IP cores - Design Process Model.

THEORY	45	TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	----------	---	--	-----------	---	--	-------	----

- 1 Steve Heath, "Embedded System Design", 2nd Edition, Newnes Publications, 2004.
- Frank Vahid and Tony Gwargie, "Embedded System Design", 3rd Edition ,John Wiley & sons,2009.
- 3 David E Simon, "An Embedded Software Primer", Pearson Education Asia, 7th Edition, 2009.
- 4 Rajkamal, "Embedded Systems: Architecture, Programming and Design", 2nd Edition, Tata McGraw-Hill, 2008
- Arnold Berger, "Embedded System Design: An Introduction to Processes, Tools, and Techniques", CMP Books, 1st Edition, 2002.

ОТ	OTHER REFERENCES					
1	https://youtu.be/MfhTBeaDpQA					
2	http://www.brown.edu/Departments/Engineering/Labs/ddzo/async.html					
3	https://youtu.be/7LqPJGnBPMM					
4	https://youtu.be/TP1_F3IVjBc					
5	https://youtu.be/84YUQu8tE4w					

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	M.E. VLSIDESIGN	20MV2L1	VLSI DESIGN LABORATORY II	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to						
CO1	Perform power analysis, simulate the Memories using HDL and EDA Tools, design filters, simulate the CMOS Circuits in back end and analyze the interconnect issues in VLSI Circuits.	K2	1				
CO2	Develop skills to communicate effectively	К3	2,3,4				
CO3	Acquire knowledge about digital system design and implementation in FPGAs	К3	5,6				
CO4	Analysis knowledge of various parameters by T-SPICE tool.	K5	7				
CO5	Design and implement the Embedded systems.	K5	8				
CO6	Acquire knowledge of layout level design entries.	K4	9,10				

	NIL	PRE-REQUISITE
--	-----	---------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)								PSOs					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2		1		1				2	2
CO2	3	2	2	1	2		1					1	1	
CO3	3	2	1	1	2		1		1			1	2	
CO4	3	2	1	1	1		1					1	2	
CO5	3	1	1	1	1		1					1	2	
CO6	3	2	1	1	1		1					1	2	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Laboratory Record									
	2 Model Practical Examinations									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

	LIST OF EXPERIMENTS							
1	Design and simulation of ADC							
2	Power analysis of Digital Circuits using HDL							
3	Design and Simulation of ROM and RAM model using HDL							
4	Design and Simulation of analog filters							
5	Fault Simulation and Fault Diagnosis of digital circuits							
6	Event Driven Simulation for gate level combinational circuits							
7	Design and Simulation of CMOS Digital Circuits using EDA tools							
8	8 Design and Simulation of SRAM and DRAM using EDA Tools							
9	9 Implementation of Task Scheduling and Placement Algorithms							
10	10 Interconnects in VLSI circuits							
THE	ORY 0 TUTORIAL 0 PRACTICAL 45 TOTAL 45							

BC	OOK REFERENCES
1	VLSI Lab Manual - II, Al-Ameen Publications, 2020.
2	Neil H.E. Weste, David Money Harris —CMOS VLSI Design: A Circuits and SystemsPerspectivel, 4th Edition, Pearson, 2017
3	Jan M. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, Digital Integrated Circuits: ADesign perspective , Second Edition, Pearson, 2016.

O	OTHER REFERENCES						
1	M.J. Smith, —Application Specific Integrated Circuits , Addisson Wesley, 1997						
2	Sung-Mo kang, Yusuf leblebici, Chulwoo Kim —CMOS Digital Integrated Circuits:Analysis & Design ,4th edition McGraw Hill Education,2013						
3	Wayne Wolf, —Modern VLSI Design: System On Chip#, Pearson Education, 2007						
4	R.Jacob Baker, Harry W.LI., David E.Boyee, —CMOS Circuit Design, Layout and Simulation II, Prentice Hall of India 2005.						

SEMESTER III

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	Т	P	C	
	THEORY									
1	20MV3E1 to 20MV3E3	Professional Elective-IV	PE	40	60	3	0	0	3	
2	20MV3E4 to 20MV3E6	Professional Elective-V	PE	40	60	3	0	0	3	
	LABORATORY									
3	20MV3L1	Project work Phase –I	EEC	60	40	0	0	20	10	
	Total							20	16	

Semester	Programme	nme Course Course Name		L	Т	P	С
III	M.E. VLSI DESIGN	20MV3E1	DATA CONVERTERS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Explain and articulate the basic concept of sample and hold circuits.	K2	1					
CO2	Design switched capacitor circuits and comparators.	K6	2					
CO3	Analyze various Digital to Analog Circuits with its performance.	K4	3					
CO4	Analyze various Analog to Digital Circuits with its performance.	K4	4					
CO5	Generalize the different types of precision techniques used in electronic circuits	K4	5					
CO6	Evaluate a situation based on application & recommended a suitable converter circuits.	K5	1,2,3,4					

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)															
COs	Programme Learning Outcomes (POs)												Programme Learning Outcomes (POs)		PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2				2											
CO2	3	2		2									1			
CO3	2	2	2										1	1		
CO4	2	2	2										1	1		
CO5	3	3		2	2		2					2				
CO6	3		2		2	2		2				2	1	1		

		COURSE ASSESSMENT METHODS							
DIRECT	1	Continuous Assessment Tests							
	2 Assignment								
	3	End Semester Examinations							
INDIRECT	1	Course End Survey							

	COURSE CONTENT								
Topic - 1		SA	MPI	LE AND	HOLD CIRCUI	TS			9
architecture	Sampling switches, Conventional open loop and closed loop sample and hold architecture, Open loop architecture with miller compensation, multiplexed input architectures, recycling architecture switched capacitor architecture.								
Topic - 2	SV	VITCHED CAP	ACI	TOR CI	RCUITS AND C	COMP	PARATO	ORS	9
	Switched capacitor amplifiers, switched capacitor integrator, switched capacitor common mode feedback. Single stage amplifier as comparator, cascaded amplifier stages as comparator, latched comparators.								
Topic - 3		DIGIT	AL T	ΓΟ ANA	LOG CONVER	TERS	\$		9
		erence multiplicate, current steering			ion, switching an ecture.	d logic	function	ns in DAC, Re	esistor
Topic - 4		ANAL	OG T	FO DIGI	TAL CONVER	TERS	S		9
Performance Time interle			Pipe	lined Ar	chitecture, Succe	essive	approxir	nation archite	ecture,
Topic - 5 PRECISION TECHNIQUES 9						9			
	Comparator offset cancellation, Op Amp offset cancellation, Calibration techniques, range overlap and digital correction.								
THEORY	45 TUTORIAL 0 PRACTICAL 0 TOTAL								

BC	OOK REFERENCES
1	Behzad Razavi, "Principles of data conversion system design", IEEE Press, 1995.
2	Walter Allan Kester, "The Data Conversion Hand Book", Analog Devices Inc., 2005.
3	Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2008.
4	Franco Malobert, "Data Converters" Springer Publications, 2007.
5	Arthur van Roermund, Herman Casier, Michiel Steyae, "Analog Circuit Design: Smart Data Converters, Filters on Chip, Multimode Transmitters", Springer Publications, 2010.
6	Mikael Gustavsson, J. Jacob Wikner, Nianxiong Tan, "CMOS Data Converters for Communications", Kluwer Academic Publishers, 2002.

OT	THER REFERENCES							
1	https://www.youtube.com/watch?v=e9OEp5IJA4U							
2	https://www.youtube.com/watch?v=fSz3z85aWfE							
3	https://www.youtube.com/watch?v=icxvLWEOzEA&t=29s							
4	https://www.youtube.com/watch?v=kkZhaDw3DUM							
5	https://www.youtube.com/watch?v=SAcVlreweOc							

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	M.E. VLSI DESIGN	20MV3E2	VLSITECHNOLOGY	3	0	0	3

COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to								
CO1	Describe the suitable crystal structure for VLSI devices, crystal growth conditions and suitable method used for particular impurity doping.	K2	1						
CO2	Explain the Building layers of IC using various processing like diffusion, metallization, oxidation, epitaxial, etching lithography and fabrication of devices and circuits	K2	2						
CO3	Explain process simulation.	K2	3						
CO4	Explain VLSI process integration.	K2	4						
CO5	Analyze Metallization and Oxidation.	K4	5						
CO6	Explain packaging of VLSI devices.	K2	1,2,3,4,5						

PRE-REQUISITE	VLSI DESIGN
---------------	-------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2				2		2				2	
CO2	3	2	2			2				2				2
CO3	3	2			2			2	2		2			
CO4	3	2					2		2					2
CO5	3	2	3	2		2						2	2	
CO6	3	1								2				

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2 Assignment										
	3	End Semester Examinations									
INDIRECT	1	Course End Survey									

Topic - 1 MATERIAL PROPERTIES & CRYSTAL GROWTH

9

Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing consideration, Vapour phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial Evaluation, Growth Mechanism and kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxide properties, Redistribution of Dopants at interface, Oxidation of Poly Silicon, Oxidation induced Defects.

Topic - 2 LITHOGRAPHY AND RELATIVE PLASMA ETCHING

9

Analysis of asynchronous sequential circuit - Cycles - Races - Static, Dynamic and Essential hazards - Primitive Flow Table - State Reductions and State Assignment - Design of asynchronous sequential circuits.

Topic - 3 DEPOSITION, DIFFUSION AND METALISATION

9

Deposition process, Polysilicon, plasma assisted Deposition, Models of Diffusion in Solids, Flick's one dimensional Diffusion Equation - Atomic Diffusion Mechanism - Measurement techniques - Range theory- Implant equipment. Annealing Shallow junction - High energy implantation - Physical vapour deposition Patterning.

Topic - 4 PROCESS SIMULATION AND VLSI PROCESS INTEGRATION

9

Ion implantation - Diffusion and oxidation - Epitaxy - Lithography - Etching and Deposition- NMOS IC Technology - CMOS IC Technology - MOS Memory IC technology - Bipolar IC Technology - IC Fabrication.

Topic - 5 ASSEMBLY TECHNIQUES AND PACKAGING OF VLSI DEVICES

9

Analytical Beams - Beams Specimen interactions - Chemical methods - Package types - banking design consideration - VLSI assembly technology - Package fabrication technology.

•

THEORY

PRACTICAL

0

TOTAL

45

BOOK REFERENCES

45

1 M.Sze, "VLSI Technology", Mc.Graw.Hill Second Edition. 2002.

TUTORIAL

- 2 Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI Design", Prentice Hall India, 2003.
- 3 Amar Mukherjee, "Introduction to NMOS and CMOS VLSI System design Prentice HallIndia,2000.
- 4 Wayne Wolf, "Modern VLSI Design", Prentice Hall India, 1998.

OTHER REFERENCES

- https://www.youtube.com/watch?v=WmK1bi-nKFE&list=PLXnsjPD8-xuusZCiPKxAirmifNKoOu45X
- 2 https://www.youtube.com/watch?v= EuN1CP8QeQ
- 3 https://www.youtube.com/watch?v=VIJGa2MVn-k

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	M.E. VLSI DESIGN	20MV3E3	VLSIFOR WIRELESS COMMUNICATION	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Explain different Modulation techniques, Spread Spectrum and Receiver Architecture.	К3	1							
CO2	Describe the VLSI Architecture for Wireless Systems.	K5	2							
CO3	Design the various filters.	K5	3							
CO4	Explain Matching Networks.	K4	4							
CO5	Explain the various types of modulators and synthesizer.	K4	5							
CO6	Analyze the concepts of Low Noise Amplifier, Analog to Digital Converters & Synthesizer and VLSI architecture for Wireless Systems.	K4	1,2,3,4,5							

				CO/	PO M	APPIN	[G (1 - V	Veak, 2 –	Medium	, 3 – Stron	ıg)				
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2			2				2	2			2		
CO2	3	2					2				2	2		2	
СОЗ	3	2	2	2				2	2						
CO4	3	3				2		2	2	2					
CO5	3	2			2								2		
CO6	3	2	2	2			2					2			

	COURSE ASSESSMENT METHODS											
DIRECT	1 Continuous Assessment Tests											
	2	2 Assignment										
	3	End Semester Examinations										
INDIRECT	1	Course End Survey										

Topic - 1 INTRODUCTION 9

Review of Modulation Schemes - BFSK-BPSK -QPSK - OQPSK - Classical Channel - Additive White Gaussian Noise - Finite Channel Bandwidth - Wireless Channel - Path Environment - Path Loss - Friis Equation - Multipath Fading - Channel Model - Envelope Fading - Frequency Selective Fading - Fast Fading - Comparison of different types of Fading-Review of Spread Spectrum - DSSS - FHSS- Principle of DSSS - Modulation - Demodulation - Performance in the presence of noise - narrowband and wideband interferences.

Topic - 2 RECEIVER ARCHITECTURE 9

Receiver Front End - Motivations - General Design Philosophy- Heterodyne and Other architectures - Filter Design - Band Selection Filter - Image Rejection Filter - Channel Filter - Non idealities and Design Parameters - Harmonic Distortion - Intermodulation - Cascaded Nonlinear Stages - Gain Compression - Blocking - Noise - Noise Sources - Noise Figure - Design of Front end parameter for DECT.

Topic - 3 LOW NOISE AMPLIFIER 9

Low Noise Amplifier - Matching Networks - Matching for Noise and Stability - Matching for Power - Implementation - Comparison of Narrowband and Wideband LNA - Wideband LNA Design - Narrowband LNA - Impedance matching - Power matching - Salient features of LNA - Core Amplifier Designs.

Topic - 4 ANALOG TO DIGITAL CONVERTERS & SYNTHESIZER 9

Demodulators - Delta Modulators - Low Pass Sigma Delta Modulators - High Order Modulators - One Bit DAC and ADC -Passive Low Pass Sigma Delta Modulator - Band pass Sigma Delta Modulators - Comparison - PLL based Frequency Synthesizer.

Topic - 5 VLSI ARCHITECTURE FOR WIRELESS SYSTEMS 9

Implementations: VLSI architecture for Multi-tier Wireless System - Hardware Design Issues for a Next generation CDMA System - Efficient VLSI Architecture for Base Band Signal processing.

THEORY	45	Г	ΓUTORIAL	0	PRACTICAL	0	TOTAL	45

- 1 Bosco Leung, "VLSI for wireless Communication", Springer, 2nd Edition, 2011.
- 2 Andreas F.Molisch, "Wideband wireless Digital Communication", Prentice PTR, 2001.
- George.V.Tsoulous, "Adaptive Antennas for wireless Communication", IEEE Press, Willey Publications, 2001.
- 4 Xiaodong Wang and H.Vincent Poor, "Wireless Communication System, Advanced Techniques for Signal Reception", Pearson Education. 2004.
- 5 | Wolfgang Eberle, "Wireless Transceiver Systems Design", Springer, 2008.

O	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=Y6u2KQoPUiU								
2	https://www.youtube.com/watch?v=cRSj4FzdXfo&list=PLC79262E787A9CBA9								
3	https://www.youtube.com/watch?v=cIlwGFcDLhI								
4	https://www.youtube.com/watch?v=_EuN1CP8QeQ								
5	https://www.youtube.com/watch?v=DdoCjyTzhQY&list=PLgwJf8NK- 2e6au9bX9P_bA3ywxqigCsaC								

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	M.E. VLSI DESIGN	20MV3E4	ANALOG VLSI CIRCUITS	3	0	0	3

COURSE LEARNING OUTCOMES (COs)								
A	RBT Level	Topics Covered						
CO1	Explain and articulate the basic concepts related to CMOS technology and device modeling in analog VLSI circuits.	K2	1					
CO2	Apply CMOS sub circuit and biasing circuit in analog VLSI circuits.	К3	2					
CO3	Compare various stage amplifier to rate their performance in VLSI.	K4	3					
CO4	Evaluate the situation based on timing issues and recommend a suitable VLSI circuits	K5	4					
CO5	Analyze arithmetic building blocks to infer their limitation	K4	5					
CO6	Design a VLSI equipment for a given application	K6	2,3,4,5					

PRE-REQUISITE	20MV1T3 – CMOS VLSI DESIGN, 20MV2T1- LOW POWER CMOS							
TRE-REQUISITE	CIRCUITS & MEMORIES, 20MV2T3 – TESTING OF VLSI CIRCUITS.							

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2		2									2		
CO2	3	2	3		2										
CO3	2	2						2					2		
CO4	2		3			2							2		
CO5		2	3								2			1	
CO6	2			3					2				2		

	COURSE ASSESSMENT METHODS											
DIRECT	1 Continuous Assessment Tests											
	2	Mini projects										
	3	End Semester Examinations										
INDIRECT	1	Course End Survey										

	COURSE CONTENT	
Topic - 1	CMOS TECHNOLOGY AND DEVICE MODELLING	9

Basic MOS semiconductor fabrication processes - other considerations of CMOS technology - MOS I/V characteristics MOS large signal model and parameters - Small signal model for the MOS transistor - Computer simulation models -Sub threshold MOS model.

Topic - 2 ANALOG CMOS SUB CIRCUITS AND BIASING CIRCUITS 9

MOS switch - MOS diode and active resistor - Basic Current mirrors - Cascode current mirrors-active current mirrors- voltage references-supply independent biasing, temperature independent references, PTAT current generation.

Topic - 3 SINGLE STAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIERS 9

Common source stage - Common source stage with resistive load - diode connected load - current source load - triode load - source degeneration - Source follower stage - Common -gate stage - Cascade stages - Single ended and differential operation - Basic differential pair - Common mode response - Differential pair with MOS loads. Gilbert Cell.

Topic - 4 TIMING ISSUES IN VLSI CIRCUITS 9

General considerations-Miller effect -Association of poles with Nodes - Frequency response of Common source, Source follower, Common gate amplifiers, Cascode amplifiers and differential amplifiers - Statistical characteristics of noise - Types of Noise - Noise in single stage amplifiers -Noise in differential pairs

Topic - 5 DESIGN OF ARITHMETIC BUILDING BLOCKS 9

Properties of feedback circuits - Feedback Topologies - Effect of loading in feedback networks - Effect of feedback on noise - Performance parameters of operational amplifiers - One stage op amp - Two stage op amp - Gain Boosting - Input range limitations - Slew rate - Power Supply Rejection- Noise in op amps - Stability and Frequency compensation.

THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--------	----	--	----------	---	--	-----------	---	--	-------	----

- Phillip E.Allen and Douglas R.Holberg, "CMOS Analog Circuit Design", Oxford UniversityPress, 2002
- 2 Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2001
- 3 Malcom R.Haskard and Lan C.May, "Analog VLSI Design NMOS and CMOS", PrenticeHall, 1998.
- Randall L Geiger, Phillip E. Allen and Noel K.Strader, "VLSI Design Techniques for Analogand Digital Circuits", Mc Graw Hill International Company, 1990.
- 5 K.Radhakrishna Rao," Electronics for Analog Signal Processing-I", NPTEL, Courseware, 2005

OT	OTHER REFERENCES							
1	https://youtu.be/DdoCjyTzhQY							
2	http://www.brown.edu/Departments/Engineering/Labs/ddzo/async.html							
3	https://youtu.be/oL8SKNxEaHs							
4	https://youtu.be/QTw3V2yc6E4							
5	https://youtu.be/DsicVlSJ0BY							

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	M.E. VLSI DESIGN	20MV3E5	RADIO FREQUENCY IC DEIGSN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Explain and articulate the concepts related to RF Design and Wireless Technology	K2	1					
CO2	Compare the various RF Modulation and design transmitter and receiver	K4	2					
CO3	Apply the RF testing for heterodyne systems and its performance	К3	3					
CO4	Analyze the BJT and MOSFET behavior at Radio frequencies.	K4	4					
CO5	Evaluate a situation based application and recommend a suitable RF filters	K5	5					
CO6	Design a RF mixer for a given application	K6	5					

PRE-REQUISITE VLSI TECHNOLOGY

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	2	1							2	3	
CO2	3	2	1						1		2		2	
СОЗ	2	1	2	2	1		2		2			1	2	
CO4	2	2	1	1		2							1	
CO5	3	1	2	2				2	1			1	3	
CO6	2	1	1	2	1				2		2	2		2

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignment
	3	End Semester Examinations
INDIRECT	1	Course End Survey

Topic - 1 INTRODUCTION TO RF DESIGN AND WIRELESS TECHNOLOGY

9

Design and Applications - Complexity and Choice of Technology. Basic concepts in RF design: Nonlinearly and Time Variance - Inter symbol interference - random processes and noise. Sensitivity and dynamic range - conversion of gains and distortion.

Topic - 2 RF MODULATION

9

Analog and digital modulation of RF circuits - Comparison of various techniques for power efficiency - Coherent and non-coherent detection - Mobile RF communication and basics of Multiple Access techniques. Receiver and Transmitter architectures - Direct conversion and two-step transmitters

Topic - 3

RF TESTING

9

RF testing for heterodyne - Homodyne - Image rejects - Direct IF and sub sampled receivers.

Topic - 4 BJT AND MOSFET BEHAVIOR AT RF FREQUENCIES

0

9

BJT and MOSFET behaviour at RF frequencies - modelling of the transistors and SPICE model - Noise performance and limitations of devices - integrated parasitic elements at high frequencies and their monolithic implementation.

Topic - 5

THEORY

RF CIRCUITS DESIGN

PRACTICAL

9

45

TOTAL

Overview of RF Filter design - Active RF components & modelling - Matching and Biasing Networks. Basic blocks in RF systems and their VLSI implementation - Low noise Amplifier design in various technologies - Design of Mixers at GHz frequency range - Various mixers- working and implementation. Oscillators- Basic topologies VCO and definition of phase noise - Noise power and trade off. Radio frequency Synthesizers- PLLS - Various RF synthesizer architectures and frequency dividers - Design issues in integrated RF filters.

BOOK REFERENCES

45

- John W M Rogers, Calvin Plett, "Radio Frequency Integrated Circuit Design", Second Edition, Artech House, 2010.
- Ashok K. Sharma, "Semiconductor Memories Technology, Testing and Reliability", PrenticeHall of India Pvt. Ltd, New Delhi,1997.
- 3 Bahzad Razavi, "RF Microelectronics", Second Edition, Prentice Hall, 2012.

TUTORIAL

OTHER REFERENCES

- 1 https://nptel.ac.in > courses
- 2 https://www.youtube.com/watch?v=qU36Fy aeb0
- 3 https://www.youtube.com/watch?v=TnRn3Kn_aXg
- 4 https://www.youtube.com/watch?v=oqkigUOjpGg

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	M.E. VLSI DESIGN	20MV3E6	BASEBAND ALGORITHMS ON FPGA	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
A	After Successful completion of the course, the students should be able to							
CO1	Explain and articulate the concepts related to FPGA Technology	K2	1					
CO2	Apply the various building blocks of FPGA	К3	2					
CO3	Compare the various FIR and IIR filters	K4	3					
CO4	Analyze the DFT and FFT algorithms	K4	4					
CO5	Evaluate a situation based application and recommend a suitable communication codes in FPGA	K5	5					
CO6	Design a Adaptive filters for a given application	K6	5					

PRE-REQUISITE VLSI TECHNOLOGY

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)															
COs		Programme Learning Outcomes (POs)										Programme Learning Outcomes (POs) PSOs				Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	1	1			2						1	3			
CO2	2	1	2				2		2			2	2			
CO3	2	2	1	2	1				1		2	2	2			
CO4	3	1	1			2		2				1	1			
CO5	2	1	2	2	1				2			1	3			
CO6	3	2	1	1	2						2	1		2		

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignment
	3	End Semester Examinations
INDIRECT	1	Course End Survey

COURSE CONTENT											
Topic - 1				F	PGA TEC	CHNOLOGY				9	
Introduction	to FPC	GA - F	PGA Design flo	w - P	rogramm	ing languages - pr	rograr	nming te	echnology.		
Topic - 2				BAS	IC BUIL	DING BLOCKS				9	
Number Rep	resent	ation -	-Binary adders -	Bina	ary divide	rs - Floating point	t arith	metic - N	MAC & SOP	unit.	
Topic - 3			DIGIT	'AL I	FILTER :	IMPLEMENTA'	TION	I		9	
		•				onstant coefficien		•			
Topic - 4				FO	URIER 7	TRANSFORM				9	
						rm - Winograd Dl od thomas - Winog			chirp–z transf	form -	
Topic - 5	Topic - 5 COMMUNICATION BLOCKS							9			
Error control codes - Linear block code - Convolution codes - Modulation and Demodulation - Adaptifilters - LMS - RLS - Decimator and Interpolator - High Decimation Rate filters.							aptive				
THEORY	45		TUTORIAL	UTORIAL 0 PRACTICAL 0 TOTAL 45							
BOOK BEI	DOOL DEFEDENCES										

BC	OOK REFERENCES
1	Uwe.Meyer-Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer, Third edition, May 2007.
2	Keshab K. Parhi, "VLSI Digital Signal Processing systems, Design and implementation", Wiley,Inter Science, 1999.
3	John G. Proakis, "Digital Communications," Fourth Ed. McGraw Hill International Edition,2000.
4	Michael John Sebastian Smith, "Applications Specific Integrated Circuits", PearsonEducation, Ninth Indian reprint, 13th edition, 2004.
5	Sophocles J. Orfanidis, "Introduction to Signal Processing", Prentice Hall, 1996

OT	OTHER REFERENCES						
1	https://nptel.ac.in > courses						
2	https://www.youtube.com/watch?v=CLUoWkJUnN0						
3	https://www.youtube.com/watch?v=jbOjWp4C3V4						
4	https://www.youtube.com/watch?v=jVYs-GTqm5U g						
5	https://www.youtube.com/watch?v=VySEvtpM_To						