

# **AL-AMEEN ENGINEERING COLLEGE**

# (Autonomous)

(Accredited by NAAC with "A" Grade :: An ISO Certified Institution) (Affiliated to Anna University, Chennai & Approved by AICTE, New Delhi) Karundevanpalayam, Nanjai Uthukkuli Post, Erode – 638 104, Tamilnadu, INDIA.

# CURRICULUM & SYLLABI SEMESTERS – I to IV (Regulations 2020)

# CHOICE BASED CREDIT SYSTEM M.E. VLSI DESIGN

Applicable to the Students admitted in the AY 2020-21 only

## VISION

To develop quality, innovative and confident engineers in the field of Electronics and Communication with research focus and social responsibilities those who can adhere and face the global challenges.

| MISS | MISSION                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|      | To create a unique learning environment equipped to face different challenges<br>in industry and research areas in the related field.                                          |  |  |  |  |  |  |  |  |  |
|      | To develop soft skills and solve the complex technological problems of the modern society.                                                                                     |  |  |  |  |  |  |  |  |  |
|      | To create competent professionals by imparting wide analysed methodology<br>and to develop the spirit of innovative communication by establishing the<br>centre of excellence. |  |  |  |  |  |  |  |  |  |

| PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) |                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| PEO 1                                   | Attain mastery in applying VLSI concepts to Engineering problems so as to meet the need of the industry, teaching, higher education or research.                                              |  |  |  |  |  |  |  |  |
| PEO 2                                   | Creation of expertise in the microelectronics domain to deal with design, development, analysis, testing and evaluation of the critical aspects of integrated circuits and its core concepts. |  |  |  |  |  |  |  |  |
| PEO 3                                   | To exhibit professional competence and leadership qualities with<br>harmonious blend of ethics leading to an integrated personality<br>development.                                           |  |  |  |  |  |  |  |  |

| PROGRAM OUTCOMES (POs) |                                                                                                                                       |  |  |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>PO</b> 1            | Acquire in-depth knowledge in the field of VLSI Design with an ability to evaluate and analyse the existing knowledge for enhancement |  |  |  |  |  |  |  |
| PO 2                   | Analyse critical complex engineering problems and provide solutions through research                                                  |  |  |  |  |  |  |  |
| PO 3                   | Identity the areas for the development of Electronic hardware design for the benefit of the society                                   |  |  |  |  |  |  |  |

| PO 4  | Extract information pertinent to challenging problems through literature<br>survey and by applying appropriate research methodologies, techniques and<br>tools to the development of technological knowledge          |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 5  | Select, learn and apply appropriate techniques, resources and modern<br>engineering tools to complex engineering activities with an understanding<br>of limitations                                                   |
| PO 6  | Understand group dynamics, recognise opportunities and contribute<br>positively to multidisciplinary work to achieve common goals for further<br>learning                                                             |
| PO 7  | Demonstrate engineering principles and apply the same to manage projects efficiently as a team after considering economical and financial factors                                                                     |
| PO 8  | Communicate with engineering community and society regarding complex<br>engineering activities effectively through reports, design documentation and<br>presentations                                                 |
| PO 9  | Engage with commitment in life-long learning independently to improve knowledge and competence                                                                                                                        |
| PO 10 | Acquire professional and intellectual integrity, professional code and<br>conduct, ethics of research and scholarship by considering the research<br>outcomes to the community for sustainable development of society |
| PO 11 | Observe and examine critically the outcomes and make corrective measures, and learn from mistakes without depending on external feedback                                                                              |
| PO 12 | Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                         |

| PROGRAM SPECIFIC OUTCOMES (PSOs) |                                                                                                                                                      |  |  |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| PSO 1                            | To design and develop VLSI circuits to optimise power and area requirements, free from faults and dependencies by modelling, simulation and testing. |  |  |  |  |  |  |  |  |
| PSO 2                            | To develop VLSI systems by learning advanced algorithms, architectures and software –hardware co –design.                                            |  |  |  |  |  |  |  |  |

### **CURR ICULUM**

## **SEMESTER I**

| Sl.<br>No. | Course<br>Code           | Course Title                                     | Cate<br>gory | CIA | ESE | L | Т | Р | С    |
|------------|--------------------------|--------------------------------------------------|--------------|-----|-----|---|---|---|------|
|            |                          |                                                  |              |     |     |   |   |   |      |
| 1          | 20MV1T1                  | Applied Mathematics for<br>Electronics Engineers | FC           | 50  | 50  | 3 | 1 | 0 | 4    |
| 2          | 20MV1T2                  | Advanced Digital System<br>Design                | PC           | 50  | 50  | 3 | 0 | 0 | 3    |
| 3          | 20MV1T3                  | CMOS VLSI Design                                 | PC           | 50  | 50  | 3 | 0 | 0 | 3    |
| 4          | 20MV1T4                  | System Design using FPGA                         | PC           | 50  | 50  | 3 | 0 | 0 | 3    |
| 5          | 20MV1T5                  | Device Modeling and Simulation                   | PC           | 50  | 50  | 3 | 0 | 0 | 3    |
| 6          | 20MV1E1<br>to<br>20MV1E3 | Professional Elective-I                          | PE           | 50  | 50  | 3 | 0 | 0 | 3    |
|            |                          | LABORAT                                          | ΓORY         |     |     |   |   |   |      |
| 7          | 20MV1L1                  | VLSI Design Laboratory –I                        | PC           | 50  | 50  | 0 | 0 | 3 | 1.5  |
| 8          | 20MV1L2                  | Seminar and Technical<br>Writing                 | EEC          | 100 |     | 0 | 0 | 2 | 1    |
| Total      |                          |                                                  |              |     |     |   |   | 5 | 21.5 |

### **SEMESTER II**

| Sl.<br>No. | Course<br>Code           | Course Title                         | Cate<br>gory | CIA | ESE | L | Т | Р | С   |
|------------|--------------------------|--------------------------------------|--------------|-----|-----|---|---|---|-----|
|            |                          |                                      |              |     |     |   |   |   |     |
| 1          | 20MV2T1                  | Low power CMOS Circuits and Memories | PC           | 50  | 50  | 3 | 0 | 0 | 3   |
| 2          | 20MV2T2                  | Mixed Signal Circuit Design          | PC           | 50  | 50  | 3 | 0 | 0 | 3   |
| 3          | 20MV2T3                  | Testing of VLSI Circuits             | PC           | 50  | 50  | 3 | 0 | 0 | 3   |
| 4          | 20MV2T4                  | CAD for VLSI Circuits                | PC           | 50  | 50  | 3 | 0 | 0 | 3   |
| 5          | 20MV2E1<br>to<br>20MV2E3 | Professional Elective-II             | PE           | 50  | 50  | 3 | 0 | 0 | 3   |
| 6          | 20MV2E4<br>to<br>20MV2E6 | Professional Elective-III            | PE           | 50  | 50  | 3 | 0 | 0 | 3   |
|            |                          | LABORAT                              | FORY         |     |     |   |   |   |     |
| 7          | 20MV2L1                  | VLSI Design Laboratory – II          | PC           | 50  | 50  | 0 | 0 | 3 | 1.5 |
| 8          | 20MV2L2                  | Mini project                         | EEC          | 100 |     | 0 | 0 | 3 | 1.5 |
| Total      |                          |                                      |              |     |     |   | 0 | 6 | 21  |

## **SEMESTER III**

| SI.<br>No. | Course<br>Code           | Course Title             | Cate<br>gory | CIA | ESE | L | Т | Р  | С  |
|------------|--------------------------|--------------------------|--------------|-----|-----|---|---|----|----|
|            |                          | THEO                     | RY           |     |     |   |   |    |    |
| 1          | 20MV3E1<br>to<br>20MV3E3 | Professional Elective-IV | PE           | 50  | 50  | 3 | 0 | 0  | 3  |
| 2          | 20MV3E4<br>to<br>20MV3E6 | Professional Elective-V  | PE           | 50  | 50  | 3 | 0 | 0  | 3  |
|            |                          | LABORA                   | TORY         | 7   |     |   |   |    |    |
| 3          | 20MV3L1                  | Project work Phase –I    | EEC          | 50  | 50  | 0 | 0 | 20 | 10 |
| Total      |                          |                          |              |     |     |   | 0 | 20 | 16 |

## **SEMESTER IV**

| Sl.<br>No. | Course<br>Code | Course Title           | Cate<br>gory | CIA | ESE | L | Т | Р  | С  |  |  |
|------------|----------------|------------------------|--------------|-----|-----|---|---|----|----|--|--|
| LABORATORY |                |                        |              |     |     |   |   |    |    |  |  |
| 1          | 20MV4L1        | Project work Phase –II | EEC          | 50  | 50  | 0 | 0 | 30 | 15 |  |  |
| Total      |                |                        |              |     |     |   |   | 30 | 15 |  |  |

#### FUNDAMENTAL COURSE (FC)

| Sl.No. | Course Code | Course Title                                     | L | Т | Р | С |
|--------|-------------|--------------------------------------------------|---|---|---|---|
| 1.     | 20MV1T1     | Applied Mathematics for<br>Electronics Engineers | 3 | 1 | 0 | 4 |

#### **PROFESSIONAL CORE (PC)**

| Sl.No. | Course Code | Course Title                         | L | Т | Р | С   |
|--------|-------------|--------------------------------------|---|---|---|-----|
| 1.     | 20MV1T2     | Advanced Digital System Design       | 3 | 0 | 0 | 3   |
| 2.     | 20MV1T3     | CMOS VLSI Design                     | 3 | 0 | 0 | 3   |
| 3.     | 20MV1T4     | System Design using FPGA             | 3 | 0 | 0 | 3   |
| 4.     | 20MV1T5     | Device Modeling and Simulation       | 3 | 0 | 0 | 3   |
| 5.     | 20MV1L1     | VLSI Design Laboratory –I            | 0 | 0 | 3 | 1.5 |
| 6.     | 20MV2T1     | Low power CMOS Circuits and Memories | 3 | 0 | 0 | 3   |
| 7.     | 20MV2T2     | Mixed Signal Circuit Design          | 3 | 0 | 0 | 3   |
| 8.     | 20MV2T3     | Testing of VLSI Circuits             | 3 | 0 | 0 | 3   |
| 9.     | 20MV2T4     | CAD for VLSI Circuits                | 3 | 0 | 0 | 3   |
| 10.    | 20MV2L1     | VLSI Design Laboratory – II          | 0 | 0 | 3 | 1.5 |

#### **PROFESSIONAL ELECTIVES (PE)**

| Semester – I (Elective I) |             |                                                           |   |   |   |   |  |  |  |  |
|---------------------------|-------------|-----------------------------------------------------------|---|---|---|---|--|--|--|--|
| Sl.No.                    | Course Code | Course Title                                              | L | Т | Р | С |  |  |  |  |
| 1                         | 20MV1E1     | Advanced Computer Architecture<br>and Parallel Processing | 3 | 0 | 0 | 3 |  |  |  |  |
| 2                         | 20MV1E2     | Semiconductor Device Modeling                             | 3 | 0 | 0 | 3 |  |  |  |  |
| 3                         | 20MV1E3     | Nano Electronics                                          | 3 | 0 | 0 | 3 |  |  |  |  |

|                                 | Semester – II (Elective II) |                                            |   |   |   |   |  |  |  |  |  |
|---------------------------------|-----------------------------|--------------------------------------------|---|---|---|---|--|--|--|--|--|
| Sl.No. Course Code Course Title |                             |                                            |   |   | Р | С |  |  |  |  |  |
| 1                               | 20MV2E1                     | Signal Integrity for High Speed<br>Devices | 3 | 0 | 0 | 3 |  |  |  |  |  |
| 2                               | 20MV2E2                     | High Speed Digital Design                  | 3 | 0 | 0 | 3 |  |  |  |  |  |
| 3                               | 20MV2E3                     | DSP Integrated Circuits                    | 3 | 0 | 0 | 3 |  |  |  |  |  |

|        | Semester – II (Elective III) |                                    |   |   |   |   |  |  |  |  |  |
|--------|------------------------------|------------------------------------|---|---|---|---|--|--|--|--|--|
| Sl.No. | Course Code                  | Course Title                       | L | Т | Р | С |  |  |  |  |  |
| 1      | 20MV2E4                      | ASIC Design                        | 3 | 0 | 0 | 3 |  |  |  |  |  |
| 2      | 20MV2E5                      | Microsensors and MEMS              | 3 | 0 | 0 | 3 |  |  |  |  |  |
| 3      | 20MV2E6                      | Advanced Embedded System<br>Design | 3 | 0 | 0 | 3 |  |  |  |  |  |

|                                 | Semester – III (Elective IV) |                                 |   |   |   |   |  |  |  |  |
|---------------------------------|------------------------------|---------------------------------|---|---|---|---|--|--|--|--|
| Sl.No. Course Code Course Title |                              |                                 |   |   | Р | С |  |  |  |  |
| 1                               | 20MV3E1                      | Data Converters                 | 3 | 0 | 0 | 3 |  |  |  |  |
| 2                               | 20MV3E2                      | VLSI Technology                 |   | 0 | 0 | 3 |  |  |  |  |
| 3                               | 20MV3E3                      | VLSI for Wireless Communication | 3 | 0 | 0 | 3 |  |  |  |  |

|                                 | Semester – III (Elective V) |                             |   |   |   |   |  |  |  |  |  |
|---------------------------------|-----------------------------|-----------------------------|---|---|---|---|--|--|--|--|--|
| Sl.No. Course Code Course Title |                             |                             |   |   | Р | С |  |  |  |  |  |
| 1                               | 20MV3E4                     | Analog VLSI Circuits        | 3 | 0 | 0 | 3 |  |  |  |  |  |
| 2                               | 20MV3E5                     | Radio Frequency IC Design   | 3 | 0 | 0 | 3 |  |  |  |  |  |
| 3                               | 20MV3E6                     | Baseband Algorithms on FPGA | 3 | 0 | 0 | 3 |  |  |  |  |  |

| Sl. No. | Course Code | Course Title                  | L | Т | Р  | С   |
|---------|-------------|-------------------------------|---|---|----|-----|
| 1.      | 20MV1L2     | Seminar and Technical Writing | 0 | 0 | 2  | 1   |
| 2.      | 20MV2L2     | Mini project                  | 0 | 0 | 3  | 1.5 |
| 3.      | 20MV3L1     | Project work Phase –I         |   | 0 | 20 | 10  |
| 4.      | 20MV4L1     | Project work Phase –II        | 0 | 0 | 32 | 15  |

#### EMPLOYABILITY ENHANCEMENT COURSES (EEC)

#### CURRICULUM BREAKDOWN STRUCTURE

| Subject                                 | Total<br>number of<br>credits | % of Credits |  |  |
|-----------------------------------------|-------------------------------|--------------|--|--|
| Fundamental Course (FC)                 | 4                             | 5.44         |  |  |
| Professional Core (PC)                  | 27                            | 36.73        |  |  |
| Professional Electives (PE)             | 15                            | 20.41        |  |  |
| Employability Enhancement Courses (EEC) | 27.5                          | 37.41        |  |  |
| Total                                   | 73.5                          | 100          |  |  |

#### **CREDIT SUMMARY**

| SI No    | Subject Area | Cr   | •    | Total |    |         |  |
|----------|--------------|------|------|-------|----|---------|--|
| 51. 110. | Subject Area | I    | II   | III   | IV | Credits |  |
| 1        | FC           | 4    |      |       |    | 4       |  |
| 2        | РС           | 13.5 | 13.5 |       |    | 27      |  |
| 3        | PE           | 3    | 6    | 6     |    | 15      |  |
| 4        | EEC          | 1    | 1.5  | 10    | 15 | 27.5    |  |
|          | TOTAL        | 21.5 | 21   | 16    | 15 | 73.5    |  |

9 | Page

## **SEMESTER I**

| Sl.<br>No. | Course<br>Code           | Course Title                                     | ESE                                                    | L  | Т  | Р | С |     |      |
|------------|--------------------------|--------------------------------------------------|--------------------------------------------------------|----|----|---|---|-----|------|
|            |                          |                                                  |                                                        |    |    |   |   |     |      |
| 1          | 20MV1T1                  | Applied Mathematics for<br>Electronics Engineers | Applied Mathematics for<br>Electronics EngineersFC5050 |    |    |   |   |     |      |
| 2          | 20MV1T2                  | Advanced Digital System PC 50 50 Design          |                                                        |    |    |   | 0 | 0   | 3    |
| 3          | 20MV1T3                  | CMOS VLSI Design PC 50 50                        |                                                        |    |    |   | 0 | 0   | 3    |
| 4          | 20MV1T4                  | System Design using FPGA PC 50 50                |                                                        |    |    |   | 0 | 0   | 3    |
| 5          | 20MV1T5                  | Device Modeling and Simulation PC 50 50          |                                                        |    |    |   | 0 | 0   | 3    |
| 6          | 20MV1E1<br>to<br>20MV1E3 | Professional Elective-I                          | PE                                                     | 50 | 50 | 3 | 0 | 0   | 3    |
|            | _                        | LABORA                                           | FORY                                                   |    |    |   |   |     |      |
| 7          | 20MV1L1                  | VLSI Design Laboratory –I                        | VLSI Design Laboratory –I PC 50 50                     |    | 0  | 0 | 3 | 1.5 |      |
| 8          | 20MV1L2                  | Seminar and Technical<br>Writing EEC 100         |                                                        |    |    |   | 0 | 2   | 1    |
|            | Total                    |                                                  |                                                        |    |    |   |   |     | 21.5 |

| Semester | Programme           | Course<br>Code | Course Name                                      | L | Т | Р | С |
|----------|---------------------|----------------|--------------------------------------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1T1        | APPLIED MATHEMATICS FOR<br>ELECTRONICS ENGINEERS | 3 | 1 | 0 | 4 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                                                                                                             |              |                   |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--|--|--|--|--|--|
| A   | fter Successful completion of the course, the students should be able to                                                                                                                                   | RBT<br>Level | Topics<br>Covered |  |  |  |  |  |  |
| CO1 | Interpret the concept of fuzzy logic, matrix theory, random variables, dynamic programming and queuing models for applying the interpretations in selection and use of appropriate mathematical techniques | K2           | 1,2,3,4,5         |  |  |  |  |  |  |
| CO2 | Concepts of fuzzy sets, knowledge representation using fuzzy rules, fuzzy logic, fuzzy prepositions and fuzzy quantifiers and applications of fuzzy logic.                                                 | K3           | 1                 |  |  |  |  |  |  |
| CO3 | Apply various methods in matrix theory to solve system of linear equations.                                                                                                                                | K3           | 2                 |  |  |  |  |  |  |
| CO4 | Analyze the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.                                                                                  | K4           | 4                 |  |  |  |  |  |  |
| CO5 | Relate and apply the concept of probability and random variables and predict probabilities of events in models following normal distribution.                                                              | K3           | 3                 |  |  |  |  |  |  |
| CO6 | Choose the appropriate methods in a queue discipline to develop a relationship between the queue length and service time distribution Laplace transforms for $M/G/1$ queue.                                | K6           | 5                 |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |                                   |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COa |                                                    | Programme Learning Outcomes (POs) |     |     |     |     |     |     |     |      | PSOs |      |      |      |
| COS | PO1                                                | PO2                               | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                  | 3                                 |     | 1   | 1   |     |     |     | 1   |      |      | 1    | 1    |      |
| CO2 | 1                                                  | 2                                 |     |     |     |     |     |     | 1   |      |      |      | 1    |      |
| CO3 | 1                                                  | 1                                 | 1   |     |     |     |     |     |     |      |      | 1    | 1    |      |
| CO4 | 1                                                  | 1                                 |     |     |     |     |     |     | 1   |      |      |      | 1    |      |
| CO5 | 1                                                  | 1                                 |     | 1   |     |     |     |     |     |      |      | 1    | 1    |      |
| CO6 | 2                                                  | 1                                 |     |     |     |     |     |     | 1   |      |      |      | 1    |      |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |
|          | 2                         | Assignments                 |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |               |          |      |         |            |      |     |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------|---------|------------|------|-----|-------|-------|
| Topic - 1                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |               |          |      | FUZZY   | Y LOGIC    |      |     |       | 9 + 3 |
| Classical logic – Multivalued logics – Fuzzy propositions – Fuzzy quantifiers                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |               |          |      |         |            |      |     |       |       |
| Topic - 2                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   | MATRIX THEORY |          |      |         |            |      |     |       |       |
| Fuels: Introduction - classification of fuels – Combustion- coal – Analysis of coal - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol. |                                                                                                                                                                                                                                                                                                                   |               |          |      |         |            |      |     |       |       |
| Topic - 3                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |               | PROBA    | BILI | ГY AND  | RANDOM VAR | IABI | LES |       | 9 + 3 |
| Probability<br>Probability f<br>Geometric, U                                                                                                                                                                                                                                                                                       | Probability – Axioms of probability – Conditional probability – Baye's theorem - Random variables -<br>Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson,<br>Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a Random variable. |               |          |      |         |            |      |     |       |       |
| Topic - 4                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |               | DYN      | JAM  | IC PROC | GRAMMING   |      |     |       | 9+3   |
| Dynamic pro<br>dynamic pro<br>– Problem of                                                                                                                                                                                                                                                                                         | Dynamic programming – Principle of optimality – Forward and backward recursion – Applications of dynamic programming: Cargo loading method – Workforce size model – Equipment replacement model. – Problem of dimensionality                                                                                      |               |          |      |         |            |      |     |       |       |
| Topic - 5                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |               |          | Q    | UEUEIN  | IG MODELS  |      |     |       | 9+3   |
| Poisson Pro<br>interference                                                                                                                                                                                                                                                                                                        | Poisson Process – Markovian queues – Single and multi server models – Little"s formula - Machine interference model – Steady state analysis – Self service queue                                                                                                                                                  |               |          |      |         |            |      |     |       |       |
| THEORY                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                |               | TUTORIAL | 15   |         | PRACTICAL  | 0    |     | TOTAL | 45    |

| BC | OOK REFERENCES                                                                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Bronson, R., "Matrix Operations", Schaum's Outline Series, McGraw Hill, 2011                                                                       |
| 2  | George, J. Klir. and Yuan, B., "Fuzzy sets and Fuzzy logic, Theory and Applications", Prentice Hall of India Pvt. Ltd., 2015                       |
| 3  | Gross, D., Shortle J. F., Thompson, J.M., and Harris, C. M., "Fundamentals of Queueing Theory", 4th Edition, John Wiley, 2014                      |
| 4  | Johnson, R.A., Miller, I and Freund J., "Miller and Freund"s Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015 |
| 5  | Taha, H.A., "Operations Research: An Introduction", 9th Edition, Pearson Education, Asia, New Delhi, 2016.                                         |

| 07 | OTHER REFERENCES                                                               |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1  | https://www.cuemath.com/learn/mathematics/probability-in-real-life/            |  |  |  |  |  |  |  |
| 2  | https://sciencing.com/examples-of-real-life-probability-12746354.html          |  |  |  |  |  |  |  |
| 3  | http://www.iraj.in/journal/journal_file/journal_pdf/14-358-149822091462-64.pdf |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name                       | L | Т | Р | С |
|----------|---------------------|----------------|-----------------------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1T2        | ADVANCED DIGITAL SYSTEM<br>DESIGN | 3 | 0 | 0 | 3 |

| COURSE LEARNING OUTCOMES (COs) |                                                                                        |                   |           |  |  |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------|-------------------|-----------|--|--|--|--|--|--|--|
| A                              | RBT<br>Level                                                                           | Topics<br>Covered |           |  |  |  |  |  |  |  |
| CO1                            | Explain and articulate the concepts of advanced digital system design                  | K2                | 1,2,3,4,5 |  |  |  |  |  |  |  |
| CO2                            | Apply the concept of synchronous and asynchronous circuits in building digital systems | K3                | 1,2       |  |  |  |  |  |  |  |
| CO3                            | Compare the synchronous and asynchronous circuits design to rate the performance       | K4                | 1,2       |  |  |  |  |  |  |  |
| CO4                            | Analyze the design to infer its limitations                                            | K4                | 3,4,5     |  |  |  |  |  |  |  |
| CO5                            | Evaluate the applications and recommend a suitable design                              | K5                | 3,5       |  |  |  |  |  |  |  |
| <b>CO6</b>                     | Design a digital system for a given application                                        | K6                | 3,5       |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      | PSOs |      |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 2   | 2   | 2   | 2   |     | 1   |     | 1   |      |      |      | 2    |      |
| CO2 | 2                                                  | 2   | 1   |     |     |     | 1   |     |     |      |      | 1    | 1    |      |
| CO3 | 3                                                  | 2   | 2   | 2   | 2   |     | 2   |     |     |      |      | 1    | 1    |      |
| CO4 | 2                                                  | 1   | 2   | 2   | 1   |     | 2   |     | 1   |      |      |      |      | 2    |
| CO5 | 2                                                  | 2   | 2   | 1   | 1   |     |     |     |     |      |      | 1    | 1    |      |
| CO6 | 3                                                  | 2   | 1   | 2   | 1   |     | 1   |     | 1   |      |      |      | 3    |      |

| COURSE ASSESSMENT METHODS            |   |                           |  |  |  |  |  |  |  |  |
|--------------------------------------|---|---------------------------|--|--|--|--|--|--|--|--|
| DIRECT 1 Continuous Assessment Tests |   |                           |  |  |  |  |  |  |  |  |
|                                      | 2 | Assignment                |  |  |  |  |  |  |  |  |
|                                      | 3 | End Semester Examinations |  |  |  |  |  |  |  |  |
| INDIRECT                             | 1 | Course End Survey         |  |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |             |           |                 |                              |       |       |        |    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|-----------|-----------------|------------------------------|-------|-------|--------|----|--|
| Topic - 1                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | SYNCHRON    | NOU       | S SEQUI         | ENTIAL CIRCU                 | IT DI | ESIGN |        | 9  |  |
| Analysis of Reduction an                                                                                                                                                                                                                                                                              | Analysis of clocked synchronous sequential circuits - Moore / Mealy State diagrams - State table - S<br>Reduction and Assignment - Design of synchronous sequential circuits.                                                                                                                                                                                                                                                                                     |                                        |             |           |                 |                              |       |       |        |    |  |
| Topic - 2                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN |             |           |                 |                              |       |       |        |    |  |
| Analysis of asynchronous sequential circuit - Cycles - Races - Static, Dynamic and Essential hazards -<br>Primitive Flow Table - State Reductions and State Assignment - Design of asynchronous sequential circuits.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |             |           |                 |                              |       |       |        |    |  |
| Topic - 3                                                                                                                                                                                                                                                                                             | DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIGN                                   | N OF SYSTEM | COI<br>SE | NTROLI<br>QUENT | LER USING CON<br>IAL CIRCUIT | MBIN  | ATION | AL AND | 9  |  |
| System Cont<br>decoder - Ex<br>system cont<br>Registers ar<br>Programmab                                                                                                                                                                                                                              | System Controllers - Design Phases - Choosing the controller architecture - State Assignment - Next State decoder - Examples of 2s complement system and Pop Vending Machine - Decoders and Multiplexers in system controllers - Indirect-Addressed MUX configuration - System controllers using ROM, Shift Registers and Counters - General requirements of a programmable controller - Microinstructions - Programmable controllers with fixed instruction set. |                                        |             |           |                 |                              |       |       |        |    |  |
| Topic - 4                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | ]           | INTI      | RODUCI          | TION TO VHDL                 |       |       |        | 9  |  |
| VHDLDescr<br>Modeling Fl<br>Operators -<br>Signals, Con                                                                                                                                                                                                                                               | VHDLDescription of Combinational circuits - VHDL Modules - Sequential Statements and VHDLProcesses-<br>Modeling Flip-Flops - Processes Using Wait Statements - Transport and Inertial Delays - Data Types and<br>Operators - Modeling Multiplexers, registers and Counters -Behavioral and structural VHDL - Variables,<br>Signals, Constants - Arrays-loops.                                                                                                     |                                        |             |           |                 |                              |       |       |        |    |  |
| Topic - 5                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                      | SM CHARTS A | ND        | FLOATI          | NG -POINT AR                 | ITHM  | IETIC |        | 9  |  |
| State Machine Chart - Derivation of SM Charts - Realization of SM Charts - Implementation of the Dice-<br>Game - Microprogramming - Linked state machines - Representation of Floating-Point Numbers - Floating-<br>point Multiplication - Floating-Point Addition - Other Floating-Point Operations. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |             |           |                 |                              |       |       |        |    |  |
| THEORY                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | TUTORIAL    | 0         |                 | PRACTICAL                    | 0     |       | TOTAL  | 45 |  |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |             |           | 1               |                              |       |       |        |    |  |

| BC | OOK REFERENCES                                                                                        |
|----|-------------------------------------------------------------------------------------------------------|
| 1  | William I. Fletcher, "An Engineering Approach to Digital Design", Prentice Hall India, 2011.          |
| 2  | Charles H.Roth Jr "Digital Systems Design using VHDL,"Cengage Learning, 2013.                         |
| 3  | Nripendra N Biswas "Logic Design Theory" Prentice Hall, 2001.                                         |
| 4  | Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", 2nd Edition, Prentice Hall, 2002. |
| 5  | Mark Zwolinski, "Digital System Design with VHDL, 2nd Edition, Pearson Education, 2004.               |
| 6  | Stephen Brown,Zvonko Vranesic, "Digital system Design Using VHDL",3rd Edition,Tata Mc Graw Hill,2009. |

| 01 | OTHER REFERENCES                                                     |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1  | https://youtube.com/playlist?list=PLrkWJ9TJRalSSuRSF-ni9aPRZgQdPqdq- |  |  |  |  |  |  |  |
| 2  | https://youtu.be/NfXkffUivKQ                                         |  |  |  |  |  |  |  |
| 3  | https://youtube.com/playlist?list=PLyqSpQzTE6M_dZdF7Bd-UncI5_L_1VkXF |  |  |  |  |  |  |  |
| 4  | https://youtu.be/aduM2zyf6p4                                         |  |  |  |  |  |  |  |
| 5  | https://youtu.be/BeJOb6-Q904                                         |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name      | L | Т | Р | С |
|----------|---------------------|----------------|------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1T3        | CMOS VLSI DESIGN | 3 | 0 | 0 | 3 |

|            | COURSE LEARNING OUTCOMES (COs)                                                       |                   |           |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------|-------------------|-----------|--|--|--|--|--|--|--|
| A          | RBT<br>Level                                                                         | Topics<br>Covered |           |  |  |  |  |  |  |  |
| CO1        | Explain and articulate the concepts of CMOS VLSI design                              | K2                | 1,2,3,4,5 |  |  |  |  |  |  |  |
| CO2        | Apply the concept of design in building VLSI Modules                                 | K3                | 1,2,3,4,5 |  |  |  |  |  |  |  |
| CO3        | Compare the design to rate the performance combinational and sequential logic design | K4                | 2,3       |  |  |  |  |  |  |  |
| CO4        | Analyze the design to infer its limitations                                          | K4                | 4,5       |  |  |  |  |  |  |  |
| CO5        | Evaluate the applications and recommend a suitable design to built a prototype       | K5                | 5         |  |  |  |  |  |  |  |
| <b>CO6</b> | Design a VLSI module for a given application                                         | K6                | 5         |  |  |  |  |  |  |  |

|     |     |                                   |     | <b>CO</b> / | PO M | APPIN | [ <b>G</b> (1 – V | Veak, 2 – | Medium | ı, 3 – Stror | ng)  |      |      |      |
|-----|-----|-----------------------------------|-----|-------------|------|-------|-------------------|-----------|--------|--------------|------|------|------|------|
| COs |     | Programme Learning Outcomes (POs) |     |             |      |       |                   |           |        |              |      |      | PSOs |      |
| COS | PO1 | PO2                               | PO3 | PO4         | PO5  | PO6   | PO7               | PO8       | PO9    | PO10         | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   | 2                                 | 1   |             |      |       |                   |           |        |              |      |      | 1    | 1    |
| CO2 | 3   | 3                                 | 2   | 1           |      |       |                   |           |        |              |      |      | 3    |      |
| CO3 | 3   | 1                                 | 2   | 2           |      |       |                   |           |        |              |      | 1    | 3    |      |
| CO4 | 3   | 2                                 | 1   | 2           |      |       |                   |           | 1      |              |      |      | 2    |      |
| CO5 | 3   | 2                                 | 2   | 1           |      |       |                   |           | 1      |              |      |      | 2    |      |
| CO6 | 3   | 3                                 | 2   | 1           |      |       |                   |           |        |              |      |      | 3    |      |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |  |

|                                              |                                                                                                                                                                                                                                           |                                 |                                                        | CO           | URSE C                          | ONTENT                                |                   |                      |                               |                      |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|--------------|---------------------------------|---------------------------------------|-------------------|----------------------|-------------------------------|----------------------|
| Topic - 1                                    |                                                                                                                                                                                                                                           | MOS CIRCUIT DESIGN PROCESS      |                                                        |              |                                 |                                       |                   |                      | 9                             |                      |
| Overview of<br>Voltage Equ<br>Power, Ener    | f VLSI<br>ations<br>gy and                                                                                                                                                                                                                | Desig<br>- CM<br>Energ          | gn Process - M<br>OS Inverter - D<br>gy delay - Interc | OSF<br>C Ch  | ET Enhan<br>aracterist<br>ects. | cement Transisto<br>ics - Switching C | ors - N<br>haract | IOS Phy<br>teristics | ysics - nFET(<br>- Dynamic Be | Current-<br>ehavior- |
| Topic - 2                                    |                                                                                                                                                                                                                                           | COMBINATIONAL CMOS LOGIC DESIGN |                                                        |              |                                 |                                       |                   |                      | 9                             |                      |
| Static CMO<br>CMOS Desi                      | S Desig<br>gn- Sig                                                                                                                                                                                                                        | gn- Co<br>nal Ir                | omplementary C<br>ntegrity Issues.                     | MO           | S- Pass Ti                      | ransistor Logic- T                    | ransn             | nission (            | Gate Logic -D                 | ynamic               |
| Topic - 3                                    |                                                                                                                                                                                                                                           |                                 | SEQU                                                   | 'EN'         | FIAL CM                         | IOS LOGIC DES                         | SIGN              |                      |                               | 9                    |
| Static Latch<br>Registers - P                | es and<br>ipelini                                                                                                                                                                                                                         | Regis<br>ng – N                 | ters - Dynamic<br>Non-bistable Sec                     | Latc<br>quen | hes and R<br>tial Circu         | Registers - Pulse I<br>its            | Regist            | ers - Ser            | nse Amplifier                 | based                |
| Topic - 4                                    |                                                                                                                                                                                                                                           |                                 | TIM                                                    | ING          | ISSUES                          | IN VLSI CIRCU                         | JITS              |                      |                               | 9                    |
| Timing Clas<br>Design - Syr                  | sificati<br>Ichroni                                                                                                                                                                                                                       | on of<br>zers a                 | Digital System<br>and Arbiters.                        | IS - [       | Fiming Is                       | sues in Synchron                      | ous E             | Design -             | Self Timed (                  | Circuit              |
| Topic - 5                                    |                                                                                                                                                                                                                                           |                                 | DESIGN OF                                              | FAR          | ITHME                           | <b>FIC BUILDING</b>                   | BLO               | CKS                  |                               | 9                    |
| Datapaths in<br>- Barrel and<br>Datapath Str | Datapaths in Digital Processor Architecture - Design of Adders: Binary Adder and Full Adder – Multiplier<br>- Barrel and Logarithmic Shifters - Magnitude and Equality Comparators - Power and Speed Trade-offs in<br>Datapath Structures |                                 |                                                        |              |                                 |                                       |                   |                      |                               |                      |
| THEORY                                       | 45                                                                                                                                                                                                                                        |                                 | TUTORIAL                                               | 0            |                                 | PRACTICAL                             | 0                 |                      | TOTAL                         | 45                   |
|                                              |                                                                                                                                                                                                                                           |                                 |                                                        |              |                                 |                                       |                   |                      |                               |                      |
| BOOK REP                                     | FEREN                                                                                                                                                                                                                                     | ICES                            |                                                        |              |                                 |                                       |                   |                      |                               |                      |

| 1 | Jan M Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits - ADesign Perspective", 2nd Edition, Prentice Hall, 2012. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, 2012.                                                           |
| 3 | Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design - A Systems Perspective", 2nd Edition, Pearson Education, 2010.         |
| 4 | Kamran Eshraghian, Douglas A. Pucknell, "Essentials of VLSI Circuits and Systems", PrenticeHall, 2011                                           |
| 5 | C.Mead and L.Conway, "Introduction to VLSI Systems", Addison Wesley, 2003.                                                                      |
| 6 | Kang, "CMOS Digital Integrated Circuits", McGraw Hill, 2002.                                                                                    |

| O | OTHER REFERENCES             |  |  |  |  |  |  |  |
|---|------------------------------|--|--|--|--|--|--|--|
| 1 | https://youtu.be/oL8SKNxEaHs |  |  |  |  |  |  |  |
| 2 | https://youtu.be/faiEVOOCe-s |  |  |  |  |  |  |  |
| 3 | https://youtu.be/-AW9zksRuRE |  |  |  |  |  |  |  |
| 4 | https://youtu.be/vDqP4S4Jj1E |  |  |  |  |  |  |  |
| 5 | https://youtu.be/2t1M8ouI5pw |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name              | L | Т | Р | С |
|----------|---------------------|----------------|--------------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1T4        | SYSTEM DESIGN USING FPGA | 3 | 0 | 0 | 3 |

|            | COURSE LEARNING OUTCOMES (COs)                                                    |    |   |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------|----|---|--|--|--|--|--|--|
| A          | After Successful completion of the course, the students should be able to         |    |   |  |  |  |  |  |  |
| CO1        | Explain and articulate the concepts related to verilog HDL features and modelling | K2 | 1 |  |  |  |  |  |  |
| CO2        | Apply the types of PLD's and FPGA's in ASIC design                                | K3 | 2 |  |  |  |  |  |  |
| CO3        | Compare the FPGA systems and fabrics to rate its performance                      | K4 | 3 |  |  |  |  |  |  |
| CO4        | Analyze the combinational and sequential networks to infer its limitations        | K4 | 4 |  |  |  |  |  |  |
| CO5        | Evaluate a situation based application and recommend a suitable FPGA architecture | K5 | 5 |  |  |  |  |  |  |
| <b>CO6</b> | Design a FPGA prototype for a given application                                   | K6 | 5 |  |  |  |  |  |  |

| PRE-REQUISITE | NIL |
|---------------|-----|
|               | -   |

|     |                                   |     |     | <b>CO</b> / | PO M | APPIN | [G (1 - V | Veak, 2 – | Medium | ı, 3 – Stror | ng)  |      |      |      |
|-----|-----------------------------------|-----|-----|-------------|------|-------|-----------|-----------|--------|--------------|------|------|------|------|
| COg | Programme Learning Outcomes (POs) |     |     |             |      |       |           |           |        |              |      |      | PSOs |      |
| COS | PO1                               | PO2 | PO3 | PO4         | PO5  | PO6   | PO7       | PO8       | PO9    | PO10         | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                 | 1   | 2   |             |      |       |           |           | 1      |              |      |      | 1    | 1    |
| CO2 | 3                                 | 3   | 2   | 1           |      |       |           |           |        |              |      |      | 3    |      |
| CO3 | 3                                 | 2   | 2   |             |      |       |           |           |        |              |      | 1    | 3    |      |
| CO4 | 3                                 | 2   | 1   | 1           |      |       |           |           | 1      |              |      |      | 2    |      |
| CO5 | 3                                 | 2   | 1   | 2           |      |       |           |           | 1      |              |      |      | 2    |      |
| CO6 | 3                                 | 2   | 2   | 1           |      |       |           |           |        |              |      | 1    | 3    |      |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |  |

| COURSE CONTENT                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------|----------------------------------------|----------------------------------------------------------------|--------------------------|--------------------------------|---------------------------------------------|-----------------------------|
| Topic - 1                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | VERILOO                                                     | 5 HD                      | LFEAT                                  | URES AND MOI                                                   | DELI                     | JNG                            |                                             | 9                           |
| Overview of<br>Data types -<br>Continuous<br>- Procedural<br>Switch level                  | Overview of Digital design with Verilog HDL - Hierarchical Modelling Concepts -Lexical Conventions -<br>Data types - Modules and Ports - Gate Level Modelling: Gate Types - Gate Delays - Data flow Modelling:<br>Continuous Assignments - Expressions - Operator Types - Behavioural Modelling: Structures Procedures<br>- Procedural Assignments - Conditional Statements - Multiway Branching - Loops - Tasks and Functions-<br>Switch level Modelling -Design of combinational, sequential digital circuits using Verilog HDL. |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| Topic - 2                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CON                               | MPLEX PROC                                                  | GRA]                      | MMABL                                  | E LOGIC DEVI                                                   | CES                      | AND FO                         | GPAs                                        | 9                           |
| Programmat<br>CPLD Arch<br>and Program<br>Blocks - Co<br>Programmin                        | Programmable Logic to ASICs - PROMS, PLAs, PALs, MGA ASICs, CPLDs and FPGAs - CPLDs – CPLD Architectures - Function Blocks - I/O Blocks - Clock Drivers - Interconnects - CPLD Technology and Programmable Elements - Embedded devices. FPGAs - FPGA Architectures - Configurable Logic Blocks - Configurable I/O Blocks – Programmable interconnects - Clock Circuitry - SRAM vs Antifuse Programming - Emulating and prototyping ASICs. Comparison of CPLDs and FPGAs.                                                           |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| Topic - 3                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | FPGA                                                        | BAS                       | SED SYS                                | TEMS AND FAI                                                   | BRIC                     | S                              |                                             | 9                           |
| Introduction<br>System Desi<br>FPGAs - Per<br>FPGA Fabri                                   | Introduction - Basic Concepts - Digital Design and FPGAs - Role of FPGAs - FPGA Types - FPGA Based<br>System Design - Registers and RAM. Introduction to FPGA Fabrics - FPGA Architectures - SRAM Based<br>FPGAs - Permanently Programmed FPGAs - Chip I/O - Circuit Design of FPGA Fabrics - Architecture of<br>FPGA Fabrics.                                                                                                                                                                                                     |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| Topic - 4                                                                                  | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MBI                               | NATIONAL A                                                  | ND                        | SEQUEN                                 | TIAL LOGIC N                                                   | ETW                      | ORKS                           | DESIGN                                      | 9                           |
| Logic desig<br>Optimization<br>Sequential 1<br>analysis – Pe                               | n Proce<br>n - Ari<br>Machine<br>ower Oj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ess -<br>thmet<br>e Des<br>ptimiz | Modelling wit<br>ic Logic - Lo<br>sign Process -<br>cation. | h H<br>gic i<br>Seq       | DLs - Co<br>mplement<br>uential D      | ombinational Net<br>tation for FPGAs<br>esign styles - Ru      | work<br>s - Pl<br>ules f | Delay<br>nysical 1<br>for Cloc | - Power and<br>Design for F<br>king - Perfo | Energy<br>PGAs -<br>ormance |
| Topic - 5                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FPGA                              | ARCHITEC                                                    | <b>TUR</b>                | E DESIG                                | N AND LARGE                                                    | SCA                      | LE SYS                         | TEMS                                        | 9                           |
| Behavioural<br>- Design Me<br>- Busses - Pl                                                | Design<br>thodolo<br>atform l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i - Dat<br>ogies -<br>FPGA        | a path controll<br>Design Examp<br>s - Multi FPGA           | er Aı<br>ble - I<br>A sys | chitecture<br>Digital Sig<br>tems, Nov | es - Scheduling an<br>gnal Processor. In<br>vel Architectures. | nd All<br>troduo         | ocation<br>ction to l          | - Power - Pipe<br>Large scale sy            | elining<br>vstems           |
| THEORY                                                                                     | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | TUTORIAL                                                    | 0                         |                                        | PRACTICAL                                                      | 0                        |                                | TOTAL                                       | 45                          |
| BOOK REI                                                                                   | FEREN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CES                               |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| 1 Samir P                                                                                  | alnitkar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :, "Ve                            | rilog HDL", 2n                                              | d Edi                     | ition, Pear                            | rson Education, 20                                             | )04.                     |                                |                                             |                             |
| 2 Wayne Wolf, "FPGA- based System Design", Pearson Education, International Edition, 2004. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| 3 Bob Zei                                                                                  | 3 Bob Zeidman, "Designing with FPGAs and CPLDs, Elsevier, CMP Books, 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| 4 Ion Gro                                                                                  | 4 Ion Grout, "Digital Systems Design with FPGAs and CPLDs", Elsevier, 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |
| 5 Michael                                                                                  | D. Cil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etti, A                           | dvanced Digita                                              | al De                     | esign with                             | the Verilog HDL                                                | ., 2nd                   | Edition                        | , Prentice Hal                              | 1,2002                      |
| 6 Charles                                                                                  | 6 Charles H.Roth Jr "Digital Systems Design using VHDL", Cengage Learning, 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                                             |                           |                                        |                                                                |                          |                                |                                             |                             |

| 01 | OTHER REFERENCES             |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|
| 1  | https://youtu.be/ht7nEjNydDU |  |  |  |  |  |  |  |
| 2  | https://youtu.be/CLUoWkJUnN0 |  |  |  |  |  |  |  |
| 3  | https://youtu.be/jrQ1YYgiOTo |  |  |  |  |  |  |  |
| 4  | https://youtu.be/esuXfqhXaS8 |  |  |  |  |  |  |  |
| 5  | https://youtu.be/qYqrh7axNx0 |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name                        | L | Т | Р | С |
|----------|---------------------|----------------|------------------------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1T5        | DEVICE MODELLING AND<br>SIMULATION | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                          |    |   |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------|----|---|--|--|--|--|--|--|
| A   | After Successful completion of the course, the students should be able to                               |    |   |  |  |  |  |  |  |
| CO1 | Explain and articulate the concepts related to MOSFET device physics                                    | K2 | 1 |  |  |  |  |  |  |
| CO2 | Apply the types of noise models in simulation                                                           | K3 | 2 |  |  |  |  |  |  |
| CO3 | Compare the other MOSFET models with BSIM4 models to rate its performance                               | K4 | 3 |  |  |  |  |  |  |
| CO4 | Analyze the mathematical techniques for simulation to infer its limitations                             | K4 | 4 |  |  |  |  |  |  |
| CO5 | Evaluate a situation based application and recommend a suitable modelling process for quality assurance | K5 | 5 |  |  |  |  |  |  |
| CO6 | Design a quality model prototype for a given application                                                | K6 | 5 |  |  |  |  |  |  |

|     |     |     |     | <b>CO</b> / | PO M | APPIN  | [G (1 - V | Veak, 2 – | Medium | ı, 3 – Stror | ng)  |      |      |      |
|-----|-----|-----|-----|-------------|------|--------|-----------|-----------|--------|--------------|------|------|------|------|
| COg |     |     |     | Prog        | ramm | e Lear | ning O    | utcom     | es (PO | s)           |      |      | PS   | Os   |
| COS | PO1 | PO2 | PO3 | PO4         | PO5  | PO6    | PO7       | PO8       | PO9    | PO10         | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   | 1   | 2   |             |      |        |           |           | 1      |              |      |      | 1    | 1    |
| CO2 | 3   | 3   | 2   | 1           |      |        |           |           |        |              |      |      | 3    |      |
| CO3 | 3   | 2   | 2   |             |      |        |           |           |        |              |      | 1    | 3    |      |
| CO4 | 3   | 1   | 1   | 2           |      |        |           |           | 1      |              |      |      | 2    |      |
| CO5 | 3   | 2   | 2   | 1           |      |        |           |           | 1      |              |      |      | 2    |      |
| CO6 | 3   | 2   | 2   | 2           |      |        |           |           |        |              |      | 1    | 3    |      |

|          |   | COURSE ASSESSMENT METHODS   |
|----------|---|-----------------------------|
| DIRECT   | 1 | Continuous Assessment Tests |
|          | 2 | Assignment                  |
|          | 3 | End Semester Examinations   |
| INDIRECT | 1 | Course End Survey           |

|                         |                                                                                                                                                                                                                                                                                                                                        |                              |                     |                                        | CC             | OURSE C                    | ONTENT                   |                |                 |                      |                               |          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|----------------------------------------|----------------|----------------------------|--------------------------|----------------|-----------------|----------------------|-------------------------------|----------|
| Т                       | opic - 1                                                                                                                                                                                                                                                                                                                               |                              |                     | I                                      | MOS            | SFET DE                    | VICE PHY                 | SICS           | 5               |                      |                               | 9        |
| MC<br>MC<br>trar<br>Cap | MOSFET capacitor, Basic operation, Basic modelling, Advanced MOSFET modelling, RF modelling of MOS transistors, Equivalent circuit representation of MOS transistor, High frequency behaviour of MOS transistor and A.C small signal modelling, model parameter extraction, modelling parasitic BJT, Resistors, Capacitors, Inductors. |                              |                     |                                        |                |                            |                          |                |                 |                      |                               |          |
| Т                       | Topic - 2NOISE MODELS AND BSIM4 MOSFET MODEL9                                                                                                                                                                                                                                                                                          |                              |                     |                                        |                |                            |                          |                |                 |                      |                               |          |
| Noi<br>gate<br>mo       | Noise sources in MOSFET-flicker noise modelling thermal noise modelling- BSIM4 MOSFET model-<br>gate dielectric model-enhanced models for Effective dc and ac channel length and width-threshold voltage<br>model-i-v model.                                                                                                           |                              |                     |                                        |                |                            |                          |                |                 |                      |                               |          |
| Т                       | opic - 3                                                                                                                                                                                                                                                                                                                               | ic - 3 OTHER MOSFET MODELS 9 |                     |                                        |                |                            |                          |                |                 |                      |                               |          |
| The<br>dra<br>MC        | The EKV model, model features, long channel drain current model, modelling second order effects of the drain current, modelling of charge storage effects, Non- quasi-static modelling, noise temperature effects, MOS model 9, MOSAI model.                                                                                           |                              |                     |                                        |                |                            |                          |                |                 |                      |                               |          |
| Т                       | opic - 4                                                                                                                                                                                                                                                                                                                               |                              | MAT                 | THEMATICAL                             | , TE           | CHNIQU                     | ES FOR DI                | EVIC           | CE SI           | MULAT                | TIONS                         | 9        |
| Poi<br>equ              | sson equa                                                                                                                                                                                                                                                                                                                              | ation, o<br>ap rate          | contin<br>e, finite | uity equation, di<br>e difference solu | ift-d<br>tions | iffusion e<br>s to these e | quation, Schequations in | rodin<br>1D ai | nger e<br>nd 2D | quation,<br>space, g | hydrodynami<br>rid generation | ic<br>n. |
| Т                       | opic - 5                                                                                                                                                                                                                                                                                                                               | MO                           | ODEL                | LING OF PRO                            | CES            | SS VARIA                   | ATION ANI                | DQU            | ALII            | Y ASS                | URANCE                        | 9        |
| Infl<br>circ            | uence of<br>cuits for q                                                                                                                                                                                                                                                                                                                | proce<br>uality              | ess vai<br>assura   | riation, modellin<br>ance, Automatio   | ıg of<br>n of  | device n the tests.        | nismatch for             | Ana            | log/R           | F Applio             | cations, Benc                 | hmark    |
| TH                      | EORY                                                                                                                                                                                                                                                                                                                                   | 45                           |                     | TUTORIAL                               | 0              |                            | PRACTIC                  | CAL            | 0               |                      | TOTAL                         | 45       |
| RO                      | OK DEL                                                                                                                                                                                                                                                                                                                                 | TDF                          | VCFS                |                                        |                |                            |                          |                |                 |                      |                               |          |
| DO                      | Philip E                                                                                                                                                                                                                                                                                                                               | L. Alle                      | n. Do               | uglas R.Hoberg                         | (              | CMOS Ar                    | alog Circui              | t Des          | ign. S          | econd H              | Edition. Oxfo                 | rd       |
| 1                       | Press-20                                                                                                                                                                                                                                                                                                                               | 002.                         | , -                 | 8                                      |                |                            |                          |                | 0,1             |                      |                               |          |
| 2                       | 2 Trond Ytterdal, Yuhua Cheng and Tor A. Wayne Wolf, —Device Modeling for Analog and RF CMOS Circuit Design, John Wiley & Sons Ltd.                                                                                                                                                                                                    |                              |                     |                                        |                |                            |                          |                |                 |                      |                               |          |
| 3                       | Kiat Se<br>Power∥,                                                                                                                                                                                                                                                                                                                     | ng Ye<br>Persoi              | o, San<br>n educ    | mir S. Rofail, V<br>ation low price    | Wang<br>editi  | g-Ling Ge<br>on2002        | ob, —CMO                 | S / I          | BiCM            | OS CLS               | SI Low Volta                  | lge      |
| 4                       | S.M.Sze                                                                                                                                                                                                                                                                                                                                | e, —Se                       | emicor              | nductor Devices                        | –Ph            | ysics and                  | Technology,              | Johr           | n Wile          | y and so             | ns 1985.                      |          |
| 5                       | Grasser,<br>2003.                                                                                                                                                                                                                                                                                                                      | T., "                        | Advar               | nced Device Mo                         | odeli          | ng and Si                  | mulation",               | Worl           | d Scie          | entific P            | ublishingCon                  | npany.,  |
| 6                       | Arora, N                                                                                                                                                                                                                                                                                                                               | I., "M                       | OSFE                | T Models for VL                        | .SI C          | ircuit Sin                 | nulation", Sp            | oringe         | er-Ver          | lag, 199             | 3.                            |          |

| 01 | OTHER REFERENCES             |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|
| 1  | https://youtu.be/zSVrTXHNbMQ |  |  |  |  |  |  |  |
| 2  | https://youtu.be/dyO5DPcL09g |  |  |  |  |  |  |  |
| 3  | https://youtu.be/HE-CXvevpBU |  |  |  |  |  |  |  |
| 4  | https://youtu.be/-6xN0iWOPrY |  |  |  |  |  |  |  |
| 5  | https://youtu.be/5KygwcZ545U |  |  |  |  |  |  |  |

| Semester | Programme           | ProgrammeCourse<br>CodeCourse Name |                                                              |   |   |   |   |  |
|----------|---------------------|------------------------------------|--------------------------------------------------------------|---|---|---|---|--|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1E1                            | ADVANCED COMPUTER<br>ARCHITECTURE AND PARALLEL<br>PROCESSING | 3 | 0 | 0 | 3 |  |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                                       |              |                   |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--|--|--|--|--|--|--|
| Α   | fter Successful completion of the course, the students should be able to                                                             | RBT<br>Level | Topics<br>Covered |  |  |  |  |  |  |  |
| CO1 | Explain and articulate the concepts related to parallel processing, memory allocation in cache memories.                             | K2           | 1,2,3,4,5         |  |  |  |  |  |  |  |
| CO2 | Apply the types of parallel algorithm design using performance measures.                                                             | K3           | 2,4,5             |  |  |  |  |  |  |  |
| CO3 | Compare the parallelism in hardware/software to rate its performance.                                                                | K4           | 1,3,4             |  |  |  |  |  |  |  |
| CO4 | Analyze memory organization and mapping techniques to infer its limitations.                                                         | K4           | 3,4,5             |  |  |  |  |  |  |  |
| CO5 | Evaluate a situation based application and recommend a suitable modelling process for architectural features of advanced processors. | K5           | 4,5               |  |  |  |  |  |  |  |
| CO6 | Design different pipelined processors for a given application.                                                                       | K6           | 3,4,5             |  |  |  |  |  |  |  |

| PRE-REQUISITE |
|---------------|
|---------------|

|     |     |                                       |     | <b>CO</b> / | PO M | APPIN | IG (1 – V | Veak, 2 – | Medium | ı, 3 – Stroı | ng)  |      |      |      |
|-----|-----|---------------------------------------|-----|-------------|------|-------|-----------|-----------|--------|--------------|------|------|------|------|
| COs |     | Programme Learning Outcomes (POs)PSOs |     |             |      |       |           |           |        |              |      |      |      | SOs  |
| COS | PO1 | PO2                                   | PO3 | PO4         | PO5  | PO6   | PO7       | PO8       | PO9    | PO10         | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   | 2                                     | 3   | 2           |      |       |           |           |        |              |      | 2    |      | 2    |
| CO2 | 3   | 2                                     | 3   |             | 2    |       |           |           |        | 2            |      | 2    |      | 2    |
| CO3 | 3   | 2                                     | 2   | 2           | 3    |       |           |           |        |              |      |      |      |      |
| CO4 | 3   | 2                                     | 2   |             | 2    |       |           |           |        | 2            |      | 2    |      |      |
| CO5 | 3   | 2                                     | 2   | 2           | 2    |       |           |           |        | 2            |      | 2    |      | 2    |
| CO6 | 3   | 2                                     | 2   | 2           | 2    |       |           |           |        | 2            |      | 2    |      |      |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |
|          | 2                         | Assignment                  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|------------------------------------|---------------|---------------------|----------------------------------------|----------------|----------------------------|------------------------|------------------|
| Topic                                                                                                                                                                                                                                                                                                                   | opic - 1 PARALLEL PROCESSING, MEMORY AND I/O SUBSYSTEMS                                                                                                                                                                                                                                       |                    |                    |                                    |               |                     |                                        |                | 9                          |                        |                  |
| Generation of computer systems - Trends towards parallel processing - Parallel processing mechanisms<br>Parallel computer structure - Architectural classification schemes - Hierarchical Memory structure -<br>Virtual memory system - Cache memory management - Memory allocation and management - I/O<br>subsystems. |                                                                                                                                                                                                                                                                                               |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
| Topic                                                                                                                                                                                                                                                                                                                   | - 2                                                                                                                                                                                                                                                                                           |                    |                    | PIPELI                             | NIN           | G AND V             | ECTOR PROCH                            | ESSIN          | IG                         |                        | 9                |
| Principl<br>Design<br>Issues in                                                                                                                                                                                                                                                                                         | Principles - Classification of pipeline processors - Reservation tables - Interleaved memory organization<br>Design of arithmetic pipeline - Design of instruction pipeline - Basic vector processing architecture -<br>Issues in vector processing - Vectorization and optimization methods. |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
| Topic                                                                                                                                                                                                                                                                                                                   | - 3                                                                                                                                                                                                                                                                                           |                    |                    |                                    | A             | RRAY P              | ROCESSING                              |                |                            |                        | 9                |
| SIMD A<br>Associa                                                                                                                                                                                                                                                                                                       | SIMD Array processors - SIMD interconnection networks - Parallel algorithms for array processors - Associative array processing.                                                                                                                                                              |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
| Topic                                                                                                                                                                                                                                                                                                                   | - 4                                                                                                                                                                                                                                                                                           |                    |                    | MULT                               | IPR           | OCESSO              | OR ARCHITECT                           | URE            |                            |                        | 9                |
| Function                                                                                                                                                                                                                                                                                                                | nal stency                                                                                                                                                                                                                                                                                    | for m              | es - Ir<br>ultipro | nterconnection n                   | etwo          | ork - Mult          | i cache problems                       | and s          | olutions - H               | Exploiting             |                  |
| Topic                                                                                                                                                                                                                                                                                                                   | - 5                                                                                                                                                                                                                                                                                           |                    |                    | PRINCIPLES                         | 5 OF          | PARAL               | LEL ALGORITI                           | HM D           | ESIGN                      |                        | 9                |
| Design<br>parallel<br>algorith                                                                                                                                                                                                                                                                                          | appr<br>algo<br>ms.                                                                                                                                                                                                                                                                           | oaches<br>rithms   | s - De<br>- Pse    | esign issues-Per<br>udo code conve | form<br>ntioi | ance means for para | sures and analys<br>allel algorithms - | is - C<br>Comj | Complexition<br>parison of | es - Anoma<br>SIMD and | alies in<br>MIMD |
| THEO                                                                                                                                                                                                                                                                                                                    | RY                                                                                                                                                                                                                                                                                            | 45                 |                    | TUTORIAL                           | 0             |                     | PRACTICAL                              | 0              | i                          | TOTAL                  | 45               |
| BOOK                                                                                                                                                                                                                                                                                                                    | RFF                                                                                                                                                                                                                                                                                           | ERFN               | ICES               |                                    |               |                     |                                        |                |                            |                        |                  |
| 1 Phi                                                                                                                                                                                                                                                                                                                   | lip E                                                                                                                                                                                                                                                                                         | . Alle             | n, Do              | uglas R.Hoberg                     | g, —          | CMOS A              | Analog Circuit D                       | esign          | , Second I                 | Edition, O             | xford            |
| Pre                                                                                                                                                                                                                                                                                                                     | ss-20<br>nd V                                                                                                                                                                                                                                                                                 | 02.<br>Ztterde     | al Vu              | hua Cheng and                      | То            | · A Wav             | ne Wolf — Devic                        | e Mo           | deling for                 | Analog an              | d RF             |
| <sup>2</sup> CM                                                                                                                                                                                                                                                                                                         | CMOS Circuit Design, John Wiley & Sons Ltd.                                                                                                                                                                                                                                                   |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
| 3 Kia<br>Pov                                                                                                                                                                                                                                                                                                            | Kiat Seng Yeo, Samir S. Rofail, Wang-Ling Gob, —CMOS / BiCMOS CLSI Low Voltage<br>Powerl, Person education low price edition2002                                                                                                                                                              |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
| 4 <b>S.M</b>                                                                                                                                                                                                                                                                                                            | S.M.Sze, —Semiconductor Devices –Physics and Technology, John Wiley and sons 1985.                                                                                                                                                                                                            |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |
| 5 Gra<br>Cor                                                                                                                                                                                                                                                                                                            | isser<br>npar                                                                                                                                                                                                                                                                                 | , T., "<br>iy., 20 | Adva<br>03.        | nced Device M                      | [ode]         | ling and            | Simulation", We                        | orld S         | Scientific 1               | Publishing             |                  |
| 6 Aro                                                                                                                                                                                                                                                                                                                   | Arora, N., "MOSFET Models for VLSI Circuit Simulation", Springer-Verlag, 1993.                                                                                                                                                                                                                |                    |                    |                                    |               |                     |                                        |                |                            |                        |                  |

| 01 | OTHER REFERENCES             |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|
| 1  | https://youtu.be/NqgpZ_v4Ne8 |  |  |  |  |  |  |  |
| 2  | https://youtu.be/uzECa-TZ0cw |  |  |  |  |  |  |  |
| 3  | https://youtu.be/aRN-uqSxgxs |  |  |  |  |  |  |  |
| 4  | https://youtu.be/EoONr6VZExA |  |  |  |  |  |  |  |
| 5  | https://youtu.be/o_n4AKwdfiA |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name                      | L | Т | Р | С |
|----------|---------------------|----------------|----------------------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1E2        | SEMICONDUCTOR DEVICE<br>MODELING | 3 | 0 | 0 | 3 |

| COURSE LEARNING OUTCOMES (COs) |                                                                                                                              |                   |           |  |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--|--|--|--|--|--|--|
| Α                              | RBT<br>Level                                                                                                                 | Topics<br>Covered |           |  |  |  |  |  |  |  |
| CO1                            | Explain and articulate the concepts related to integrated diode and BJT.                                                     | K2                | 1,2,3,4,5 |  |  |  |  |  |  |  |
| CO2                            | Apply the network equations to analyze the convergence and stability and use mathematical techniques for device simulations. | K3                | 2,3,5     |  |  |  |  |  |  |  |
| CO3                            | Compare the knowledge of semiconductors to illustrate the functioning of basic electronic devices to rate its performance.   | K4                | 2,3,4     |  |  |  |  |  |  |  |
| CO4                            | Analyze amplification Application of the semiconductor devices to infer its limitations.                                     | K4                | 1,4,5     |  |  |  |  |  |  |  |
| CO5                            | Evaluate a fabrication method of integrated circuits of advanced processors.                                                 | K5                | 4,5       |  |  |  |  |  |  |  |
| CO6                            | Design semiconductor devices for a given application.                                                                        | K6                | 2,4,5     |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      | PSOs |      |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 2   | 3   | 3   | 2   |     |     |     |     | 3    |      | 2    |      | 2    |
| CO2 | 3                                                  | 2   | 3   | 2   | 2   |     |     |     |     | 3    |      | 3    |      | 2    |
| CO3 | 3                                                  | 2   | 3   |     |     |     |     |     |     | 2    |      | 2    |      |      |
| CO4 | 3                                                  | 2   | 3   |     |     |     |     |     |     | 2    |      |      |      |      |
| CO5 | 3                                                  | 3   | 3   | 3   |     |     |     |     |     | 3    |      | 3    |      | 2    |
| CO6 | 3                                                  | 2   | 2   | 2   |     |     |     |     |     | 2    |      | 3    |      |      |

| COURSE ASSESSMENT METHODS            |   |                           |  |  |  |  |  |  |  |
|--------------------------------------|---|---------------------------|--|--|--|--|--|--|--|
| DIRECT 1 Continuous Assessment Tests |   |                           |  |  |  |  |  |  |  |
|                                      | 2 | Assignment                |  |  |  |  |  |  |  |
|                                      | 3 | End Semester Examinations |  |  |  |  |  |  |  |
| INDIRECT                             | 1 | Course End Survey         |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|------------------------|----------------------------------|---------------------------------------------|-----------------|------------------|------------------------|----------------------------------|------------------------|
| Topic - 1                                                                                                                                                                                                                      | IN                                                                                                                                                                                                                                      | INTRODUCTION TO SEMICONDUCTOR PHYSICS & INTEGRATED<br>PASSIVE DEVICES |                                                       |                        |                                  |                                             |                 |                  |                        | 9                                |                        |
| Review of Quantum Mechanics, Boltzmann transport equation. Continuity equation, Poisson equation<br>Types and Structures of resistors and capacitors in monolithic technology - dependence of mode<br>parameters on structure. |                                                                                                                                                                                                                                         |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        | equation.<br>of model            |                        |
| Topic - 2                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         |                                                                       | INTEGRATE                                             | D DI                   | ODES A                           | ND BIPOL                                    | AR T            | 'RAN             | SISTO                  | R                                | 9                      |
| Junction and signal mode                                                                                                                                                                                                       | Junction and Schottky diodes in monolithic technologies - static and dynamic behavior - small and large signal models - SPICE models.                                                                                                   |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |
| Topic - 3                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         |                                                                       | INT                                                   | EGI                    | RATED N                          | MOS TRAN                                    | ISIST           | OR               |                        |                                  | 9                      |
| nMOS and<br>Basic DC e<br>SPICE mod                                                                                                                                                                                            | nMOS and pMOS Transistor - Threshold voltage - Threshold voltage equations - MOS device equations-<br>Basic DC equations Second order effects - MOS models - Small signal AC Characteristics - MOSFET<br>SPICE model level 1,2,3 and 4. |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |
| Topic - 4                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         |                                                                       |                                                       | D                      | EVICE N                          | MODELLIN                                    | ١G              |                  |                        |                                  | 9                      |
| importance<br>equations -<br>through Nev                                                                                                                                                                                       | of circ<br>Solutio<br>vton-Ra                                                                                                                                                                                                           | uit an<br>on of<br>aphso                                              | d device simula<br>network equati<br>n technique - co | ition<br>lons<br>nverg | s in VLS<br>- Sparse<br>gence an | I - Nodal, r<br>matrix tecl<br>d stability. | nesh,<br>nnique | modi<br>es - s   | fied noc<br>olution    | lal and hybrid<br>of nonlinear   | d analysis<br>networks |
| Topic - 5                                                                                                                                                                                                                      |                                                                                                                                                                                                                                         | МАТ                                                                   | HEMATICAL                                             | TE                     | CHNIQU                           | JES FOR D                                   | EVIC            | CE SIN           | MULAT                  | TIONS                            | 9                      |
| Poisson equ<br>equations - t                                                                                                                                                                                                   | ation -<br>rap rate                                                                                                                                                                                                                     | contir<br>e, finit                                                    | uity equation -<br>e difference solu                  | drift<br>ition         | diffusior<br>s to these          | equation - S<br>equations ir                | Schro<br>n 1D a | dingen<br>and 2D | r equatio<br>) space - | on - hydrodyn<br>- grid generati | amic<br>on.            |
| THEORY                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                      |                                                                       | TUTORIAL                                              | 0                      |                                  | PRACTI                                      | CAL             | 0                |                        | TOTAL                            | 45                     |
| BOOK RE                                                                                                                                                                                                                        | FERF                                                                                                                                                                                                                                    | NCE                                                                   |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |
| 1   Sze S M, "Physics of Semiconductor Devices", 2nd Edition McGraw Hill, New York, 1981.                                                                                                                                      |                                                                                                                                                                                                                                         |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |
| 2 Tyagi                                                                                                                                                                                                                        | 2 Tyagi M S, "Introduction to Semi-conductor Materials and Devices", John Wiley ,2003.                                                                                                                                                  |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |
| <b>3</b> Tor A Fijedly, "Introduction to Device Modelling and Circuit Simulation", Wiley-Interscience, 1997.                                                                                                                   |                                                                                                                                                                                                                                         |                                                                       |                                                       |                        |                                  |                                             |                 |                  |                        |                                  |                        |

5 Selberherr.S, "Analysis and Simulation of Semiconductor Devices", Springer-Verlag., 1984.

| 6 | Grasser, T., "Advanced Device Modelling and Simulation", World Scientific Publishing |
|---|--------------------------------------------------------------------------------------|
| 0 | Company, 2003.                                                                       |

| 01 | OTHER REFERENCES             |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|
| 1  | https://youtu.be/FHzx4Y1Gzf0 |  |  |  |  |  |  |  |
| 2  | https://youtu.be/nV3bBrQnws0 |  |  |  |  |  |  |  |
| 3  | https://youtu.be/rAoISKIQ8   |  |  |  |  |  |  |  |
| 4  | https://youtu.be/I5Atvm3wRvg |  |  |  |  |  |  |  |
| 5  | https://youtu.be/MdpmhN8byvo |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name      | L | Т | Р | С |
|----------|---------------------|----------------|------------------|---|---|---|---|
| Ι        | M.E. VLSI<br>DESIGN | 20MV1E3        | NANO ELECTRONICS | 3 | 0 | 0 | 3 |

| COURSE LEARNING OUTCOMES (COs) |                                                                                                                                                      |                   |           |  |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--|--|--|--|--|--|--|
| A                              | RBT<br>Level                                                                                                                                         | Topics<br>Covered |           |  |  |  |  |  |  |  |
| CO1                            | Explain and articulate the concepts related to nano device fabrication technology.                                                                   | K2                | 1,2,3,4,5 |  |  |  |  |  |  |  |
| CO2                            | Apply the types of nano devices for memories using Data Transmission and<br>Interfacing Displays.                                                    | K3                | 1,4,5     |  |  |  |  |  |  |  |
| CO3                            | Compare the nano electronic devices to rate its performance.                                                                                         | K4                | 2,3,4     |  |  |  |  |  |  |  |
| CO4                            | Analyze density of states / modes to infer its limitations.                                                                                          | K4                | 2,4,5     |  |  |  |  |  |  |  |
| CO5                            | Evaluate a density of states / modes based application and recommend a suitable modelling process for architectural features of advanced processors. | K5                | 3,4,5     |  |  |  |  |  |  |  |
| CO6                            | Design different density of states / modes for a given application.                                                                                  | K6                | 3,4,5     |  |  |  |  |  |  |  |

|     |                                   |     |     | <b>CO</b> / | PO M | APPIN | [ <b>G</b> (1 – V | Veak, 2 – | Medium | ı, 3 – Stror | ng)  |      |      |      |  |
|-----|-----------------------------------|-----|-----|-------------|------|-------|-------------------|-----------|--------|--------------|------|------|------|------|--|
| COa | Programme Learning Outcomes (POs) |     |     |             |      |       |                   |           |        |              |      |      |      | PSOs |  |
| COS | PO1                               | PO2 | PO3 | PO4         | PO5  | PO6   | PO7               | PO8       | PO9    | PO10         | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1 | 2                                 | 3   | 3   | 3           |      |       |                   |           | 3      | 3            |      | 2    |      | 2    |  |
| CO2 | 2                                 | 3   | 3   | 3           |      |       |                   |           |        |              |      | 2    |      | 2    |  |
| CO3 | 3                                 | 2   | 3   | 3           |      |       |                   |           |        | 2            |      | 2    |      |      |  |
| CO4 | 3                                 | 2   | 3   | 3           |      |       |                   |           | 2      |              |      |      |      |      |  |
| CO5 | 3                                 | 2   | 3   | 3           |      |       |                   |           |        | 2            |      | 2    |      | 2    |  |
| CO6 | 2                                 | 3   | 3   | 3           |      |       |                   |           |        |              |      | 2    |      |      |  |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |  |

|                                                                                                                                                                                              | COURSE CONTENT                                                                                                                                                                                                |                          |                                      |                   |                           |                                        |         |            |               |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|-------------------|---------------------------|----------------------------------------|---------|------------|---------------|----------|
| Topic - 1                                                                                                                                                                                    |                                                                                                                                                                                                               |                          | TF                                   | CHI               | NOLOGY                    | Y AND ANALY                            | SIS     |            |               | 9        |
| Dielectric, Ferroelectric and Optical properties - Film Deposition Methods - Lithography- Material remote techniques - Etchingand Chemical Mechanical Polishing - Scanning Probe Techniques. |                                                                                                                                                                                                               |                          |                                      |                   |                           |                                        | moving  |            |               |          |
| Topic - 2                                                                                                                                                                                    |                                                                                                                                                                                                               | CARBON NANO STRUCTURES 9 |                                      |                   |                           |                                        |         |            |               |          |
| Principles an<br>Properties -                                                                                                                                                                | Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechanical and Vibration<br>Properties - Applications of Carbon Nano tubes.                                                          |                          |                                      |                   |                           |                                        |         |            |               |          |
| Topic - 3                                                                                                                                                                                    |                                                                                                                                                                                                               |                          |                                      |                   | LOGIC                     | DEVICES                                |         |            |               | 9        |
| Novel mater<br>conductor di                                                                                                                                                                  | ials an<br>gital el                                                                                                                                                                                           | d alter<br>lectror       | rnative concepts<br>nics - Carbon Na | s - Sin<br>ano ti | ngle electr<br>ubes for d | ron devices for lo<br>lata processing. | ogic ap | oplication | ns - Super    |          |
| Topic - 4                                                                                                                                                                                    |                                                                                                                                                                                                               |                          | MEMORY D                             | EVIC              | CES AND                   | MASS STORA                             | GE D    | EVICES     | 5             | 9        |
| Flash memor<br>Information<br>storage.                                                                                                                                                       | Flash memories - Capacitor based Random Access Memories - Magnetic Random Access Memories - Information storage based on phase change materials - Resistive RandomAccess Memories - Holographic Data storage. |                          |                                      |                   |                           |                                        |         |            |               |          |
| Topic - 5                                                                                                                                                                                    |                                                                                                                                                                                                               | ]                        | DATA TRANS                           | MIS               | SION AN                   | ND INTERFACI                           | NG D    | ISPLAY     | ζ <b>S</b>    | 9        |
| Photonic Ne<br>emitting dio                                                                                                                                                                  | tworks<br>des.                                                                                                                                                                                                | s - RF                   | and Microwave                        | Con               | nmunicati                 | ion System - Liqı                      | uid Cr  | ystal Dis  | plays - Organ | ic Light |
| THEORY                                                                                                                                                                                       | 45                                                                                                                                                                                                            |                          | TUTORIAL                             | 0                 |                           | PRACTICAL                              | 0       |            | TOTAL         | 45       |

| BC | OOK REFERENCES                                                                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic materialsand novel devices", 3rd Edition, Wiley VCH, 2012.                                                     |
| 2  | T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.                                                                                                                                    |
| 3  | Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003.                                                                                                                    |
| 4  | C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.                                                                                           |
| 5  | Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.                                                                                       |
| 6  | Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics<br>Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011. |

| 07 | OTHER REFERENCES             |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|
| 1  | https://youtu.be/5L78ZItmxIA |  |  |  |  |  |
| 2  | https://youtu.be/SIif11QOsRI |  |  |  |  |  |
| 3  | https://youtu.be/-bsHP4DB3XQ |  |  |  |  |  |
| 4  | https://youtu.be/r787m_IaR1I |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name              | L | Т | Р | С   |
|----------|---------------------|----------------|--------------------------|---|---|---|-----|
| Ι        | M.E. VLSI<br>Design | 20MV1L1        | VLSI DESIGN LABORATORY I | 0 | 0 | 3 | 1.5 |

|            | COURSE LEARNING OUTCOMES (COs)                                                                                                                                                                                                    |    |             |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|--|--|--|--|--|--|
| Af         | After Successful completion of the course, the students should be able to                                                                                                                                                         |    |             |  |  |  |  |  |  |
| CO1        | Design and simulate the CMOS digital and analog VLSI Circuits using<br>Modern Tools, interface peripheral boards with FPGA, design layout of<br>CMOS Circuits using back end tool and perform RTL synthesis using<br>Xilinx Tool. | K3 | 1,2,3,4,5,6 |  |  |  |  |  |  |
| CO2        | Develop skills to communicate effectively                                                                                                                                                                                         | K2 | 1,2         |  |  |  |  |  |  |
| CO3        | Design layout of CMOS Circuits using back end tool Xilinx Tool                                                                                                                                                                    | K3 | 8           |  |  |  |  |  |  |
| <b>CO4</b> | Perform RTL synthesis using Xilinx Tool                                                                                                                                                                                           | K4 | 6           |  |  |  |  |  |  |
| CO5        | Design and simulation of FSM.                                                                                                                                                                                                     | K5 | 2,5,6,7     |  |  |  |  |  |  |
| CO6        | Design of operational amplifiers                                                                                                                                                                                                  | K5 | 9,10        |  |  |  |  |  |  |

|     |     |                                        |     | <b>CO</b> / | PO M | APPIN | G (1 – V | Veak, 2 – | Medium | , 3 – Stron | g)   |      |      |      |
|-----|-----|----------------------------------------|-----|-------------|------|-------|----------|-----------|--------|-------------|------|------|------|------|
|     |     | Programme Learning Outcomes (POs) PSOs |     |             |      |       |          |           |        |             |      |      |      |      |
| COs | PO1 | PO2                                    | PO3 | PO4         | PO5  | PO6   | PO7      | PO8       | PO9    | PO10        | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   | 2                                      | 2   | 1           | 2    |       | 1        |           |        |             |      | 1    |      | 3    |
| CO2 | 2   | 1                                      | 1   |             |      |       |          |           |        |             |      |      | 3    |      |
| CO3 | 2   | 1                                      | 2   | 1           | 3    |       |          |           |        |             |      |      | 2    |      |
| CO4 | 3   | 2                                      | 1   | 1           | 3    |       |          |           |        |             |      |      |      | 2    |
| CO5 | 2   | 3                                      | 1   | 1           | 2    |       |          |           |        |             |      |      |      | 2    |
| CO6 | 3   | 2                                      | 2   | 1           | 1    |       |          |           |        |             |      |      | 2    |      |

|          |   | COURSE ASSESSMENT METHODS    |
|----------|---|------------------------------|
| DIRECT   | 1 | Laboratory Record            |
|          | 2 | Model Practical Examinations |
|          | 3 | End Semester Examinations    |
| INDIRECT | 1 | Course End Survey            |

|     | LIST OF EXPERIMENTS                                                      |        |       |                 |       |          |                   |       |            |        |    |
|-----|--------------------------------------------------------------------------|--------|-------|-----------------|-------|----------|-------------------|-------|------------|--------|----|
| 1   | Writing Test benches using HDL for combinational and sequential circuits |        |       |                 |       |          |                   |       |            |        |    |
| 2   | Design and simulation of 4-bit barrel shifter using HDL                  |        |       |                 |       |          |                   |       |            |        |    |
| 3   | Design and simulation of 4-bit carry save adder using HDL                |        |       |                 |       |          |                   |       |            |        |    |
| 4   | 4 Design and simulation of Booth multiplier using HDL                    |        |       |                 |       |          |                   |       |            |        |    |
| 5   | Design and simulation of FSM using HDL                                   |        |       |                 |       |          |                   |       |            |        |    |
| 6   | RTL Synthesis using Xilinx Tool                                          |        |       |                 |       |          |                   |       |            |        |    |
| 7   | Desi                                                                     | gn and | Imple | ementation of M | atrix | keyboard | / Stepper Motor c | ontro | ller using | g VHDL |    |
| 8   | 8 IC Layout Design using EDA Tools (CMOS NOT, NAND & NOR Gates)          |        |       |                 |       |          |                   |       |            |        |    |
| 9   | 9 Design and simulation of differential amplifiers                       |        |       |                 |       |          |                   |       |            |        |    |
| 10  | 10 Design and simulation of operational amplifiers                       |        |       |                 |       |          |                   |       |            |        |    |
| THE | ORY                                                                      | 0      |       | TUTORIAL        | 0     |          | PRACTICAL         | 45    |            | TOTAL  | 45 |

| BC | OOK REFERENCES                                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1  | VLSI Lab Manual – I, Al-Ameen Publications, 2020.                                                                                       |
| 2  | John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, 2012.                                                   |
| 3  | Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design - A Systems Perspective", 2nd Edition, Pearson Education, 2010. |
| 4  | Kamran Eshraghian, Douglas A. Pucknell, "Essentials of VLSI Circuits and Systems", Prentice<br>Hall, 2011                               |
| 5  | C.Mead and L.Conway, "Introduction to VLSI Systems", Addison Wesley, 2003.                                                              |

| O | OTHER REFERENCES             |  |  |  |  |  |  |
|---|------------------------------|--|--|--|--|--|--|
| 1 | https://youtu.be/LNYR0yFbfuI |  |  |  |  |  |  |
| 2 | https://youtu.be/KMoczJ_p7Gc |  |  |  |  |  |  |
| 3 | https://youtu.be/vYvtdn7ij70 |  |  |  |  |  |  |
| 4 | https://youtu.be/BxXTy3PXLVs |  |  |  |  |  |  |
| 5 | https://youtu.be/Qw3Q8BnqcAU |  |  |  |  |  |  |

## **SEMESTER II**

| Sl.<br>No. | Course<br>Code           | Course Title                         | L  | Т  | Р  | С |   |   |     |  |
|------------|--------------------------|--------------------------------------|----|----|----|---|---|---|-----|--|
| THEORY     |                          |                                      |    |    |    |   |   |   |     |  |
| 1          | 20MV2T1                  | Low power CMOS Circuits and Memories | 50 | 3  | 0  | 0 | 3 |   |     |  |
| 2          | 20MV2T2                  | Mixed Signal Circuit Design          | PC | 50 | 50 | 3 | 0 | 0 | 3   |  |
| 3          | 20MV2T3                  | Testing of VLSI Circuits             | PC | 50 | 50 | 3 | 0 | 0 | 3   |  |
| 4          | 20MV2T4                  | CAD for VLSI Circuits PC 50 50       |    |    |    |   |   | 0 | 3   |  |
| 5          | 20MV2E1<br>to<br>20MV2E3 | Professional Elective-II             | 50 | 3  | 0  | 0 | 3 |   |     |  |
| 6          | 20MV2E4<br>to<br>20MV2E6 | Professional Elective-III PE 50 50   |    |    |    |   | 0 | 0 | 3   |  |
| LABORATORY |                          |                                      |    |    |    |   |   |   |     |  |
| 7          | 20MV2L1                  | VLSI Design Laboratory – II PC 50 50 |    |    |    |   | 0 | 3 | 1.5 |  |
| 8          | 20MV2L2                  | Mini project EEC 100                 |    |    |    |   | 0 | 3 | 1.5 |  |
| Total      |                          |                                      |    |    |    |   | 0 | 6 | 21  |  |

| Semester | Programme           | Course<br>Code | Course Name                             | L | Т | Р | С |
|----------|---------------------|----------------|-----------------------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2T1        | LOW POWER CMOS CIRCUITS AND<br>MEMORIES | 3 | 0 | 0 | 3 |

| COURSE LEARNING OUTCOMES (COs) |                                                                                                     |                   |       |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|-------|--|--|--|--|
| A                              | RBT<br>Level                                                                                        | Topics<br>Covered |       |  |  |  |  |
| CO1                            | Illustrate the low power analysis of VLSI Circuits using various methods.                           | K2                | 1     |  |  |  |  |
| CO2                            | Exemplify the basic and advanced memory technologies, types of memories and its reliability issues. | K3                | 1,2   |  |  |  |  |
| CO3                            | Design and Analyze random access memory.                                                            | K4                | 2,3   |  |  |  |  |
| CO4                            | Design the logic and circuit level low power circuits and impact of power on clock distribution.    | K4                | 3,4   |  |  |  |  |
| CO5                            | Design and Analyze FRAMs.                                                                           | K5                | 4,5   |  |  |  |  |
| <b>CO6</b>                     | Design and Analyze non volatile memory.                                                             | K5                | 3,4,5 |  |  |  |  |

| CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |                                   |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|----------------------------------------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| COs                                                | Programme Learning Outcomes (POs) |     |     |     |     |     |     |     |     |      |      |      |      | PSOs |  |
|                                                    | PO1                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1                                                | 2                                 | 1   | 1   |     |     | 1   |     | 1   | 1   | 2    |      |      | 1    |      |  |
| CO2                                                | 2                                 | 1   | 1   | 1   |     |     |     | 1   |     | 1    |      |      | 1    |      |  |
| CO3                                                | 3                                 | 3   | 2   | 1   |     | 1   | 1   |     | 1   | 2    |      | 1    |      | 2    |  |
| CO4                                                | 2                                 | 2   | 1   | 1   |     |     | 1   |     |     |      | 1    | 1    |      | 2    |  |
| CO5                                                | 3                                 | 2   | 2   | 1   |     | 2   |     | 1   | 1   |      |      | 1    |      | 2    |  |
| CO6                                                | 3                                 | 3   | 1   | 1   |     |     | 2   | 1   | 1   | 1    |      | 1    |      | 2    |  |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                  |                            |                                               | CO                      | URSE C                         | ONTENT                                                 |                            |                                 |                                          |                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|-------------------------|--------------------------------|--------------------------------------------------------|----------------------------|---------------------------------|------------------------------------------|-------------------------|--|
| Topic - 1                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  | INTF                       | RODUCTION 7                                   | FO L<br>Al              | OW PO<br>NALYSI                | WER VLSI DES<br>S METHODS                              | IGN .                      | AND P(                          | OWER                                     | 9                       |  |
| Need for low power VLSI chips - Sources of power dissipation on Digital Integrated circuits - Physics<br>power dissipation in CMOS devices - Dynamic dissipation in CMOS - Technology impact on Low power<br>SPICE circuit simulators - Gate level logic simulation - Capacitive power estimation - Static state power<br>Gate level capacitance estimation |                                                                                                                                                                                                                                                                                                                                                                  |                            |                                               |                         |                                |                                                        |                            |                                 |                                          |                         |  |
| Topic - 2                                                                                                                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                | IRCU                       | ЛТ AND LOGI                                   | [CL]                    | EVEL LO<br>DISTR               | OW POWER DE<br>IBUTION                                 | SIGN                       | N AND (                         | CLOCK                                    | 9                       |  |
| Circuit level: Power consumption in circuits - Flip Flops and Latches design - High capacitance nodes -<br>Low power digital cells library - Logic level: Gate reorganization - signal gating - logic encoding - state<br>machine encoding - pre-computation logic.                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                            |                                               |                         |                                |                                                        |                            |                                 |                                          |                         |  |
| Power dissipation in clock distribution - Single driver Vs Distributed buffers - Zero skew Vs tolerable skew-Chip and package co-design of clock network.                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                            |                                               |                         |                                |                                                        |                            |                                 |                                          |                         |  |
| Topic - 3                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                            | RANDOM                                        | ACC                     | CESS ME                        | MORY TECHN                                             | OLO                        | GIES                            |                                          | 9                       |  |
| SRAM cell<br>Architecture<br>soft error fai<br>and DRAMs                                                                                                                                                                                                                                                                                                    | structu<br>s and<br>ilures i                                                                                                                                                                                                                                                                                                                                     | ires -<br>Techn<br>in DR   | MOS SRAM A<br>ologies - DRAN<br>AM - Advanced | Archit<br>M - (<br>1 DR | ecture an<br>CMOS D<br>AM Desi | nd peripheral Circ<br>RAM - DRAM c<br>gn and Architect | cuit C<br>ell str<br>ure - | peration<br>uctures<br>Applicat | - Advanced<br>- BiCMOS E<br>ion Specific | SRAM<br>DRAM -<br>SRAMs |  |
| Topic - 4                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  |                            | N                                             | ON-                     | VOLAT                          | ILE MEMORIES                                           | S                          |                                 |                                          | 9                       |  |
| Masked RO<br>Programmat<br>Flash Memo                                                                                                                                                                                                                                                                                                                       | Ms - I<br>ble RO<br>ry Arc                                                                                                                                                                                                                                                                                                                                       | High I<br>Ms - I<br>hitect | Density ROMs<br>Electrically Eras<br>ure      | - CM<br>able            | IOS Prog<br>PROMS              | rammable EPRO<br>- Non volatile SR                     | Ms -<br>AM -               | Floating<br>Flash M             | g Gate and O<br>Iemories - Ad            | ne time<br>dvanced      |  |
| Topic - 5                                                                                                                                                                                                                                                                                                                                                   | ADVANCED MEMORY TECHNOLOGIES AND ITS RELIABILITY<br>ISSUES                                                                                                                                                                                                                                                                                                       |                            |                                               |                         |                                |                                                        |                            |                                 |                                          | 9                       |  |
| Ferroelectric<br>Memories- 1<br>RAM Failur<br>Design for R                                                                                                                                                                                                                                                                                                  | Ferroelectric Random Access Memories (FRAMs) - Gallium Arsenide (GaAs) FRAMs - Analog<br>Memories- Magnetoresistive Random Access Memories (MRAMs) - Memory Cards. Reliability Issues:<br>RAM Failure Modes and Mechanism - Nonvolatile Memory - Modelling and Failure Rate Prediction -<br>Design for Reliability - Test Structures-Screening and Qualification |                            |                                               |                         |                                |                                                        |                            |                                 |                                          |                         |  |
| THEORY                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                                                                                                                                               |                            | TUTORIAL                                      | 0                       |                                | PRACTICAL                                              | 0                          |                                 | TOTAL                                    | 45                      |  |

| BC | OOK REFERENCES                                                                                                               |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 1  | Gary K. Yeap ,Farid N. Najm, "Low power VLSI design and Technology", World Scientific Publishing Ltd., 1996.                 |
| 2  | Dimitrios Soudris, Christian Piguet, Costas Goutis, "Designing CMOS Circuits for LowPower", Kluwer Academic Publishers,2002. |
| 3  | Kaushik Roy , Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley-Interscience, 2000                               |
| 4  | Ashok K Sharma, "Semiconductor Memories Technology, Testing and Reliability", Wiley,2002.                                    |
| 5  | Etienne Sicard and Sonaia Delmas Bendhia, "Advanced CMOS Cell Design", Tata McGrawHill Publishing, 2007                      |

| 07 | OTHER REFERENCES                               |  |  |  |  |  |  |  |  |  |
|----|------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1  | https://nptel.ac.in/courses/106/105/106105034/ |  |  |  |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=6XTYoZymbwE    |  |  |  |  |  |  |  |  |  |
| 3  | https://www.youtube.com/watch?v=MP6VlAE_7WY    |  |  |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name                 | L | Т | Р | С |
|----------|---------------------|----------------|-----------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2T2        | MIXED SIGNAL CIRCUIT DESIGN | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                            |    |       |  |  |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------|----|-------|--|--|--|--|--|--|--|--|--|--|
| A   | After Successful completion of the course, the students should be able to |    |       |  |  |  |  |  |  |  |  |  |  |
| CO1 | Analyze and Design submicron CMOS circuits.                               | K2 | 1     |  |  |  |  |  |  |  |  |  |  |
| CO2 | Analyze and Design switched capacitor circuits.                           | K3 | 1,2   |  |  |  |  |  |  |  |  |  |  |
| CO3 | Analyze of Nonlinearity circuits.                                         | K4 | 2,3   |  |  |  |  |  |  |  |  |  |  |
| CO4 | Analyze and Design of continuous time filters.                            | K4 | 3,4   |  |  |  |  |  |  |  |  |  |  |
| CO5 | Design of Digital to Analog converters.                                   | K3 | 4,5   |  |  |  |  |  |  |  |  |  |  |
| CO6 | Design of Oscillators and PLLs.                                           | K3 | 3,4,5 |  |  |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      | PSOs |      |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                  | 2   | 1   | 1   |     | 1   |     | 2   |     | 1    |      | 1    |      | 2    |
| CO2 | 2                                                  | 2   | 1   | 1   | 1   |     | 2   |     | 1   |      | 1    |      |      | 1    |
| CO3 | 3                                                  | 2   | 1   | 1   |     | 1   |     | 1   |     | 1    | 1    | 1    |      | 2    |
| CO4 | 2                                                  | 2   | 1   | 1   | 1   |     | 2   | 1   | 1   |      |      |      | 2    |      |
| CO5 | 2                                                  | 1   | 2   | 1   |     | 2   | 1   | 2   | 1   |      | 1    | 1    | 2    |      |
| CO6 | 2                                                  | 1   | 1   | 1   | 2   | 1   | 1   |     |     | 1    | 1    | 1    | 1    |      |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |  |  |  |
|          | 2                         | Assignment                  |  |  |  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              |                                 |                                      | CO    | URSE C                 | ONTENT          |                    |                        |                                   |              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-------|------------------------|-----------------|--------------------|------------------------|-----------------------------------|--------------|--|--|
| Topic - 1                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                 | SUBM                                 | ICR   | ON CMC                 | OS CIRCUIT D    | ESIGN              | J                      |                                   | 9            |  |  |
| CMOS Proc<br>adder- Anal<br>Power Supp                                                                                                                                                                                                                                                                                     | CMOS Process flow - Capacitors and resistors -Digital circuit design: MOSFET switch - Delay elements -<br>adder- Analog circuit design: Biasing - Op amp Design - Mixed-Signal Layout Issues: Floor Planning-<br>Power Supply and Grounding Issues- Fully Differential Design- Guard Rings- Shielding –Interconnect          |                                 |                                      |       |                        |                 |                    |                        |                                   |              |  |  |
| Topic - 2                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                 | С                                    | ONI   | TINUOUS                | S TIME FILTE    | RS                 |                        |                                   | 9            |  |  |
| First order filters-Second order filters- Gm-C filters- Transconductors Using Fixed Resistors- CMOS<br>Transconductors Using Triode Transistors- CMOS Transconductors Using Active Transistors- Bipolar<br>Transconductors - Bicmos Transconductors - Active RC And MOSFET-C Filters- Tuning Circuitry-<br>Complex Filters |                                                                                                                                                                                                                                                                                                                              |                                 |                                      |       |                        |                 |                    |                        |                                   |              |  |  |
| Topic - 3                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              | NC                              | ONLINEARITY                          | Y AN  | DSWIT                  | CHED CAPAC      | ITOR               | CIRCU                  | ITS                               | 9            |  |  |
| Basic buildi<br>Filters - Biq<br>Techniques-                                                                                                                                                                                                                                                                               | Basic building blocks - Basic operation and analysis - Noise in Switched Capacitor Circuits - First-Order<br>Filters - Biquad Filters- Charge Injection- Switched Capacitor Gain Circuits- Correlated Double-Sampling<br>Techniques- Switched capacitor amplifiers - Switched capacitor integrator - Nonlinearity – Mismatch |                                 |                                      |       |                        |                 |                    |                        |                                   |              |  |  |
| Topic - 4                                                                                                                                                                                                                                                                                                                  | DIC                                                                                                                                                                                                                                                                                                                          | GITA                            | L TO ANALOO                          | GAN   | D ANAL                 | OG TO DIGIT     | AL CO              | ONVER'                 | TERS                              | 9            |  |  |
| Introduction<br>Serial DAC                                                                                                                                                                                                                                                                                                 | and cl<br>- Introc                                                                                                                                                                                                                                                                                                           | haract<br>luctio                | erization of DA<br>n and characteriz | C - Z | Parallel E<br>n of ADC | DAC - Extending | g the re<br>Mediur | esolution<br>n ADC -   | n of parallel I<br>- High speed A | DAC -<br>ADC |  |  |
| Topic - 5                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                 |                                      | oso   | CILLAT                 | ORS AND PLL     | 5                  |                        |                                   | 9            |  |  |
| Oscillatory<br>Mathematica<br>non idealitie                                                                                                                                                                                                                                                                                | Oscillatory system - Ring oscillators - LC oscillators - Voltage Controlled Oscillators (VCO) -<br>Mathematical model of VCO - Simple PLL - Charge pump PLLs - Non ideal effects in PLLs: PFD/CP<br>non idealities - jitter in PLLs - Delay locked loops - PLL applications                                                  |                                 |                                      |       |                        |                 |                    |                        |                                   |              |  |  |
| THEORY                                                                                                                                                                                                                                                                                                                     | 45                                                                                                                                                                                                                                                                                                                           | 45 TUTORIAL 0 PRACTICAL 0 TOTAL |                                      |       |                        |                 |                    |                        |                                   | 45           |  |  |
| DOOL DEI                                                                                                                                                                                                                                                                                                                   | איז כויקוי                                                                                                                                                                                                                                                                                                                   | ICES                            |                                      |       |                        |                 |                    |                        |                                   | 1            |  |  |
| 1 R Rozo                                                                                                                                                                                                                                                                                                                   | BOOK REFERENCES                                                                                                                                                                                                                                                                                                              |                                 |                                      |       |                        |                 |                    |                        |                                   |              |  |  |
| 2 R I Ral                                                                                                                                                                                                                                                                                                                  | $\frac{1}{2}$ er "C                                                                                                                                                                                                                                                                                                          | MOS                             | Mixed-Signal C                       | ircui | t Design"              | Wiley Publicat  | ions 20            | $\frac{1111,200}{002}$ | 14                                |              |  |  |
|                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                     |                                 |                                      |       |                        |                 | 1 61               | 1                      |                                   | ED           |  |  |

- R.J. Baker, H.W. Li, D.E. Boyce, "CMOS Circuit design, Layout, and Simulation", Wiley-IEEEPress, 3rd Edition, 2010
   Tony Chan Correspondence Deside A Johns and Ken Martin, "Analog Integrated Circuit Design" John
- 4
   Tony Chan Carusone, David A. Johns and Ken Martin, "Analog Integrated Circuit Design", John Wiley and Sons, 2nd Edition, 2011

   2
   Division Field Content of Co
- 5 Phillip E.Allen and Douglas R.Holberg, "CMOS Analog Circuit Design", Oxford UniversityPress, 2002

| 07 | THER REFERENCES                                                                     |
|----|-------------------------------------------------------------------------------------|
| 1  | https://www.youtube.com/watch?v=_nEt8ZONIPI                                         |
| 2  | https://www.youtube.com/watch?v=C4zctTkPxxw                                         |
| 3  | https://www.allaboutcircuits.com/technical-articles/what-is-mixed-signal-ic-design/ |

| Semester | Programme           | Course<br>Code | Course Name              | L | Т | Р | С |
|----------|---------------------|----------------|--------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2T3        | TESTING OF VLSI CIRCUITS | 3 | 0 | 0 | 3 |

| COURSE LEARNING OUTCOMES (COs) |                                                                           |    |       |  |  |  |  |  |  |  |  |  |
|--------------------------------|---------------------------------------------------------------------------|----|-------|--|--|--|--|--|--|--|--|--|
| Α                              | After Successful completion of the course, the students should be able to |    |       |  |  |  |  |  |  |  |  |  |
| CO1                            | Design of Testing and Fault Modelling.                                    | K3 | 1     |  |  |  |  |  |  |  |  |  |
| CO2                            | Analyze and Design of Testable Sequential Circuits.                       | K4 | 1,2   |  |  |  |  |  |  |  |  |  |
| CO3                            | Analyze and Design of Testable Combinational circuits.                    | K4 | 2,3   |  |  |  |  |  |  |  |  |  |
| CO4                            | Verify Test Algorithms.                                                   | K4 | 3,4   |  |  |  |  |  |  |  |  |  |
| CO5                            | Design of Fault Diagnosis for Combinational Circuits.                     | K3 | 4,5   |  |  |  |  |  |  |  |  |  |
| CO6                            | Design for Testability.                                                   | K4 | 3,4,5 |  |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      | PSOs |      |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 2   | 1   | 1   |     | 1   |     |     | 1   |      | 1    |      | 2    |      |
| CO2 | 3                                                  | 2   | 1   | 1   | 1   |     |     | 1   |     | 1    | 2    |      | 2    |      |
| CO3 | 2                                                  | 2   | 2   | 1   |     |     |     |     |     |      |      | 1    | 2    |      |
| CO4 | 3                                                  | 1   | 1   | 1   | 2   | 1   |     | 1   |     | 1    | 1    |      |      | 2    |
| CO5 | 3                                                  | 2   | 1   | 2   | 1   |     |     |     | 1   |      | 2    |      |      | 2    |
| CO6 | 3                                                  | 2   | 1   | 1   |     |     |     |     |     | 1    | 1    | 1    | 2    |      |

|          | COURSE ASSESSMENT METHODS            |                           |  |  |  |  |  |  |  |  |
|----------|--------------------------------------|---------------------------|--|--|--|--|--|--|--|--|
| DIRECT   | DIRECT 1 Continuous Assessment Tests |                           |  |  |  |  |  |  |  |  |
|          | 2                                    | Assignment                |  |  |  |  |  |  |  |  |
|          | 3                                    | End Semester Examinations |  |  |  |  |  |  |  |  |
| INDIRECT | 1                                    | Course End Survey         |  |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                       |                                                              |                  |                                      |               |                         |                                    |             |           |                 |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|--------------------------------------|---------------|-------------------------|------------------------------------|-------------|-----------|-----------------|---------|
| Topic - 1                                                                                                                                                                                                                                            | <b>BASICS OF TESTING AND FAULT MODELLING</b>                 |                  |                                      |               |                         |                                    |             |           |                 |         |
| Introduction to Testing - Faults in Digital Circuits - Modelling of faults - Logical Fault Models - Fault detection - Fault Location - Fault dominance - Logic simulation - Types of simulation - Delay models - Gate Level Event-driven simulation. |                                                              |                  |                                      |               |                         |                                    |             |           |                 |         |
| Topic - 2                                                                                                                                                                                                                                            | TEST GENERATION FOR COMBINATIONAL AND SEQUENTIAL<br>CIRCUITS |                  |                                      |               |                         |                                    |             |           |                 |         |
| Test generation for Combinational logic circuits - Testable Combinational logic circuit design -<br>generation for Sequential circuits - Design of Testable sequential circuits                                                                      |                                                              |                  |                                      |               |                         |                                    |             |           |                 | - Test  |
| Topic - 3                                                                                                                                                                                                                                            |                                                              |                  | I                                    | DESI          | GN FOR                  | TESTABILITY                        |             |           |                 | 9       |
| Design for T<br>level DFT a                                                                                                                                                                                                                          | estabil                                                      | lity - A<br>hes. | Ad-hoc design -                      | Gene          | eric Scan               | based design - Cla                 | assica      | l scan ba | ased design -   | System  |
| Topic - 4                                                                                                                                                                                                                                            |                                                              |                  | SELF - 7                             | TES.          | Γ AND T                 | EST ALGORITI                       | HMS         |           |                 | 9       |
| Built-in self<br>Memory Des                                                                                                                                                                                                                          | Test -<br>sign - T                                           | Test p<br>Test A | attern generatio<br>lgorithms - Test | n for<br>gene | BIST - C<br>eration for | Circular BIST - BI<br>Embedded RAM | ST A<br>[s. | rchitectu | ires - Testable | е       |
| Topic - 5                                                                                                                                                                                                                                            |                                                              |                  |                                      | I             | FAULTE                  | DIAGNOSIS                          |             |           |                 | 9       |
| Logical Lev<br>Circuits - Se                                                                                                                                                                                                                         | el Diag<br>lf chec                                           | gnosis<br>king d | - Diagnosis by<br>lesign - System    | Unit<br>level | t Under T<br>Diagnosi   | est reduction - Fa                 | ult D       | Diagnosis | for Combina     | ational |
| THEORY                                                                                                                                                                                                                                               | 45                                                           |                  | TUTORIAL                             | 0             |                         | PRACTICAL                          | 0           |           | TOTAL           | 45      |
|                                                                                                                                                                                                                                                      |                                                              |                  |                                      |               |                         |                                    |             |           |                 |         |

| BC | OOK REFERENCES                                                                                                                                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | M.Abramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testable Design", Jaico Publishing House, 2002.                                    |
| 2  | P.K. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002                                                                          |
| 3  | M.L.Bushnell ,V.D.Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002. |
| 4  | A.L.Crouch, "Design Test for Digital IC's and Embedded Core Systems", Prentice HallInternational, 2002                                              |

| 07 | OTHER REFERENCES                            |  |  |  |  |  |  |  |
|----|---------------------------------------------|--|--|--|--|--|--|--|
| 1  | https://www.youtube.com/watch?v=MP6VlAE_7WY |  |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=6XTYoZymbwE |  |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name           | L | Т | Р | С |
|----------|---------------------|----------------|-----------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2T4        | CAD FOR VLSI CIRCUITS | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                         |    |       |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------|----|-------|--|--|--|--|--|--|--|--|
| Α   | After Successful completion of the course, the students should be able to                                              |    |       |  |  |  |  |  |  |  |  |
| CO1 | Outline the VLSI design Methodologies; apply the algorithms for VLSI Automation.                                       | K3 | 1     |  |  |  |  |  |  |  |  |
| CO2 | Explain and evaluate the various physical design concepts, simulation and high level synthesis issues in CAD of VLSI.  | K3 | 1,2   |  |  |  |  |  |  |  |  |
| CO3 | Design advanced electronics systems.                                                                                   | K4 | 2,3   |  |  |  |  |  |  |  |  |
| CO4 | Evaluate and analyze the systems in VLSI design environments.                                                          | K4 | 3,4   |  |  |  |  |  |  |  |  |
| CO5 | Apply advanced technical knowledge in multiple contexts.                                                               | K3 | 4,5   |  |  |  |  |  |  |  |  |
| CO6 | Conduct an organized and systematic study on significant research topic within the field of VLSI and its allied field. | K4 | 3,4,5 |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      | PSOs |      |  |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1 | 3                                                  | 1   | 1   | 1   | 1   |     |     |     | 2   | 1    |      |      | 1    | 2    |  |
| CO2 | 3                                                  | 2   | 1   | 1   | 1   | 1   |     |     | 1   |      | 1    |      | 2    |      |  |
| CO3 | 3                                                  | 2   | 1   | 1   |     |     | 1   | 1   |     | 1    |      |      |      | 2    |  |
| CO4 | 3                                                  | 2   | 1   |     |     | 1   | 1   |     |     |      | 1    |      |      | 2    |  |
| CO5 | 3                                                  | 2   | 1   |     |     |     | 1   |     | 1   | 1    |      |      | 1    |      |  |
| CO6 | 3                                                  | 2   | 1   | 1   |     | 1   |     | 1   |     |      | 1    | 2    |      | 1    |  |

| COURSE ASSESSMENT METHODS            |   |                           |  |  |  |  |  |  |  |  |
|--------------------------------------|---|---------------------------|--|--|--|--|--|--|--|--|
| DIRECT 1 Continuous Assessment Tests |   |                           |  |  |  |  |  |  |  |  |
|                                      | 2 | Assignment                |  |  |  |  |  |  |  |  |
|                                      | 3 | End Semester Examinations |  |  |  |  |  |  |  |  |
| INDIRECT                             | 1 | Course End Survey         |  |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                                             |                                           |                             |                                                    |                        |                                      |                                                       |                 |                       |                               |                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|----------------------------------------------------|------------------------|--------------------------------------|-------------------------------------------------------|-----------------|-----------------------|-------------------------------|---------------------|--|--|
| Topic - 1                                                                                                                                                                                                                                                                                  | INTRODUCTION TO VLSI DESIGN METHODOLOGIES |                             |                                                    |                        |                                      |                                                       |                 |                       |                               |                     |  |  |
| VLSI Design Cycle - Physical Design Cycle - Design Styles and comparison of different Design St<br>Fabrication of VLSI Circuits                                                                                                                                                            |                                           |                             |                                                    |                        |                                      |                                                       |                 |                       |                               |                     |  |  |
| Topic - 2                                                                                                                                                                                                                                                                                  | VLSI DESIGN AUTOMATION                    |                             |                                                    |                        |                                      |                                                       |                 |                       |                               |                     |  |  |
| VLSI Design Automation Tools - Algorithmic Graph Theory and Computational Complexity - Tractable<br>and Intractable Problems - General Purpose Methods for Combinational Optimization - Back tracking and<br>Branch and Bound - Local Search - Simulated annealing and genetic algorithms. |                                           |                             |                                                    |                        |                                      |                                                       |                 |                       |                               |                     |  |  |
| Topic - 3                                                                                                                                                                                                                                                                                  |                                           |                             |                                                    | Р                      | HYSICA                               | AL DESIGN                                             |                 |                       |                               | 9                   |  |  |
| Layout Con<br>Partitioning<br>routing prob                                                                                                                                                                                                                                                 | npactio<br>- Floo<br>lems - J             | on - F<br>or Plai<br>Area I | Placement and<br>nning Concepts<br>Routing - Chann | Parti<br>- Sl<br>el Ro | tioning -<br>nape Fune<br>outing - G | Circuit Represe<br>ctions and Floor<br>lobal Routing. | ntatio<br>Planr | n - plac<br>ning Sizi | cement algor<br>ing - types c | ithms -<br>of local |  |  |
| Topic - 4                                                                                                                                                                                                                                                                                  |                                           |                             | SI                                                 | MUL                    | ATION                                | AND SYNTHES                                           | IS              |                       |                               | 9                   |  |  |
| Simulation -<br>Combination                                                                                                                                                                                                                                                                | · Gate<br>nal Log                         | Level<br>gic Syr            | Modelling and athesis - Binary                     | Sim<br>Decis           | ulation -<br>sion Diag               | Switch Level Mo<br>rams - Two Level                   | dellir<br>Logi  | ng and S<br>c Synthe  | imulation -<br>sis.           |                     |  |  |
| Topic - 5                                                                                                                                                                                                                                                                                  |                                           |                             |                                                    | HIG                    | H LEVE                               | CL SYNTHESIS                                          |                 |                       |                               | 9                   |  |  |
| Hardware M<br>Algorithm -                                                                                                                                                                                                                                                                  | odels -<br>Assign                         | - Inter<br>ment             | nal Representat<br>Problem.                        | ion -                  | Allocatio                            | n assignment and                                      | scheo           | luling - S            | Simple Sched                  | uling               |  |  |
| THEORY                                                                                                                                                                                                                                                                                     | 45                                        |                             | TUTORIAL                                           | 0                      |                                      | PRACTICAL                                             | 0               |                       | TOTAL                         | 45                  |  |  |

| BC | OOK REFERENCES                                                                                                                                  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | S.H.Gerez, "Algorithms for VLSI Design Automation", John Wiley and Sons, 2002.                                                                  |
| 2  | N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar AcademicPublishers, 2002                                                 |
| 3  | Drechsler, R., "Evolutionary Algorithms for VLSI CAD", Kluwer Academic Publishers, Boston, 1998                                                 |
| 4  | Glyn James., "Advanced Modern Engineering Mathematics", Pearson Education Limited, 2007.                                                        |
| 5  | Hill,D.D.Shugard, J. Fishburn and K. Kuetzer, "Algorithms and Techniques for VLSI Layout Synthesis", Kluwer Accademic Publishers, Boston, 1989. |

| 01 | OTHER REFERENCES                            |  |  |  |  |  |  |  |
|----|---------------------------------------------|--|--|--|--|--|--|--|
| 1  | https://www.youtube.com/watch?v=MP6VlAE_7WY |  |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=6XTYoZymbwE |  |  |  |  |  |  |  |

| Semester | ProgrammeCourse<br>CodeCourse Name |         | L                                          | Т | Р | С |   |
|----------|------------------------------------|---------|--------------------------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN                | 20MV2E1 | SIGNAL INTEGRITY FOR HIGH<br>SPEED DEVICES | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                               |                   |   |  |  |  |  |  |
|-----|------------------------------------------------------------------------------|-------------------|---|--|--|--|--|--|
| A   | RBT<br>Level                                                                 | Topics<br>Covered |   |  |  |  |  |  |
| CO1 | To Apply the concepts of Signal Integrity in Electromagnetic Fields          | K3                | 1 |  |  |  |  |  |
| CO2 | To Analyse the Inductance and Capacitance values in Signal Propagation.      | K4                | 2 |  |  |  |  |  |
| CO3 | To Analyse the characteristics of Dielectric material in Signal Propagation  | K4                | 3 |  |  |  |  |  |
| CO4 | To Analyse the characteristics of noise models in Signals                    | K4                | 4 |  |  |  |  |  |
| CO5 | To evaluate the different model of Physical transmission line.               | K5                | 5 |  |  |  |  |  |
| CO6 | To Design the new methods to improve the signal transmission characteristics | K6                | 5 |  |  |  |  |  |

|     | CO / PO MAPPING (1 - Weak, 2 - Medium, 3 - Strong) |     |      |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs |                                                    |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |
| COS | PO1                                                | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 2   | 2    | 2   | 2   |     |     |     |     | 3    |      |      |      | 3    |
| CO2 | 2                                                  | 3   | 2    | 2   |     |     | 2   |     |     | 3    | 3    |      |      | 3    |
| CO3 | 2                                                  | 3   | 2    | 2   | 1   |     |     | 2   |     | 2    |      |      |      | 2    |
| CO4 | 1                                                  | 3   | 2    | 2   |     |     | 2   |     |     | 1    | 3    |      |      | 2    |
| CO5 | 2                                                  | 2   | 3    | 2   | 1   |     |     |     |     | 2    |      |      |      | 1    |
| CO6 | 1                                                  | 2   | 2    | 3   |     | 3   |     |     |     | 2    |      |      |      | 3    |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                   |                                      |                |                         |                                        |      |          |                     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|----------------|-------------------------|----------------------------------------|------|----------|---------------------|-------|
| Topic - 1                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                   |                                      | S              | IGNAL I                 | NTEGRITY                               |      |          |                     | 9     |
| The importance of signal integrity - new realm of bus design - Electromagnetic fundamentals for signal integrity - Maxwell equations common vector operators - wave propagations - Electrostatics - magneto statics - Power flow and the poynting vector - Reflections of electromagnetic waves. |                                                                                                                                                                                                                                                                                                            |                                   |                                      |                |                         |                                        |      |          | r signal<br>nagneto |       |
| Topic - 2                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            | CROSS TALK                        |                                      |                |                         |                                        |      |          |                     |       |
| Introduction - mutual inductance and capacitance-coupled wave equation - coupled line analysis - modal analysis - cross talk minimization signal propagation in unbounded conductive media - classic conductor model for transmission model.                                                     |                                                                                                                                                                                                                                                                                                            |                                   |                                      |                |                         |                                        |      |          |                     |       |
| Topic - 3                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                   | 1                                    | DI-E           | LECTRI                  | C MATERIALS                            |      |          |                     | 9     |
| Polarization<br>Classificatio<br>Transmissio                                                                                                                                                                                                                                                     | Polarization of Dielectric - Classification of Dielectric material - frequency dependent dielectric material -<br>Classification of Dielectric material fiber - Wave effect - Environmental variation in dielectric behavior<br>Transmission line parameters for loose dielectric and realistic conductors |                                   |                                      |                |                         |                                        |      |          |                     |       |
| Topic - 4                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                   | DIF                                  | FER            | ENTIAL                  | SIGNALING                              |      |          |                     | 9     |
| Removal of voltages con                                                                                                                                                                                                                                                                          | common to                                                                                                                                                                                                                                                                                                  | on mo<br>ermin                    | ode noise - Diffe<br>ology - drawbac | renti<br>ks of | al Cross t<br>different | alk - Virtual refer<br>ial signalling. | ence | plane-Pr | opagation of        | model |
| Topic - 5                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                   | PHYSIC                               | AL             | FRANSN                  | AISSION LINE N                         | MOD  | EL       |                     | 9     |
| Introduction<br>receivers - E                                                                                                                                                                                                                                                                    | Introduction - non ideal return paths - Vias - IO design consideration - Push-pull transmitter - CMOS receivers - ESSD protection circuits - On chip Termination                                                                                                                                           |                                   |                                      |                |                         |                                        |      |          |                     |       |
| THEORY                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                         | 45 TUTORIAL 0 PRACTICAL 0 TOTAL 4 |                                      |                |                         |                                        |      |          |                     | 45    |
| BOOK REI                                                                                                                                                                                                                                                                                         | FEREN                                                                                                                                                                                                                                                                                                      | ICES                              |                                      |                |                         |                                        |      |          |                     |       |
| 1 Stephen                                                                                                                                                                                                                                                                                        | Stephen H. Hall, Howard L. Heck, "Advanced Signal Integrity for High-Speed DigitalDesigns",                                                                                                                                                                                                                |                                   |                                      |                |                         |                                        |      |          |                     |       |
| Wiley IEEE Press, 2009.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                            |                                   |                                      |                |                         |                                        |      |          |                     |       |

| 2 | James Edgar Buchanan, "Signal and power integrity in digital systems: TTL, CMOS, and BiCMOS ", Mc Graw Hill,1996.   |
|---|---------------------------------------------------------------------------------------------------------------------|
| 3 | Greg Edlund, "Timing Analysis and Simulation for Signal Integrity Engineers", Prentice Hallof India, 2008           |
| 4 | Stephen C. Thierauf, "Understanding Signal Integrity", Pages displayed by permission Artech Publishing House, 2011. |
| 5 | Eric Bogatin, "Signal and Power Integrity - Simplified", 2nd Edition, Prentice Hall of India,2010                   |
| 6 | Mike Peng Li, "Jitter, Noise and Signal Integrity at High-Speed", Prentice Hall of India, 2008.                     |

| 01 | OTHER REFERENCES                            |  |  |  |  |  |  |
|----|---------------------------------------------|--|--|--|--|--|--|
| 1  | https://www.youtube.com/watch?v=oxrXfIimy_Q |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=TExobD7vDUY |  |  |  |  |  |  |
| 3  | https://www.youtube.com/watch?v=anX8QZMhVjI |  |  |  |  |  |  |
| 4  | https://www.youtube.com/watch?v=A6W5A8L9vu8 |  |  |  |  |  |  |
| 5  | https://www.youtube.com/watch?v=ZFYESaEE5D0 |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name               | L | Т | Р | С |
|----------|---------------------|----------------|---------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2E2        | HIGH SPEED DIGITAL DESIGN | 3 | 0 | 0 | 3 |

|            | COURSE LEARNING OUTCOMES (COs)                                                       |    |   |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------|----|---|--|--|--|--|--|
| A          | After Successful completion of the course, the students should be able to            |    |   |  |  |  |  |  |
| CO1        | To understand the concepts of Transmission Lines and Crosstalk in signal propagation | K2 | 1 |  |  |  |  |  |
| CO2        | To analyse the inductance and capacitance values in Transmission Lines               | K4 | 2 |  |  |  |  |  |
| CO3        | To evaluate the Synchronization of clock signals                                     | K5 | 3 |  |  |  |  |  |
| CO4        | To analyse the noise level and cross talk in signal transmission                     | K4 | 4 |  |  |  |  |  |
| CO5        | To analyse the ground systems in signal transmission                                 | K4 | 5 |  |  |  |  |  |
| <b>CO6</b> | To design a new model of high speed transmission lines without any losses            | K6 | 5 |  |  |  |  |  |

| PRE-REOUISITE | 20MV1T2 - Advanced Digital System Design |
|---------------|------------------------------------------|
|               |                                          |

|     | CO / PO MAPPING (1 - Weak, 2 - Medium, 3 - Strong) |     |      |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs |                                                    |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |
| COS | PO1                                                | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                  | 2   | 2    | 2   | 2   |     |     |     |     | 3    |      |      |      | 3    |
| CO2 | 2                                                  | 3   | 2    | 2   |     |     | 2   |     |     | 3    | 3    |      |      | 3    |
| CO3 | 2                                                  | 2   | 3    | 2   | 1   |     |     | 2   |     | 2    |      |      |      | 2    |
| CO4 | 1                                                  | 3   | 2    | 2   |     |     | 2   |     |     | 1    | 3    |      |      | 2    |
| CO5 | 2                                                  | 3   | 2    | 2   | 1   |     |     |     |     | 2    |      |      |      | 1    |
| CO6 | 1                                                  | 2   | 2    | 3   |     | 3   |     |     |     | 2    |      |      |      | 3    |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |

|                                                                                                                                                                                                                                                |                                  |                             |                                                         | СО                    | URSE C                           | ONTENT                                  |                 |                       |                                |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|---------------------------------------------------------|-----------------------|----------------------------------|-----------------------------------------|-----------------|-----------------------|--------------------------------|---------------------|
| Topic - 1                                                                                                                                                                                                                                      |                                  |                             | TRANSI                                                  | MISS                  | SION LI                          | NES AND CROS                            | STAI            | ЪК                    |                                | 9                   |
| Transmissio<br>propagation<br>talk induced                                                                                                                                                                                                     | n line<br>delay,<br>noise,       | stru<br>Trans<br>minin      | ctures, signal<br>mission line ref<br>nizing cross talk | prop<br>lectio        | agation,<br>ons, Cross           | transmission lin<br>s talk- Mutual ind  | ie pa<br>uctano | rameters<br>ce, Mutu  | s, line imp<br>al capacitanc   | edance,<br>e, cross |
| Topic - 2                                                                                                                                                                                                                                      |                                  |                             |                                                         | РО                    | WER DI                           | STRIBUTION                              |                 |                       |                                | 9                   |
| Losses, the need for low-impedance planes and decoupling capacitors and their selection.                                                                                                                                                       |                                  |                             |                                                         |                       |                                  |                                         |                 |                       |                                |                     |
| Topic - 3                                                                                                                                                                                                                                      |                                  |                             | CLOC                                                    | K D                   | ISTRIBU                          | JTION AND TIM                           | IING            |                       |                                | 9                   |
| High-quality clock signals to components - boards and systems - Common clock timing and source synchronous timing                                                                                                                              |                                  |                             |                                                         |                       |                                  |                                         |                 |                       |                                |                     |
| Topic - 4                                                                                                                                                                                                                                      | INT                              | TERC                        | ONNECTS & I                                             | ELE                   | CTROM                            | AGNETIC COM                             | IPAT            | IBILIT                | Y (EMC)                        | 9                   |
| Interconnect technologies - Multilevel multilayer interconnects - propagation delay - crosstalk analysis - Designing for EMC - EMC regulations - typical noise path - methods of noise coupling - methods of reducing interference in systems. |                                  |                             |                                                         |                       |                                  |                                         |                 |                       |                                |                     |
| Topic - 5                                                                                                                                                                                                                                      |                                  |                             |                                                         |                       | GROU                             | JNDING                                  |                 |                       |                                | 9                   |
| Safety grour<br>functional gr<br>ground loop                                                                                                                                                                                                   | nds ,sig<br>round la<br>s, shiel | gnal gr<br>ayout,<br>d grou | ounds, single-p<br>practical low fr<br>nding at high f  | oint<br>eque<br>reque | ground sy<br>ncy grour<br>encies | vstems, multi-poin<br>nding, hardware g | t grou<br>round | und syste<br>s, groun | ems, hybrid g<br>ding of cable | rounds,<br>shields, |
| THEORY                                                                                                                                                                                                                                         | 45                               |                             | TUTORIAL                                                | 0                     |                                  | PRACTICAL                               | 0               |                       | TOTAL                          | 45                  |
| BOOK REI                                                                                                                                                                                                                                       | FEREN                            | ICES                        |                                                         |                       |                                  |                                         |                 |                       |                                |                     |
| 1 Howard                                                                                                                                                                                                                                       | Johnso                           | on, Ma                      | artin Graham, "H                                        | ligh                  | speed Dig                        | gital design", Pear                     | son, 2          | .005                  |                                |                     |
| 2 Hall S,<br>Theory                                                                                                                                                                                                                            | Hall (<br>and Pra                | G and actices               | McCall J, "Hi<br>s", Wiley Intersc                      | gh S<br>sience        | peed Dig<br>e,2000.              | gital System Desi                       | gn: A           | A Handb               | oook of Inter                  | connect             |
| 3 Hartmut                                                                                                                                                                                                                                      | Grabi                            | nski, '                     | Interconnects i                                         | n VL                  | SI design                        | ", Kluwer, 2000.                        |                 |                       |                                |                     |
| 4 Goel A                                                                                                                                                                                                                                       | К , "Ні                          | igh sp                      | eed VLSI interc                                         | onne                  | ctions", V                       | Viley 2007.                             |                 |                       |                                |                     |
| 5 Bogatin                                                                                                                                                                                                                                      | E "Sig                           | onal ir                     | ntegrity-simplifi                                       | ed" 1                 | Prentice F                       | Hall 2003                               |                 |                       |                                |                     |

5 Bogatin E, "Signal integrity-simplified", Prentice Hall, 2003
6 Paul CR, "Introduction t Electromagnetic compatibility", Wiley 2006.

| 01 | OTHER REFERENCES                                                  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------|--|--|--|--|--|--|
| 1  | http://www.digimat.in/nptel/courses/video/117106089/L36.html      |  |  |  |  |  |  |
| 2  | https://nptel.ac.in/courses/117/106/117106089/                    |  |  |  |  |  |  |
| 3  | http://www.nptelvideos.in/2012/12/high-speed-devices-circuit.html |  |  |  |  |  |  |
| 4  | https://www.digimat.in/nptel/courses/video/117106089/L01.html     |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name             | L | Т | Р | С |
|----------|---------------------|----------------|-------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2E3        | DSP INTEGRATED CIRCUITS | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                |              |                   |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------|--------------|-------------------|--|--|--|--|--|--|--|
| Α   | fter Successful completion of the course, the students should be able to                      | RBT<br>Level | Topics<br>Covered |  |  |  |  |  |  |  |
| CO1 | To understand the concepts of DSP and DSP algorithms                                          | K2           | 1,2               |  |  |  |  |  |  |  |
| CO2 | To Analyze Multirate systems and finite word length effects                                   | K4           | 3                 |  |  |  |  |  |  |  |
| CO3 | To Analyze the filters Specifications in DSP Processors                                       | K4           | 3                 |  |  |  |  |  |  |  |
| CO4 | To Analyze the basic DSP processor architectures and the synthesis of the processing elements | K4           | 4                 |  |  |  |  |  |  |  |
| CO5 | To evaluate the numbering systems in DSP Processors                                           | K5           | 5                 |  |  |  |  |  |  |  |
| CO6 | To Design a new DSP algorithms for different input numbering system                           | K6           | 5                 |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 - Weak, 2 - Medium, 3 - Strong) |     |      |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs |                                                    |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |
|     | PO1                                                | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                  | 2   | 2    | 2   | 2   |     |     |     |     | 3    |      |      |      | 3    |
| CO2 | 2                                                  | 3   | 2    | 2   |     |     | 2   |     |     | 3    | 3    |      |      | 3    |
| CO3 | 2                                                  | 3   | 2    | 2   | 1   |     |     | 2   |     | 2    |      |      |      | 2    |
| CO4 | 1                                                  | 3   | 2    | 2   |     |     | 2   |     |     | 1    | 3    |      |      | 2    |
| CO5 | 2                                                  | 2   | 3    | 2   | 1   |     |     |     |     | 2    |      |      |      | 1    |
| CO6 | 1                                                  | 2   | 2    | 3   |     | 3   |     |     |     | 2    |      |      |      | 3    |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |  |
|          | 2                         | Assignment                  |  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                  |                                       | CO             | URSE C                 | ONTENT                                  |                 |                     |                                |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------------------------|----------------|------------------------|-----------------------------------------|-----------------|---------------------|--------------------------------|--------------------|
| Т                                                                                                                                                                                                                                                                                        | opic - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DS                      | SP IN            | TEGARTED C                            | IRC            | UITS AN                | D VLSI CIRCU                            | IT TE           | CHNO                | LOGIES                         | 9                  |
| Sta<br>- In                                                                                                                                                                                                                                                                              | ndard dig<br>itegrated o                                                                                                                                                                                                                                                                                                                                                                                                                                              | ital sig<br>circuit     | gnal p<br>desig  | rocessors - Appli<br>n - MOS transist | catio<br>ors - | on specific<br>MOS log | c IC's for DSP - D<br>ic - VLSI process | SP sy<br>techn  | /stems -<br>ologies | DSP system d                   | lesign             |
| Т                                                                                                                                                                                                                                                                                        | opic - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                  | DIO                                   | GIT            | AL SIGN                | AL PROCESSIN                            | IG              |                     |                                | 9                  |
| Digital signal processing - Sampling of analog signals - Selection of sample frequency - Signal process<br>systems - Frequency response - Transfer functions - Signal flow graphs - Filter structures- Adaptive D<br>algorithms - DFT - FFT - Image coding - Discrete cosine transforms. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                  |                                       |                |                        |                                         |                 |                     | ocessing<br>ve DSP             |                    |
| T                                                                                                                                                                                                                                                                                        | opic - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | DI               | GITAL FILTE                           | RS A           | ND FIN                 | ITE WORD LEN                            | IGTH            | I EFFE(             | CTS                            | 9                  |
| FIF<br>fun<br>Sar<br>Sca<br>and                                                                                                                                                                                                                                                          | FIR filters - FIR filter structures - IIR filters - Specifications of IIR filters - Mapping of analog transfer functions - Mapping of analog filter structures - Multirate systems - Interpolation with an integer factor L Sampling rate change with a ratio L/M - Multirate filters - Finite word length effects - Parasitic oscillations - Scaling of signal levels - Roundoff noise - Measuring round-off noise - Coefficient sensitivity - Sensitivity and noise |                         |                  |                                       |                |                        |                                         |                 |                     |                                |                    |
| Т                                                                                                                                                                                                                                                                                        | Topic - 4DSP ARCHITECTURES AND SYNTHESIS OF DSP ARCHITECTURES9                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                  |                                       |                |                        |                                         |                 |                     | 9                              |                    |
| DS<br>Wa<br>Imj                                                                                                                                                                                                                                                                          | DSP system architectures - Ideal DSP architectures - Multiprocessors and multicomputers - Systolic and<br>Wave front arrays - Shared memory architectures - Mapping of DSP algorithms onto hardware -<br>Implementation based on complex PEs - Shared memory architecture with Bit - serial PEs                                                                                                                                                                       |                         |                  |                                       |                |                        |                                         |                 |                     |                                |                    |
| T                                                                                                                                                                                                                                                                                        | opic - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | NUM              | IBER SYSTEM                           | <b>S -</b> A   | ARITHM<br>CIRCUI       | ETIC UNITS AN<br>T DESIGN               | ND IN           | ITEGAI              | RTED                           | 9                  |
| Cor<br>Bit<br>of                                                                                                                                                                                                                                                                         | nventiona<br>-Serial ar<br>VLSI circ                                                                                                                                                                                                                                                                                                                                                                                                                                  | l num<br>ithmet<br>uits | ber sy<br>ic - B | vstem - Redunda<br>asic shift accum   | ant N<br>ulato | Number sy<br>r - Reduc | ystem - Residue I<br>ing the memory s   | Numb<br>ize - ( | er Syste<br>Complex | m - Bit-paral<br>multipliers - | llel and<br>Layout |
| TH                                                                                                                                                                                                                                                                                       | IEORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                      |                  | TUTORIAL                              | 0              |                        | PRACTICAL                               | 0               |                     | TOTAL                          | 45                 |
| DO                                                                                                                                                                                                                                                                                       | OV DEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                  |                                       |                |                        |                                         |                 |                     |                                |                    |
| 1                                                                                                                                                                                                                                                                                        | Lars Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inham                   | mer, "           | DSP Integrated (                      | Circu          | its", Aca              | demic press, New                        | York            | , 1999.             |                                |                    |
| 2                                                                                                                                                                                                                                                                                        | Barrett I<br>Implicat                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hazelt                  | ine, L<br>Acade  | ars Wanhamman<br>mic Publishers,      | :, Ch<br>1999  | nristopher<br>)        | Bull, "Appropria                        | te Te           | chnology            | 7: Tools,Choi                  | ces and            |
| 3                                                                                                                                                                                                                                                                                        | A.V. Op                                                                                                                                                                                                                                                                                                                                                                                                                                                               | penhe                   | im et.           | al, "Discrete-time                    | e Sig          | gnal Proce             | essing", Pearson E                      | ducat           | ion, 200            | )                              |                    |
| 4                                                                                                                                                                                                                                                                                        | Keshab<br>& Sons,                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K.Parl<br>1999          | ni, "V           | LSI digital Signa                     | al Pr          | ocessing S             | Systems design an                       | d Im            | plement             | ation",JohnW                   | iley               |
| 5                                                                                                                                                                                                                                                                                        | Emman<br>Edition,                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uel C.<br>Prenti        | lfeach<br>ce Ha  | nor, Barrie W. Jen<br>11, 2001        | rvis,          | "Digital S             | Signal Processing,                      | A Pr            | actical A           | pproach", 2nd                  | d                  |
| 6                                                                                                                                                                                                                                                                                        | K. Padn<br>Processi                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nanabh<br>ing", N       | ian, S.<br>Iew A | Anandhi, R. Vi<br>ge International    | jaya<br>200    | rajeswara<br>1         | n "A Practical Ap                       | proac           | h to Digi           | tal Signal                     |                    |

| 01 | THER REFERENCES                                                     |
|----|---------------------------------------------------------------------|
| 1  | https://www.youtube.com/watch?v=tvOF1wIL7dw                         |
| 2  | https://www.youtube.com/watch?v=vcCpeNeavUM                         |
| 3  | https://www.youtube.com/watch?v=Iw77CYUT74c                         |
| 4  | https://www.youtube.com/watch?v=a4C5vpiBm4Q                         |
| 5  | https://www.youtube.com/watch?v=03j4ZvQCKWY&list=PL36E832F4CA46D233 |

| Semester | Programme           | Course<br>Code | Course Name | L | Т | Р | С |
|----------|---------------------|----------------|-------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN | 20MV2E4        | ASIC DESIGN | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                    |              |                   |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--------------|-------------------|--|--|--|--|--|--|--|--|
| A   | fter Successful completion of the course, the students should be able to                          | RBT<br>Level | Topics<br>Covered |  |  |  |  |  |  |  |  |
| CO1 | Describe the design flow, types and the programming technologies of an ASIC and its construction. | K1           | 1                 |  |  |  |  |  |  |  |  |
| CO2 | Ability to know ASIC interconnects, design software, synthesize and construct ASICs.              | K2           | 2                 |  |  |  |  |  |  |  |  |
| CO3 | Understand the basics of ASIC design flow and library design.                                     | K2           | 3                 |  |  |  |  |  |  |  |  |
| CO4 | Gain a well founded knowledge of logical cells and i/o cells.                                     | K3           | 4                 |  |  |  |  |  |  |  |  |
| CO5 | Apply various logic synthesis techniques, simulation and testing in digital system design.        | K5           | 5                 |  |  |  |  |  |  |  |  |
| CO6 | Implement the ASIC construction, floor planning, placement and routing.                           | K4           | 4,5               |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |      |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs |                                                    |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |
|     | PO1                                                | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 1   |      |     |     |     |     |     | 1   |      |      |      | 1    |      |
| CO2 | 3                                                  | 1   | 1    | 1   | 1   |     |     |     |     |      |      | 2    | 1    |      |
| CO3 | 3                                                  | 2   | 1    | 1   |     |     |     |     | 1   |      |      |      | 1    |      |
| CO4 | 3                                                  | 1   |      |     |     |     |     |     | 1   |      |      |      | 1    |      |
| CO5 | 3                                                  | 1   | 2    | 1   | 1   |     |     |     |     |      |      |      | 1    |      |
| CO6 | 3                                                  | 2   | 1    | 1   |     |     |     |     |     |      |      | 1    | 1    |      |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |  |
|          | 2                         | Assignment                  |  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| COURSE CONTENT                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 1     FUNDAMENTALS OF ASICs, CMOS LOGIC AND ASIC LIBRARY<br>DESIGN     9                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
| Types of ASICs - Design flow-CMOS Transistors CMOS Design Rules - Combinational Logic Cell -<br>Sequential Logic cell - Data path Logic Cell -Transistors as Resistors -Transistor Parasitic Capacitance-<br>Logical effort - Library Cell Design-Library Architecture. |  |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 2PROGRAMMABLE ASICs9                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |
| Anti fuse - Static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC and AC inputs and outputs - Clock and Power inputs - Xilinx I/O blocks                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 3     PROGRAMMABLE ASIC INTERCONNECT, DESIGN SOFTWARE AND LOW LEVEL DESIGN ENTRY     9                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |
| Actel ACT - Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX<br>- Design Systems - Logic Synthesis - Half gate ASIC - Schematic entry - Low level design language - PLA<br>tools - EDIF-CFI design representation                    |  |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 4LOGIC SYNTHESIS - SIMULATION AND TESTING9                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
| Verilog and Logic Synthesis -VHDL and Logic Synthesis - Types of Simulation - Boundary Scan Test -<br>Fault simulation - Automatic Test Pattern Generation.                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 5ASIC CONSTRUCTION9                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| System partition - FPGA partitioning - Partitioning methods - Floor planning - placement - Physical Design Flow - Global Routing - Detailed Routing - Special Routing - Circuit extraction – DRC.                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| THEORY45TUTORIALPRACTICAL0TOTAL45                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| BUUK KEFEKENCES                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |
| <sup>1</sup> Smith M.J.S., "Application Specific Integrated Circuits", Addison, Wesley Longman Inc., 1997.                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |

| 2 | Prentice Hall, 2003                                                                                 |
|---|-----------------------------------------------------------------------------------------------------|
| 3 | Rajsuman R., "System-on-a-Chip Design and Test", Santa Clara, CA, Artech HousePublishers, 2000.     |
| 4 | Wayne Wolf, "FPGA-Based System Design", Prentice Hall, 2004                                         |
| 5 | Nekoogar F., "Timing Verification of Application-Specific Integrated Circuits", Prentice Hall, 1999 |

| 01 | OTHER REFERENCES             |  |  |  |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1  | https://youtu.be/1m-jgtGetl4 |  |  |  |  |  |  |  |  |  |  |
| 2  | https://youtu.be/QP-4FlwNTvw |  |  |  |  |  |  |  |  |  |  |
| 3  | https://youtu.be/5fESTph5gA8 |  |  |  |  |  |  |  |  |  |  |
| 4  | https://youtu.be/mZItfJIEFMk |  |  |  |  |  |  |  |  |  |  |
| 5  | https://youtu.be/t3thKRqMK2M |  |  |  |  |  |  |  |  |  |  |

| Semester | Programme          | Course<br>Code | Course Name           | L | Т | Р | С |
|----------|--------------------|----------------|-----------------------|---|---|---|---|
| II       | M.E VLSI<br>DESIGN | 20MV2E5        | MICROSENSORS AND MEMS | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                                                                           |                   |           |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--|--|--|--|--|--|--|--|--|
| Α   | RBT<br>Level                                                                                                                                                             | Topics<br>Covered |           |  |  |  |  |  |  |  |  |  |
| CO1 | Ability to understand the operation of micro devices, micro systems and their applications.                                                                              | K2                | 1         |  |  |  |  |  |  |  |  |  |
| CO2 | Ability to design the micro devices, micro systems using the MEMS fabrication process.                                                                                   | K3                | 2         |  |  |  |  |  |  |  |  |  |
| CO3 | Gain knowledge of basic approaches for various sensor designs.                                                                                                           | K3                | 3         |  |  |  |  |  |  |  |  |  |
| CO4 | Gain a knowledge of basic approaches for various actuator design                                                                                                         | K3                | 4         |  |  |  |  |  |  |  |  |  |
| CO5 | Develop experience on micro system for photonics                                                                                                                         | K4                | 5         |  |  |  |  |  |  |  |  |  |
| CO6 | Gain the technical knowledge required for computer-aided design, fabrication, analysis and characterization of nano-structured materials, micro- and nano-scale devices. | K4                | 1,2,3,4,5 |  |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      | PSOs |      |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 1   |     |     |     |     |     |     | 1   |      |      |      | 1    |      |
| CO2 | 3                                                  | 1   |     |     |     |     |     |     |     |      |      | 2    | 1    |      |
| CO3 | 3                                                  | 2   | 1   | 1   |     |     |     |     | 1   |      |      |      | 1    |      |
| CO4 | 3                                                  | 1   |     |     |     |     |     |     | 1   |      |      |      | 1    |      |
| CO5 | 3                                                  | 1   |     |     |     |     |     |     |     |      |      |      | 1    |      |
| CO6 | 3                                                  | 2   | 1   | 1   |     |     |     |     |     |      |      | 1    | 1    |      |

| COURSE ASSESSMENT METHODS                            |   |                           |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------|---|---------------------------|--|--|--|--|--|--|--|--|--|
| DIRECT         1         Continuous Assessment Tests |   |                           |  |  |  |  |  |  |  |  |  |
|                                                      | 2 | Assignment                |  |  |  |  |  |  |  |  |  |
|                                                      | 3 | End Semester Examinations |  |  |  |  |  |  |  |  |  |
| INDIRECT                                             | 1 | Course End Survey         |  |  |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Topic - 1                                                                                                                                                                                                                                                                                                                                                                                                             | Topic - 1         MEMS AND MICROSYSTEMS           MEMS and Microsystems - Evaluation of micro fabrication - micro-systems and microelectro                                                                                                                                                                                                 |                                 |  |  |  |  |  |  |  |  |  |  |  |
| MEMS and Microsystems - Evaluation of micro fabrication - micro-systems and microelectronic applications - working principles of Microsystems - micro-sensors - micro actuators - micro accelerometer Scaling Laws In Miniaturization - scaling in geometry, rigid body dynamics, trimmer force, electrost forces, Electromagnetic forces, electricity and fluidic dynamics and heat -conducting and heat convection. |                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 2     MATERIALS FOR MEMS AND MICROSYSTEMS                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| Substrates and wafers - silicon as a substrate material - Ideal substrates for MEMS - single crystal silicon and wafers crystal structure - mechanical properties of Si, silicon compounds, SiO2, SiC, Si3N4 and polycrystalline Silicon - silicon piezo resistors, gallium arsenide, quartz, piezoelectric crystals - polymers for MEMS - conductive polymers.                                                       |                                                                                                                                                                                                                                                                                                                                            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 3                                                                                                                                                                                                                                                                                                                                                                                                             | MICRO SENSORS                                                                                                                                                                                                                                                                                                                              | 9                               |  |  |  |  |  |  |  |  |  |  |  |
| Introduction<br>sensors - mo                                                                                                                                                                                                                                                                                                                                                                                          | to micro-sensors - biomedical sensors - pressure sensors - thermal sensors - chemical ptical sensors - micro-actuation - MEMS with micro actuators.                                                                                                                                                                                        |                                 |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 4                                                                                                                                                                                                                                                                                                                                                                                                             | ENGINEERING MECHANICS FOR MICROSYSTEMS DESIGN                                                                                                                                                                                                                                                                                              | 9                               |  |  |  |  |  |  |  |  |  |  |  |
| Static bendin<br>square plate<br>design theor<br>intensity fact                                                                                                                                                                                                                                                                                                                                                       | ng of thin plates - circular plates with edge fixed - rectangular plates with all edges fix<br>s with all edges fixed - Mechanical vibration - resonant vibration - micro acceleron<br>y of damping coefficients - Thermo mechanics - thermal stresses - Fracture mechanics<br>tors - fracture toughness and interfacial fracture machine. | ced and<br>neters -<br>- stress |  |  |  |  |  |  |  |  |  |  |  |
| Topic - 5                                                                                                                                                                                                                                                                                                                                                                                                             | MICROSYSTEM DESIGN                                                                                                                                                                                                                                                                                                                         | 9                               |  |  |  |  |  |  |  |  |  |  |  |
| Design constransduction<br>mechanical of                                                                                                                                                                                                                                                                                                                                                                              | siderations - design constraints - selection of materials - manufacturing process -<br>- packaging - process design - photolithography - Thin film fabrications - geometry s<br>design - design of silicon die for micro-pressure sensor                                                                                                   | signal<br>shaping               |  |  |  |  |  |  |  |  |  |  |  |
| THEORY                                                                                                                                                                                                                                                                                                                                                                                                                | 45 TUTORIAL 0 PRACTICAL 0 TOTAL                                                                                                                                                                                                                                                                                                            | 45                              |  |  |  |  |  |  |  |  |  |  |  |
| BOOK REF                                                                                                                                                                                                                                                                                                                                                                                                              | TERENCES                                                                                                                                                                                                                                                                                                                                   |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 1 Tai Ran<br>Wiley an                                                                                                                                                                                                                                                                                                                                                                                                 | 1       Tai Ran Hsu, "MEMS & Micro systems Design, Manufacture and Nano scale Engineering"John Wiley and sons, New Jersey, 2nd Edition, 2008                                                                                                                                                                                               |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 2 Chang L                                                                                                                                                                                                                                                                                                                                                                                                             | iu, "Foundation of MEMS", Pearson Edition, 2nd Edition, 2011                                                                                                                                                                                                                                                                               |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 3 Stephen                                                                                                                                                                                                                                                                                                                                                                                                             | Beeby, Graham Ensell, "MEMS, Mechanical Sensors", Artech House Publishers, 2004.                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 4 Wanjun                                                                                                                                                                                                                                                                                                                                                                                                              | Wang, Steven A. Soper," Bio-MEMS Technologies and Applications", CRC Press                                                                                                                                                                                                                                                                 | ,2007.                          |  |  |  |  |  |  |  |  |  |  |  |
| 5 Sergey I                                                                                                                                                                                                                                                                                                                                                                                                            | Edward Lyshevski, "Nano and Micro Electro Mechanical System", CRC Press, 2001                                                                                                                                                                                                                                                              |                                 |  |  |  |  |  |  |  |  |  |  |  |

| 01 | OTHER REFERENCES             |  |  |  |  |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| 1  | https://youtu.be/t3thKRqMK2M |  |  |  |  |  |  |  |  |  |  |  |
| 2  | https://youtu.be/TtAsMwhVcAs |  |  |  |  |  |  |  |  |  |  |  |
| 3  | https://youtu.be/QVBgKAZIvpI |  |  |  |  |  |  |  |  |  |  |  |
| 4  | https://youtu.be/98gmOUItrPk |  |  |  |  |  |  |  |  |  |  |  |
| 5  | https://youtu.be/0PLyBaZ6MCU |  |  |  |  |  |  |  |  |  |  |  |

| Semester | Programme Course Code |         | Course Name                        | L | Т | Р | С |
|----------|-----------------------|---------|------------------------------------|---|---|---|---|
| II       | M.E. VLSI<br>DESIGN   | 20MV2E6 | ADVANCED EMBEDDED SYSTEM<br>DESIGN | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                   |                   |       |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------|-------------------|-------|--|--|--|--|--|--|--|--|
| Α   | RBT<br>Level                                                                                                     | Topics<br>Covered |       |  |  |  |  |  |  |  |  |
| CO1 | Explain and articulate the basic concepts related to embedded hardware.                                          | K2                | 1,3   |  |  |  |  |  |  |  |  |
| CO2 | Apply the Real time operating system in embedded system                                                          | K3                | 2     |  |  |  |  |  |  |  |  |
| CO3 | Compare hardware and software relation and rate to their performance of peripherals.                             | K4                | 3     |  |  |  |  |  |  |  |  |
| CO4 | Analyse the memory and interfacing of embedded system                                                            | K4                | 4     |  |  |  |  |  |  |  |  |
| CO5 | Evaluate the situation based on concurrent process model and hardware, software co design to an embedded system. | K5                | 3,5   |  |  |  |  |  |  |  |  |
| CO6 | Design a embedded equipment for given application                                                                | K6                | 2,3,4 |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |                                   |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COa |                                                    | Programme Learning Outcomes (POs) |     |     |     |     |     |     |     |      |      |      |      |      |
| COS | PO1                                                | PO2                               | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                  | 2                                 |     |     |     |     |     |     |     |      |      |      | 2    | 2    |
| CO2 | 3                                                  | 2                                 | 3   |     | 3   |     |     |     |     |      | 2    |      | 2    |      |
| CO3 | 2                                                  | 2                                 |     |     |     | 2   |     |     |     |      |      |      |      |      |
| CO4 | 3                                                  |                                   | 2   |     |     |     |     | 2   |     |      |      |      | 2    |      |
| CO5 | 2                                                  | 2                                 | 3   |     |     |     | 1   |     |     |      |      |      | 2    |      |
| CO6 |                                                    | 2                                 | 2   | 2   |     |     |     |     |     |      | 2    |      | 2    |      |

|                                      | COURSE ASSESSMENT METHODS |                           |  |  |  |  |  |  |  |  |
|--------------------------------------|---------------------------|---------------------------|--|--|--|--|--|--|--|--|
| DIRECT 1 Continuous Assessment Tests |                           |                           |  |  |  |  |  |  |  |  |
|                                      | 2                         | Assignment                |  |  |  |  |  |  |  |  |
|                                      | 3                         | End Semester Examinations |  |  |  |  |  |  |  |  |
| INDIRECT                             | 1                         | Course End Survey         |  |  |  |  |  |  |  |  |

|                                 | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                     |                                               |                                      |                               |                                               |                                                 |                                        |                                   |                                         |                                                |                                |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------|
| T                               | opic - 1                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                     | INT                                           | RODU                                 | CTI                           | ON TO E                                       | MBEDD                                           | ED HA                                  | RDW                               | ARE                                     |                                                | 9                              |
| Ter<br>Bu<br>trer               | Terminology - Gates - Timing diagram - Memory - Microprocessor buses - Direct memory access Interrupts-<br>Built interrupts - Interrupts basis - Shared data problems - Interrupt latency - Embedded system evolution<br>trends - Round robin - Round robin with interrupt function - Rescheduling architecture - algorithm                                                                                                   |                                         |                                     |                                               |                                      |                               |                                               |                                                 |                                        |                                   |                                         |                                                |                                |
| T                               | opic - 2                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                     |                                               | REA                                  | L TI                          | IME OPI                                       | ERATIN                                          | G SYST                                 | EM                                |                                         |                                                | 9                              |
| Tas<br>que<br>Bas               | Task and Task states - Task and data - Semaphore and shared data operating system services - Message queues timing functions - Events - Memory management - Interrupt routines in an RTOS environment - Basic design using RTOS                                                                                                                                                                                               |                                         |                                     |                                               |                                      |                               |                                               |                                                 |                                        |                                   |                                         |                                                |                                |
| T                               | Topic - 3       EMBEDDED HARDWARE, SOFTWARE AND PERIPHERALS                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                     |                                               |                                      |                               |                                               |                                                 |                                        |                                   | 9                                       |                                                |                                |
| Cua<br>des<br>Env<br>Pul<br>Rea | Custom single purpose processors: Hardware - Combination Sequence - Processor design - RT level design - optimizing software: Basic Architecture - Operation - Programmers view - Development Environment - ASIP - Processor Design - Peripherals - Timers, counters and watch dog timers - UART - Pulse width modulator - LCD controllers - Key pad controllers - Stepper motor controllers - A/D converters-Real time clock |                                         |                                     |                                               |                                      |                               |                                               |                                                 |                                        |                                   |                                         |                                                |                                |
| T                               | opic - 4                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                     |                                               | Μ                                    | EMO                           | ORY AN                                        | D INTEF                                         | RFACIN                                 | ١G                                |                                         |                                                | 9                              |
| Me<br>RA<br>me<br>prc           | emory: M<br>M interf<br>mory acc<br>ptocols - D                                                                                                                                                                                                                                                                                                                                                                               | emory<br>acing o<br>ess - A<br>Digital  | write<br>comm<br>Arbitra<br>camer   | ability a<br>unication<br>ation mu<br>a examp | nd stor<br>n basic<br>ltilevel<br>le | age p<br>- M<br>bus           | berformar<br>icroproce<br>architectu          | ace - Men<br>essor inter<br>are - Seri          | nory typ<br>rfacing<br>al proto        | es - C<br>I/O ac<br>col - 1       | Composi<br>Idressin<br>Parallel         | ng memory A<br>g Interrupts ·<br>protocols - V | dvance<br>· Direct<br>Vireless |
| T                               | opic - 5                                                                                                                                                                                                                                                                                                                                                                                                                      | CON                                     | ICUR                                | RENT F                                        | PROCE                                | ESS N                         | MODELS<br>DE                                  | 5 AND H<br>SIGN                                 | ARDW                                   | ARE                               | SOFTW                                   | VARE CO -                                      | 9                              |
| Mo<br>mo<br>Syı<br>syr          | odes of op<br>dels -<br>nchroniza<br>nthesis - H                                                                                                                                                                                                                                                                                                                                                                              | peration<br>Concur<br>tion an<br>lardwa | n - Fin<br>rrent<br>nong<br>re soft | nite state<br>process<br>process<br>ware co   | machi<br>mode<br>Imple<br>simula     | nes -<br>1 -<br>emen<br>ation | Models<br>Concurre<br>tation - I<br>- IP core | - HCFSL<br>ent proce<br>Data Flow<br>s - Design | and sta<br>ess -Co<br>model<br>Process | te cha<br>ommu<br>. Desi<br>s Mod | rts lang<br>nication<br>gn techi<br>el. | uage - State 1<br>among pro<br>nology - Aut    | nachine<br>ocess -<br>omation  |
| TH                              | IEORY                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                      |                                     | TUTO                                          | RIAL                                 | 0                             |                                               | PRACT                                           | TICAL                                  | 0                                 |                                         | TOTAL                                          | 45                             |
| DC                              | OV DEI                                                                                                                                                                                                                                                                                                                                                                                                                        | TDE                                     | JCES                                |                                               |                                      |                               |                                               |                                                 |                                        |                                   |                                         |                                                |                                |
| 1                               | Steve H                                                                                                                                                                                                                                                                                                                                                                                                                       | eath. "]                                | Embe                                | lded Svs                                      | tem De                               | sign"                         | . 2nd Edi                                     | tion. New                                       | nes Pub                                | licatio                           | ons. 2004                               | 4.                                             |                                |
| 2                               | Frank V                                                                                                                                                                                                                                                                                                                                                                                                                       | ahid a                                  | nd To                               | ny Gwar                                       | gie, "Eı                             | mbed                          | ded Syste                                     | em Desigi                                       | n", 3rd E                              | Editior                           | ı "John V                               | Wiley & sons,                                  | 2009.                          |
| 3                               | David E                                                                                                                                                                                                                                                                                                                                                                                                                       | Simor                                   | n, "An                              | Embedd                                        | led Soft                             | tware                         | Primer",                                      | Pearson                                         | Educatio                               | on Asi                            | a, 7th Eo                               | dition, 2009.                                  |                                |
| 4                               | Rajkam                                                                                                                                                                                                                                                                                                                                                                                                                        | al, "En                                 | nbedd                               | ed Syste                                      | ems: Ar                              | chite                         | cture, Pr                                     | ogrammir                                        | ig and I                               | Design                            | ", 2nd I                                | Edition, Tata                                  |                                |

Arnold Berger, "Embedded System Design: An Introduction to Processes, Tools, and Techniques", CMP Books, 1st Edition, 2002. 5

| 01 | DTHER REFERENCES                                                  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1  | https://youtu.be/MfhTBeaDpQA                                      |  |  |  |  |  |  |  |
| 2  | http://www.brown.edu/Departments/Engineering/Labs/ddzo/async.html |  |  |  |  |  |  |  |
| 3  | https://youtu.be/7LqPJGnBPMM                                      |  |  |  |  |  |  |  |
| 4  | https://youtu.be/TP1_F3IVjBc                                      |  |  |  |  |  |  |  |
| 5  | https://youtu.be/84YUQu8tE4w                                      |  |  |  |  |  |  |  |

| Semester | Programme          | Course<br>Code | Course Name               | L | Т | Р | С   |
|----------|--------------------|----------------|---------------------------|---|---|---|-----|
| II       | M.E.<br>VLSIDESIGN | 20MV2L1        | VLSI DESIGN LABORATORY II | 0 | 0 | 3 | 1.5 |

| COURSE LEARNING OUTCOMES (COs) |                                                                                                                                                                                    |    |       |  |  |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|--|--|--|--|--|--|--|--|
| Afte                           | After Successful completion of the course, the students should be able to                                                                                                          |    |       |  |  |  |  |  |  |  |  |
| CO1                            | Perform power analysis, simulate the Memories using HDL and EDA Tools, design filters, simulate the CMOS Circuits in back end and analyze the nterconnect issues in VLSI Circuits. | K2 | 1     |  |  |  |  |  |  |  |  |
| CO2 I                          | Develop skills to communicate effectively                                                                                                                                          | K3 | 2,3,4 |  |  |  |  |  |  |  |  |
| CO3                            | Acquire knowledge about digital system design and implementation in FPGAs                                                                                                          | K3 | 5,6   |  |  |  |  |  |  |  |  |
| CO4                            | Analysis knowledge of various parameters by T-SPICE tool.                                                                                                                          | K5 | 7     |  |  |  |  |  |  |  |  |
| CO5 I                          | Design and implement the Embedded systems.                                                                                                                                         | K5 | 8     |  |  |  |  |  |  |  |  |
| <b>CO6</b>                     | Acquire knowledge of layout level design entries.                                                                                                                                  | K4 | 9,10  |  |  |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     |      |      |      |      | PSOs |  |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1 | 3                                                  | 2   | 2   | 2   | 2   |     | 1   |     | 1   |      |      |      | 2    | 2    |  |
| CO2 | 3                                                  | 2   | 2   | 1   | 2   |     | 1   |     |     |      |      | 1    | 1    |      |  |
| CO3 | 3                                                  | 2   | 1   | 1   | 2   |     | 1   |     | 1   |      |      | 1    | 2    |      |  |
| CO4 | 3                                                  | 2   | 1   | 1   | 1   |     | 1   |     |     |      |      | 1    | 2    |      |  |
| CO5 | 3                                                  | 1   | 1   | 1   | 1   |     | 1   |     |     |      |      | 1    | 2    |      |  |
| CO6 | 3                                                  | 2   | 1   | 1   | 1   |     | 1   |     |     |      |      | 1    | 2    |      |  |

| COURSE ASSESSMENT METHODS |   |                              |  |  |  |  |  |  |  |
|---------------------------|---|------------------------------|--|--|--|--|--|--|--|
| DIRECT                    | 1 | Laboratory Record            |  |  |  |  |  |  |  |
|                           | 2 | Model Practical Examinations |  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations    |  |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey            |  |  |  |  |  |  |  |

|     | LIST OF EXPERIMENTS                                           |                              |        |                  |       |            |                   |    |  |       |    |  |
|-----|---------------------------------------------------------------|------------------------------|--------|------------------|-------|------------|-------------------|----|--|-------|----|--|
| 1   | Desig                                                         | Design and simulation of ADC |        |                  |       |            |                   |    |  |       |    |  |
| 2   | Power analysis of Digital Circuits using HDL                  |                              |        |                  |       |            |                   |    |  |       |    |  |
| 3   | Design and Simulation of ROM and RAM model using HDL          |                              |        |                  |       |            |                   |    |  |       |    |  |
| 4   | Design and Simulation of analog filters                       |                              |        |                  |       |            |                   |    |  |       |    |  |
| 5   | Fault Simulation and Fault Diagnosis of digital circuits      |                              |        |                  |       |            |                   |    |  |       |    |  |
| 6   | Event Driven Simulation for gate level combinational circuits |                              |        |                  |       |            |                   |    |  |       |    |  |
| 7   | Desig                                                         | gn and                       | Simu   | lation of CMOS   | Digi  | tal Circui | ts using EDA tool | ls |  |       |    |  |
| 8   | Desig                                                         | gn and                       | Simu   | lation of SRAM   | and   | DRAM u     | sing EDA Tools    |    |  |       |    |  |
| 9   | Imple                                                         | ementa                       | tion o | of Task Scheduli | ng an | d Placem   | ent Algorithms    |    |  |       |    |  |
| 10  | Interconnects in VLSI circuits                                |                              |        |                  |       |            |                   |    |  |       |    |  |
| THE | ORY                                                           | 0                            |        | TUTORIAL         | 0     |            | PRACTICAL         | 45 |  | TOTAL | 45 |  |

| BC | OOK REFERENCES                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | VLSI Lab Manual - II, Al-Ameen Publications, 2020.                                                                                         |
| 2  | Neil H.E. Weste, David Money Harris —CMOS VLSI Design: A Circuits and SystemsPerspectivel, 4th Edition, Pearson, 2017                      |
| 3  | Jan M. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, IDigital Integrated Circuits: ADesign perspectiveI, Second Edition, Pearson, 2016. |

| 07 | THER REFERENCES                                                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1  | M.J. Smith, —Application Specific Integrated CircuitsI, Addisson Wesley, 1997                                                           |
| 2  | Sung-Mo kang, Yusuf leblebici, Chulwoo Kim —CMOS Digital Integrated Circuits:Analysis & Design I,4th edition McGraw Hill Education,2013 |
| 3  | Wayne Wolf, —Modern VLSI Design: System On Chipl, Pearson Education, 2007                                                               |
| 4  | R.Jacob Baker, Harry W.LI., David E.Boyee, —CMOS Circuit Design, Layout and Simulation <sup>II</sup> , Prentice Hall of India 2005.     |

## **SEMESTER III**

| Sl.<br>No. | Course<br>Code           | Course Title             | Cate<br>gory | CIA | ESE      | L | Т | Р  | С  |
|------------|--------------------------|--------------------------|--------------|-----|----------|---|---|----|----|
|            | THEORY                   |                          |              |     |          |   |   |    |    |
| 1          | 20MV3E1<br>to<br>20MV3E3 | Professional Elective-IV | PE           | 50  | 50       | 3 | 0 | 0  | 3  |
| 2          | 20MV3E4<br>to<br>20MV3E6 | Professional Elective-V  | PE           | 50  | 50       | 3 | 0 | 0  | 3  |
|            | LABORATO                 | RY                       |              |     | <u> </u> |   |   |    |    |
| 3          | 20MV3L1                  | Project work Phase –I    | EEC          | 50  | 50       | 0 | 0 | 20 | 10 |
|            |                          | 6                        | 0            | 20  | 16       |   |   |    |    |

| Semester | Programme           | Course<br>Code | Course Name     | L | Т | Р | С |
|----------|---------------------|----------------|-----------------|---|---|---|---|
| III      | M.E. VLSI<br>DESIGN | 20MV3E1        | DATA CONVERTERS | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                         |    |         |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|----|---------|--|--|--|--|--|--|--|
| А   | After Successful completion of the course, the students should be able to              |    |         |  |  |  |  |  |  |  |
| CO1 | Explain and articulate the basic concept of sample and hold circuits.                  | K2 | 1       |  |  |  |  |  |  |  |
| CO2 | Design switched capacitor circuits and comparators.                                    | K6 | 2       |  |  |  |  |  |  |  |
| CO3 | Analyze various Digital to Analog Circuits with its performance.                       | K4 | 3       |  |  |  |  |  |  |  |
| CO4 | Analyze various Analog to Digital Circuits with its performance.                       | K4 | 4       |  |  |  |  |  |  |  |
| CO5 | Generalize the different types of precision techniques used in electronic circuits     | K4 | 5       |  |  |  |  |  |  |  |
| CO6 | Evaluate a situation based on application & recommended a suitable converter circuits. | K5 | 1,2,3,4 |  |  |  |  |  |  |  |

|     |                                   |     |     | <b>CO</b> / | PO M. | APPIN | <b>G</b> (1 – V | Veak, 2 – | Medium | ı, 3 – Stron | ıg)  |      |      |      |
|-----|-----------------------------------|-----|-----|-------------|-------|-------|-----------------|-----------|--------|--------------|------|------|------|------|
| COg | Programme Learning Outcomes (POs) |     |     |             |       |       |                 |           |        |              |      |      | PSOs |      |
| COS | PO1                               | PO2 | PO3 | PO4         | PO5   | PO6   | PO7             | PO8       | PO9    | PO10         | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                 |     |     |             | 2     |       |                 |           |        |              |      |      |      |      |
| CO2 | 3                                 | 2   |     | 2           |       |       |                 |           |        |              |      |      | 1    |      |
| CO3 | 2                                 | 2   | 2   |             |       |       |                 |           |        |              |      |      | 1    | 1    |
| CO4 | 2                                 | 2   | 2   |             |       |       |                 |           |        |              |      |      | 1    | 1    |
| CO5 | 3                                 | 3   |     | 2           | 2     |       | 2               |           |        |              |      | 2    |      |      |
| CO6 | 3                                 |     | 2   |             | 2     | 2     |                 | 2         |        |              |      | 2    | 1    | 1    |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         |               |            |                               |         |                    |                |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|---------------|------------|-------------------------------|---------|--------------------|----------------|---------|
| Topic - 1                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE AND HOLD CIRCUITS                    |                                         |               |            |                               |         |                    | 9              |         |
| Sampling switches, Conventional open loop and closed loop sample and hold architecture, Open architecture with miller compensation, multiplexed input architectures, recycling architecture switc capacitor architecture. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         |               |            |                               |         | en loop<br>witched |                |         |
| Topic - 2                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWITCHED CAPACITOR CIRCUITS AND COMPARATORS |                                         |               |            |                               |         |                    | 9              |         |
| Switched capacitor amplifiers, switched capacitor integrator, switched capacitor common mode feedback<br>Single stage amplifier as comparator, cascaded amplifier stages as comparator, latched comparators.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         |               |            | dback.                        |         |                    |                |         |
| Topic - 3                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | DIGIT                                   | 'AL '         | ΓΟ ANA     | LOG CONVER                    | rers    |                    |                | 9       |
| Performance<br>ladder DAC                                                                                                                                                                                                 | metric<br>archite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cs, refe<br>ecture                          | erence multiplica<br>, current steering | ation<br>g DA | and divis  | ion, switching and<br>ecture. | l logic | functior           | is in DAC, Re  | esistor |
| Topic - 4                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | ANAL                                    | <b>O</b> G'   | TO DIGI    | TAL CONVER                    | TERS    |                    |                | 9       |
| Performance<br>Time interle                                                                                                                                                                                               | e metri<br>aved a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c, Fla<br>rchite                            | sh architecture, cture.                 | Pipe          | elined Arc | chitecture, Succes            | ssive   | approxin           | nation archite | ecture, |
| Topic - 5                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                         | PRE           | CISION     | TECHNIQUES                    |         |                    |                | 9       |
| Comparator digital corre                                                                                                                                                                                                  | offset of the of | cance                                       | llation, Op Amp                         | offs          | et cancell | ation, Calibration            | techr   | niques, ra         | ange overlap : | and     |
| THEORY                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | TUTORIAL                                | 0             |            | PRACTICAL                     | 0       |                    | TOTAL          | 45      |

| BC | OOK REFERENCES                                                                                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Behzad Razavi, "Principles of data conversion system design", IEEE Press, 1995.                                                                                           |
| 2  | Walter Allan Kester, "The Data Conversion Hand Book", Analog Devices Inc., 2005.                                                                                          |
| 3  | Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2008.                                                                                       |
| 4  | Franco Malobert, "Data Converters" Springer Publications, 2007.                                                                                                           |
| 5  | Arthur van Roermund, Herman Casier, Michiel Steyae, "Analog Circuit Design: Smart Data Converters, Filters on Chip, Multimode Transmitters", Springer Publications, 2010. |
| 6  | Mikael Gustavsson, J. Jacob Wikner, Nianxiong Tan, "CMOS Data Converters forCommunications", Kluwer Academic Publishers, 2002.                                            |

| 07 | OTHER REFERENCES                                  |  |  |  |  |  |  |
|----|---------------------------------------------------|--|--|--|--|--|--|
| 1  | https://www.youtube.com/watch?v=e9OEp5lJA4U       |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=fSz3z85aWfE       |  |  |  |  |  |  |
| 3  | https://www.youtube.com/watch?v=icxvLWEOzEA&t=29s |  |  |  |  |  |  |
| 4  | https://www.youtube.com/watch?v=kkZhaDw3DUM       |  |  |  |  |  |  |
| 5  | https://www.youtube.com/watch?v=SAcVlreweOc       |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name     | L | Т | Р | С |
|----------|---------------------|----------------|-----------------|---|---|---|---|
| III      | M.E. VLSI<br>DESIGN | 20MV3E2        | VLSI TECHNOLOGY | 3 | 0 | 0 | 3 |

|            | COURSE LEARNING OUTCOMES (COs)                                                                                                                                              |    |           |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|--|--|--|--|--|--|--|
| Α          | After Successful completion of the course, the students should be able to                                                                                                   |    |           |  |  |  |  |  |  |  |
| CO1        | Describe the suitable crystal structure for VLSI devices, crystal growth conditions and suitable method used for particular impurity doping.                                | K2 | 1         |  |  |  |  |  |  |  |
| CO2        | Explain the Building layers of IC using various processing like diffusion, metallization, oxidation, epitaxial, etching lithography and fabrication of devices and circuits | K2 | 2         |  |  |  |  |  |  |  |
| CO3        | Explain process simulation.                                                                                                                                                 | K2 | 3         |  |  |  |  |  |  |  |
| CO4        | Explain VLSI process integration.                                                                                                                                           | K2 | 4         |  |  |  |  |  |  |  |
| CO5        | Analyze Metallization and Oxidation.                                                                                                                                        | K4 | 5         |  |  |  |  |  |  |  |
| <b>CO6</b> | Explain packaging of VLSI devices.                                                                                                                                          | K2 | 1,2,3,4,5 |  |  |  |  |  |  |  |

# PRE-REQUISITE VLSI DESIGN

|     |                                   |     |     | <b>CO</b> /2 | PO M | APPIN | G (1 – V | Veak, 2 – | Medium | , 3 – Stron | g)   |      |      |      |
|-----|-----------------------------------|-----|-----|--------------|------|-------|----------|-----------|--------|-------------|------|------|------|------|
| 00  | Programme Learning Outcomes (POs) |     |     |              |      |       |          |           |        |             |      |      | PSOs |      |
| COS | PO1                               | PO2 | PO3 | PO4          | PO5  | PO6   | PO7      | PO8       | PO9    | PO10        | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                 | 2   | 2   |              |      |       | 2        |           | 2      |             |      |      | 2    |      |
| CO2 | 3                                 | 2   | 2   |              |      | 2     |          |           |        | 2           |      |      |      | 2    |
| CO3 | 3                                 | 2   |     |              | 2    |       |          | 2         | 2      |             | 2    |      |      |      |
| CO4 | 3                                 | 2   |     |              |      |       | 2        |           | 2      |             |      |      |      | 2    |
| CO5 | 3                                 | 2   | 3   | 2            |      | 2     |          |           |        |             |      | 2    | 2    |      |
| CO6 | 3                                 | 1   |     |              |      |       |          |           |        | 2           |      |      |      |      |

| COURSE ASSESSMENT METHODS |   |                             |  |  |  |  |  |  |  |
|---------------------------|---|-----------------------------|--|--|--|--|--|--|--|
| DIRECT                    | 1 | Continuous Assessment Tests |  |  |  |  |  |  |  |
|                           | 2 | Assignment                  |  |  |  |  |  |  |  |
|                           | 3 | End Semester Examinations   |  |  |  |  |  |  |  |
| INDIRECT                  | 1 | Course End Survey           |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                   |                 |                   |                                     | со              | URSE C                  | ONTENT                                |                 |                              |                               |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------------------------|-----------------|-------------------------|---------------------------------------|-----------------|------------------------------|-------------------------------|----------------------|
| Topic - 1                                                                                                                                                                                                                                                                                                                                                                         |                 |                   | MATERIAL                            | PRO             | OPERTI                  | ES & CRYSTAL                          | GRO             | OWTH                         |                               | 9                    |
| Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing consideration, Vap phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial Evaluation, Growth Mechan and kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxide properties, Redistribution Dopants at interface, Oxidation of Poly Silicon, Oxidation induced Defects. |                 |                   |                                     |                 |                         |                                       |                 | Vapour<br>chanism<br>tion of |                               |                      |
| Topic - 2                                                                                                                                                                                                                                                                                                                                                                         |                 |                   | LITHOGRAP                           | HY A            | AND REI                 | LATIVE PLASN                          | IA ET           | <b>CCHIN</b>                 | 3                             | 9                    |
| Analysis of<br>Primitive Ficircuits.                                                                                                                                                                                                                                                                                                                                              | asyncl<br>ow Ta | hronou<br>able -  | is sequential cir<br>State Reductio | cuit<br>ns a    | - Cycles<br>nd State    | - Races - Static,<br>Assignment - D   | Dyna<br>esign   | amic and<br>of asyr          | d Essential h<br>nchronous se | azards -<br>quential |
| Topic - 3                                                                                                                                                                                                                                                                                                                                                                         |                 |                   | DEPOSITIC                           | )N, I           | DIFFUSI                 | ON AND META                           | LISA            | TION                         |                               | 9                    |
| Deposition process, Polysilicon, plasma assisted Deposition, Models of Diffusion in Solids, Flick's one dimensional Diffusion Equation - Atomic Diffusion Mechanism - Measurement techniques - Range theory- Implant equipment. Annealing Shallow junction - High energy implantation - Physical vapour deposition Patterning.                                                    |                 |                   |                                     |                 |                         | ck's one<br>Range<br>vapour           |                 |                              |                               |                      |
| Topic - 4                                                                                                                                                                                                                                                                                                                                                                         |                 | PRC               | OCESS SIMUL                         | ATIO            | ON AND                  | VLSI PROCESS                          | S INT           | EGRAT                        | TION                          | 9                    |
| Ion implanta<br>Technology<br>Fabrication.                                                                                                                                                                                                                                                                                                                                        | ation -<br>- CM | Diffu<br>OS IO    | sion and oxidati<br>C Technology    | on -<br>· M(    | Epitaxy -<br>DS Memo    | - Lithography - E<br>ory IC technolog | tching<br>y - H | g and De<br>Bipolar 1        | eposition- NN<br>IC Technolog | AOS IC<br>gy - IC    |
| Topic - 5                                                                                                                                                                                                                                                                                                                                                                         |                 | ASSE              | MBLY TECHN                          | JQU             | JES AND                 | PACKAGING                             | OF V            | LSI DE                       | VICES                         | 9                    |
| Analytical E consideration                                                                                                                                                                                                                                                                                                                                                        | Beams<br>n - VL | - Bear<br>SI asse | ns Specimen in<br>embly technolog   | terac<br>y - Pa | tions - Cl<br>ackage fa | hemical methods<br>brication technolo | - Paclogy.      | kage typ                     | es - banking                  | design               |
| THEORY                                                                                                                                                                                                                                                                                                                                                                            | 45              |                   | TUTORIAL                            | 0               |                         | PRACTICAL                             | 0               |                              | TOTAL                         | 45                   |
| BOOK REI                                                                                                                                                                                                                                                                                                                                                                          | FERE            | NCES              |                                     |                 |                         |                                       |                 |                              |                               |                      |

| RC | JOK REFERENCES                                                                             |
|----|--------------------------------------------------------------------------------------------|
| 1  | M.Sze, "VLSI Technology", Mc.Graw.Hill Second Edition. 2002.                               |
| 2  | Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI Design", Prentice Hall India, 2003. |
| 3  | Amar Mukherjee, "Introduction to NMOS and CMOS VLSI System design Prentice HallIndia,2000. |
| 4  | Wayne Wolf, "Modern VLSI Design", Prentice Hall India, 1998.                               |

| O | THER REFERENCES                                                                         |
|---|-----------------------------------------------------------------------------------------|
| 1 | https://www.youtube.com/watch?v=WmK1bi-nKFE&list=PLXnsjPD8-<br>xuusZCiPKxAirmifNKoOu45X |
| 2 | https://www.youtube.com/watch?v=_EuN1CP8QeQ                                             |
| 3 | https://www.youtube.com/watch?v=VIJGa2MVn-k                                             |

| Semester | Programme           | Course<br>Code | Course Name                       | L | Т | Р | С |
|----------|---------------------|----------------|-----------------------------------|---|---|---|---|
| III      | M.E. VLSI<br>DESIGN | 20MV3E3        | VLSIFOR WIRELESS<br>COMMUNICATION | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                                      |    |           |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|----|-----------|--|--|--|--|--|--|
| Α   | After Successful completion of the course, the students should be able to                                                           |    |           |  |  |  |  |  |  |
| CO1 | Explain different Modulation techniques, Spread Spectrum and Receiver Architecture.                                                 | K3 | 1         |  |  |  |  |  |  |
| CO2 | Describe the VLSI Architecture for Wireless Systems.                                                                                | K5 | 2         |  |  |  |  |  |  |
| CO3 | Design the various filters.                                                                                                         | K5 | 3         |  |  |  |  |  |  |
| CO4 | Explain Matching Networks.                                                                                                          | K4 | 4         |  |  |  |  |  |  |
| CO5 | Explain the various types of modulators and synthesizer.                                                                            | K4 | 5         |  |  |  |  |  |  |
| CO6 | Analyze the concepts of Low Noise Amplifier, Analog to Digital Converters & Synthesizer and VLSI architecture for Wireless Systems. | K4 | 1,2,3,4,5 |  |  |  |  |  |  |

|     | CO / PO MAPPING (1 - Weak, 2 - Medium, 3 - Strong) |      |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs |                                                    | PSOs |     |     |     |     |     |     |     |      |      |      |      |      |
| 005 | PO1                                                | PO2  | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 2    |     |     | 2   |     |     |     | 2   | 2    |      |      | 2    |      |
| CO2 | 3                                                  | 2    |     |     |     |     | 2   |     |     |      | 2    | 2    |      | 2    |
| CO3 | 3                                                  | 2    | 2   | 2   |     |     |     | 2   | 2   |      |      |      |      |      |
| CO4 | 3                                                  | 3    |     |     |     | 2   |     | 2   | 2   | 2    |      |      |      |      |
| CO5 | 3                                                  | 2    |     |     | 2   |     |     |     |     |      |      |      | 2    |      |
| CO6 | 3                                                  | 2    | 2   | 2   |     |     | 2   |     |     |      |      | 2    |      |      |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |  |
|          | 2                         | 2 Assignment                |  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |  |

|                                                     | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                   |                                           |                       |                                 |                                                           |                       |                                  |                                         |                               |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------------------|-----------------------|---------------------------------|-----------------------------------------------------------|-----------------------|----------------------------------|-----------------------------------------|-------------------------------|
| Тор                                                 | ic - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                   |                                           |                       | INTRO                           | DUCTION                                                   |                       |                                  |                                         | 9                             |
| Revie<br>Gauss<br>Equat<br>Fadin<br>of DS<br>interf | Review of Modulation Schemes - BFSK- BPSK -QPSK - OQPSK - Classical Channel - Additive White Gaussian Noise - Finite Channel Bandwidth - Wireless Channel - Path Environment - Path Loss - Friis Equation - Multipath Fading - Channel Model - Envelope Fading - Frequency Selective Fading - Fast Fading - Comparison of different types of Fading- Review of Spread Spectrum - DSSS - FHSS- Principle of DSSS - Modulation - Demodulation - Performance in the presence of noise - narrowband and wideband interferences. |                               |                                   |                                           |                       |                                 |                                                           |                       |                                  |                                         |                               |
| Тор                                                 | ic - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                   | F                                         | RECI                  | EIVER A                         | RCHITECTURE                                               | C                     |                                  |                                         | 9                             |
| Recei<br>Filter<br>Paran<br>Block                   | Receiver Front End - Motivations - General Design Philosophy- Heterodyne and Other architectures -<br>Filter Design - Band Selection Filter - Image Rejection Filter - Channel Filter - Non idealities and Design<br>Parameters - Harmonic Distortion - Intermodulation - Cascaded Nonlinear Stages - Gain Compression -<br>Blocking - Noise - Noise Sources - Noise Figure - Design of Front end parameter for DECT.                                                                                                       |                               |                                   |                                           |                       |                                 |                                                           |                       |                                  |                                         |                               |
| Тор                                                 | ic - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                   |                                           | LO                    | W NOIS                          | E AMPLIFIER                                               |                       |                                  |                                         | 9                             |
| Low<br>Imple<br>Narro<br>Desig                      | Noise<br>ementat<br>owband<br>gns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amplifi<br>ion -<br>LNA       | ier - Ma<br>Compar<br>- Imped     | tching Netw<br>ison of Na<br>ance matchi  | orks<br>rrow<br>ng -  | - Matchi<br>band and<br>Power m | ing for Noise and<br>I Wideband LNA<br>atching- Salient f | Stab<br>A -<br>featur | ility - M<br>Widebar<br>res of L | Iatching for<br>nd LNA De<br>NA -Core A | Power -<br>sign –<br>mplifier |
| Тор                                                 | ic - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | ANA                               | LOG TO I                                  | DIGI                  | TAL CO                          | NVERTERS & S                                              | YNT                   | HESIZH                           | ER                                      | 9                             |
| Demo<br>DAC<br>Comp                                 | odulato<br>and A<br>parison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rs - Del<br>ADC -P<br>- PLL b | ta Modu<br>Passive 1<br>Dased Fre | lators - Low<br>Low Pass S<br>equency Syn | Pass<br>igma<br>thesi | s Sigma I<br>Delta N<br>zer.    | Delta Modulators -<br>Iodulator - Band                    | High<br>Pass          | n Order l<br>s Sigma             | Modulators -<br>Delta Modu              | One Bit<br>lators -           |
| Тор                                                 | ic - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | ١                                 | 'LSI ARCH                                 | ITE                   | <b>CTURE</b> 1                  | FOR WIRELESS                                              | S SYS                 | STEMS                            |                                         | 9                             |
| Imple<br>gener                                      | ementat<br>ation C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ions: V<br>DMA S              | LSI arch<br>System -              | itecture for<br>Efficient VL              | Mult<br>SI A          | i-tier Wir<br>rchitectur        | reless System - Ha<br>re for Base Band S                  | irdwa<br>ignal        | re Desig<br>process              | n Issues for a                          | a Next                        |
| THE                                                 | ORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                            | Т                                 | UTORIAL                                   | 0                     |                                 | PRACTICAL                                                 | 0                     |                                  | TOTAL                                   | 45                            |
| BOO                                                 | KREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EREN                          | CES                               |                                           |                       |                                 |                                                           |                       |                                  |                                         |                               |
| 1 E                                                 | 1       Bosco Leung, "VLSI for wireless Communication", Springer, 2nd Edition, 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                   |                                           |                       |                                 |                                                           |                       |                                  |                                         |                               |
| 2 A                                                 | 2 Andreas F.Molisch, "Wideband wireless Digital Communication", Prentice PTR,2001.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                   |                                           |                       |                                 |                                                           |                       |                                  |                                         |                               |
| 3 C<br>P                                            | George.<br>Publicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V.Tsou<br>ions, 20            | lous, "A<br>)01.                  | daptive Ante                              | ennas                 | s for wire                      | less Communicati                                          | on",                  | IEEE Pr                          | ess, Willey                             |                               |
| 4 X                                                 | Kiaodor<br>Fechniq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng Wa<br>ues for              | ang a<br>Signal F                 | nd H.Vinc<br>Reception", F                | ent<br>Pearso         | Poor,<br>on Educat              | "Wireless Contion. 2004.                                  | nmun                  | ication                          | System, Ad                              | vanced                        |
| 5 V                                                 | Volfgaı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng Eberl                      | le, "Wire                         | less Transce                              | iver                  | Systems l                       | Design", Springer,                                        | 2008                  | 3.                               |                                         |                               |

| 01 | OTHER REFERENCES                                                                        |  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1  | https://www.youtube.com/watch?v=Y6u2KQoPUiU                                             |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=cRSj4FzdXfo&list=PLC79262E787A9CBA9                     |  |  |  |  |  |  |
| 3  | https://www.youtube.com/watch?v=cIlwGFcDLhI                                             |  |  |  |  |  |  |
| 4  | https://www.youtube.com/watch?v=_EuN1CP8QeQ                                             |  |  |  |  |  |  |
| 5  | https://www.youtube.com/watch?v=DdoCjyTzhQY&list=PLgwJf8NK-<br>2e6au9bX9P_bA3ywxqigCsaC |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name          | L | Т | Р | С |
|----------|---------------------|----------------|----------------------|---|---|---|---|
| III      | M.E. VLSI<br>DESIGN | 20MV3E4        | ANALOG VLSI CIRCUITS | 3 | 0 | 0 | 3 |

|            | COURSE LEARNING OUTCOMES (COs)                                                                                    |    |         |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------|----|---------|--|--|--|--|--|--|--|
| Α          | After Successful completion of the course, the students should be able to                                         |    |         |  |  |  |  |  |  |  |
| CO1        | Explain and articulate the basic concepts related to CMOS technology and device modeling in analog VLSI circuits. | K2 | 1       |  |  |  |  |  |  |  |
| CO2        | Apply CMOS sub circuit and biasing circuit in analog VLSI circuits.                                               | K3 | 2       |  |  |  |  |  |  |  |
| CO3        | Compare various stage amplifier to rate their performance in VLSI.                                                | K4 | 3       |  |  |  |  |  |  |  |
| CO4        | Evaluate the situation based on timing issues and recommend a suitable VLSI circuits                              | K5 | 4       |  |  |  |  |  |  |  |
| CO5        | Analyze arithmetic building blocks to infer their limitation                                                      | K4 | 5       |  |  |  |  |  |  |  |
| <b>CO6</b> | Design a VLSI equipment for a given application                                                                   | K6 | 2,3,4,5 |  |  |  |  |  |  |  |

| DDE DEQUISITE | 20MV1T3 – CMOS VLSI DESIGN, 20MV2T1- LOW POWER CMOS      |
|---------------|----------------------------------------------------------|
| PRE-REQUISITE | CIRCUITS & MEMORIES, 20MV2T3 – TESTING OF VLSI CIRCUITS. |

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| COs | Programme Learning Outcomes (POs)                  |     |     |     |     |     |     |     |     | PSOs |      |      |      |      |
| COS | PO1                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                  | 2   |     | 2   |     |     |     |     |     |      |      |      | 2    |      |
| CO2 | 3                                                  | 2   | 3   |     | 2   |     |     |     |     |      |      |      |      |      |
| CO3 | 2                                                  | 2   |     |     |     |     |     | 2   |     |      |      |      | 2    |      |
| CO4 | 2                                                  |     | 3   |     |     | 2   |     |     |     |      |      |      | 2    |      |
| CO5 |                                                    | 2   | 3   |     |     |     |     |     |     |      | 2    |      |      | 1    |
| CO6 | 2                                                  |     |     | 3   |     |     |     |     | 2   |      |      |      | 2    |      |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |
|          | 2 Mini projects           |                             |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |
# **COURSE CONTENT**

### Topic - 1

### CMOS TECHNOLOGY AND DEVICE MODELLING

Basic MOS semiconductor fabrication processes - other considerations of CMOS technology - MOS I/V characteristics MOS large signal model and parameters - Small signal model for the MOS transistor - Computer simulation models -Sub threshold MOS model.

## Topic - 2 ANALOG CMOS SUB CIRCUITS AND BIASING CIRCUITS

MOS switch - MOS diode and active resistor - Basic Current mirrors - Cascode current mirrors-active current mirrors- voltage references-supply independent biasing, temperature independent references, PTAT current generation.

## Topic - 3 SINGLE STAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIERS

Common source stage - Common source stage with resistive load - diode connected load - current source load - triode load - source degeneration - Source follower stage - Common -gate stage - Cascade stages - Single ended and differential operation - Basic differential pair - Common mode response - Differential pair with MOS loads. Gilbert Cell.

# Topic - 4

## TIMING ISSUES IN VLSI CIRCUITS

9

9

9

9

9

General considerations-Miller effect -Association of poles with Nodes - Frequency response of Common source, Source follower, Common gate amplifiers, Cascode amplifiers and differential amplifiers - Statistical characteristics of noise - Types of Noise - Noise in single stage amplifiers -Noise in differential pairs

### Topic - 5

## DESIGN OF ARITHMETIC BUILDING BLOCKS

Properties of feedback circuits - Feedback Topologies - Effect of loading in feedback networks - Effect of feedback on noise - Performance parameters of operational amplifiers - One stage op amp - Two stage op amp - Gain Boosting - Input range limitations - Slew rate - Power Supply Rejection- Noise in op amps - Stability and Frequency compensation.

# BOOK REFERENCES1Phillip E.Allen and Douglas R.Holberg, "CMOS Analog Circuit Design", Oxford UniversityPress,<br/>20022Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 20013Malcom R.Haskard and Lan C.May, "Analog VLSI Design - NMOS and CMOS", PrenticeHall,<br/>1998.4Randall L Geiger, Phillip E. Allen and Noel K.Strader, "VLSI Design Techniques for Analogand<br/>Digital Circuits", Mc Graw Hill International Company, 1990.5K.Radhakrishna Rao," Electronics for Analog Signal Processing-I", NPTEL, Courseware, 2005

| 07 | )THER REFERENCES                                                  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------|--|--|--|--|--|--|
| 1  | https://youtu.be/DdoCjyTzhQY                                      |  |  |  |  |  |  |
| 2  | http://www.brown.edu/Departments/Engineering/Labs/ddzo/async.html |  |  |  |  |  |  |
| 3  | https://youtu.be/oL8SKNxEaHs                                      |  |  |  |  |  |  |
| 4  | https://youtu.be/QTw3V2yc6E4                                      |  |  |  |  |  |  |
| 5  | https://youtu.be/DsicVlSJ0BY                                      |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name               | L | Т | Р | С |
|----------|---------------------|----------------|---------------------------|---|---|---|---|
| III      | M.E. VLSI<br>DESIGN | 20MV3E5        | RADIO FREQUENCY IC DEIGSN | 3 | 0 | 0 | 3 |

|            | COURSE LEARNING OUTCOMES (COs)                                                   |    |   |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------|----|---|--|--|--|--|--|--|
| А          | After Successful completion of the course, the students should be able to        |    |   |  |  |  |  |  |  |
| CO1        | Explain and articulate the concepts related to RF Design and Wireless Technology | K2 | 1 |  |  |  |  |  |  |
| CO2        | Compare the various RF Modulation and design transmitter and receiver            | K4 | 2 |  |  |  |  |  |  |
| CO3        | Apply the RF testing for heterodyne systems and its performance                  | K3 | 3 |  |  |  |  |  |  |
| CO4        | Analyze the BJT and MOSFET behavior at Radio frequencies.                        | K4 | 4 |  |  |  |  |  |  |
| CO5        | Evaluate a situation based application and recommend a suitable RF filters       | K5 | 5 |  |  |  |  |  |  |
| <b>CO6</b> | Design a RF mixer for a given application                                        | K6 | 5 |  |  |  |  |  |  |

# PRE-REQUISITE VLSI TECHNOLOGY

|     | CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong) |                                   |     |     |     |     |     |     |     |      |      |      |      |      |  |  |
|-----|----------------------------------------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|--|
| COa |                                                    | Programme Learning Outcomes (POs) |     |     |     |     |     |     |     |      |      |      |      |      |  |  |
| COS | PO1                                                | PO2                               | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |  |
| CO1 | 2                                                  | 1                                 | 1   | 2   | 1   |     |     |     |     |      |      | 2    | 3    |      |  |  |
| CO2 | 3                                                  | 2                                 | 1   |     |     |     |     |     | 1   |      | 2    |      | 2    |      |  |  |
| CO3 | 2                                                  | 1                                 | 2   | 2   | 1   |     | 2   |     | 2   |      |      | 1    | 2    |      |  |  |
| CO4 | 2                                                  | 2                                 | 1   | 1   |     | 2   |     |     |     |      |      |      | 1    |      |  |  |
| CO5 | 3                                                  | 1                                 | 2   | 2   |     |     |     | 2   | 1   |      |      | 1    | 3    |      |  |  |
| CO6 | 2                                                  | 1                                 | 1   | 2   | 1   |     |     |     | 2   |      | 2    | 2    |      | 2    |  |  |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |  |
|          | 2                         | Assignment                  |  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           |                            |                                             | CO            | URSE C                  | ONTENT                                    |                  |                     |                          |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|---------------|-------------------------|-------------------------------------------|------------------|---------------------|--------------------------|---------------------|
| Topic - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ι                                                                                                                                                                                                                                                                                                         | NTRO                       | DDUCTION TO                                 | ) RF          | DESIG                   | N AND WIRELE                              | SS T             | ECHNO               | DLOGY                    | 9                   |
| Design and Applications - Complexity and Choice of Technology. Basic concepts in RF desi<br>Nonlinearly and Time Variance - Inter symbol interference - random processes and noise. Sensitivity a<br>dynamic range - conversion of gains and distortion.                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                            |                                             |               |                         |                                           |                  |                     | design:<br>vity and      |                     |
| Topic - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                            |                                             |               | RF MOI                  | DULATION                                  |                  |                     |                          | 9                   |
| Analog and<br>Coherent at<br>techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analog and digital modulation of RF circuits - Comparison of various techniques for power efficiency -<br>Coherent and non-coherent detection - Mobile RF communication and basics of Multiple Access<br>techniques. Receiver and Transmitter architectures - Direct conversion and two-step transmitters |                            |                                             |               |                         |                                           |                  |                     |                          | ciency -<br>Access  |
| Topic - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                            |                                             |               | RF T                    | ESTING                                    |                  |                     |                          | 9                   |
| RF testing fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or heter                                                                                                                                                                                                                                                                                                  | odyne                      | e - Homodyne - I                            | mag           | e rejects -             | Direct IF and sub                         | o samj           | pled rece           | eivers.                  |                     |
| Topic - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                            | BJT AND MOS                                 | SFE           | Г ВЕНА                  | VIOR AT RF FR                             | EQU              | ENCIE               | S                        | 9                   |
| BJT and Mo<br>performance<br>monolithic i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OSFET<br>and<br>mplem                                                                                                                                                                                                                                                                                     | ` beha<br>limita<br>entati | viour at RF free<br>tions of devices<br>on. | quen<br>s - i | cies - mo<br>integrated | delling of the tran<br>l parasitic elemen | nsisto<br>nts at | rs and S<br>high fi | PICE model requencies ar | - Noise<br>nd their |
| Topic - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                            |                                             | R             | F CIRCU                 | JITS DESIGN                               |                  |                     |                          | 9                   |
| Overview of RF Filter design - Active RF components & modelling - Matching and Biasing Networks.<br>Basic blocks in RF systems and their VLSI implementation - Low noise Amplifier design in various<br>technologies - Design of Mixers at GHz frequency range - Various mixers- working and implementation.<br>Oscillators- Basic topologies VCO and definition of phase noise - Noise power and trade off. Radio<br>frequency Synthesizers- PLLS - Various RF synthesizer architectures and frequency dividers - Design<br>issues in integrated RF filters. |                                                                                                                                                                                                                                                                                                           |                            |                                             |               |                         |                                           |                  |                     |                          |                     |
| THEORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45                                                                                                                                                                                                                                                                                                        |                            | TUTORIAL                                    | 0             |                         | PRACTICAL                                 | 0                |                     | TOTAL                    | 45                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           |                            |                                             |               |                         |                                           |                  |                     |                          |                     |
| BOOK REI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FERE                                                                                                                                                                                                                                                                                                      | NCES                       |                                             |               |                         |                                           |                  |                     |                          |                     |
| 1 John W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | John W M Rogers, Calvin Plett, "Radio Frequency Integrated Circuit Design", Second Edition, Artech                                                                                                                                                                                                        |                            |                                             |               |                         |                                           |                  |                     |                          |                     |

- House, 2010.
   Ashok K. Sharma, "Semiconductor Memories Technology, Testing and Reliability", PrenticeHall of India Pvt. Ltd, New Delhi,1997.
- 3 Bahzad Razavi, "RF Microelectronics", Second Edition, Prentice Hall, 2012.

| 01 | OTHER REFERENCES                            |  |  |  |  |  |  |
|----|---------------------------------------------|--|--|--|--|--|--|
| 1  | https://nptel.ac.in > courses               |  |  |  |  |  |  |
| 2  | https://www.youtube.com/watch?v=qU36Fy_aeb0 |  |  |  |  |  |  |
| 3  | https://www.youtube.com/watch?v=TnRn3Kn_aXg |  |  |  |  |  |  |
| 4  | https://www.youtube.com/watch?v=oqkigUOjpGg |  |  |  |  |  |  |

| Semester | Programme           | Course<br>Code | Course Name                 | L | Т | Р | С |
|----------|---------------------|----------------|-----------------------------|---|---|---|---|
| III      | M.E. VLSI<br>DESIGN | 20MV3E6        | BASEBAND ALGORITHMS ON FPGA | 3 | 0 | 0 | 3 |

|     | COURSE LEARNING OUTCOMES (COs)                                                                                         |                                       |   |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|--|--|--|--|--|--|--|
| Α   | After Successful completion of the course, the students should be able to       RBT       Top         Level       Cove |                                       |   |  |  |  |  |  |  |  |
| CO1 | Explain and articulate the concepts related to FPGA Technology                                                         | K2                                    | 1 |  |  |  |  |  |  |  |
| CO2 | Apply the various building blocks of FPGAK32                                                                           |                                       |   |  |  |  |  |  |  |  |
| CO3 | Compare the various FIR and IIR filters K4                                                                             |                                       |   |  |  |  |  |  |  |  |
| CO4 | Analyze the DFT and FFT algorithms                                                                                     | Analyze the DFT and FFT algorithmsK44 |   |  |  |  |  |  |  |  |
| CO5 | Evaluate a situation based application and recommend a suitable<br>communication codes in FPGAK55                      |                                       |   |  |  |  |  |  |  |  |
| CO6 | Design a Adaptive filters for a given application                                                                      | K6                                    | 5 |  |  |  |  |  |  |  |

# PRE-REQUISITE VLSI TECHNOLOGY

|     |                                   |     |     | <b>CO</b> / | PO M | APPIN | (G (1 – V | Veak, 2 – | Medium | , 3 – Stron | ig)  |      |      |      |
|-----|-----------------------------------|-----|-----|-------------|------|-------|-----------|-----------|--------|-------------|------|------|------|------|
| COa | Programme Learning Outcomes (POs) |     |     |             |      |       |           |           |        |             | PSOs |      |      |      |
| COS | PO1                               | PO2 | PO3 | PO4         | PO5  | PO6   | PO7       | PO8       | PO9    | PO10        | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                 | 1   | 1   |             |      | 2     |           |           |        |             |      | 1    | 3    |      |
| CO2 | 2                                 | 1   | 2   |             |      |       | 2         |           | 2      |             |      | 2    | 2    |      |
| CO3 | 2                                 | 2   | 1   | 2           | 1    |       |           |           | 1      |             | 2    | 2    | 2    |      |
| CO4 | 3                                 | 1   | 1   |             |      | 2     |           | 2         |        |             |      | 1    | 1    |      |
| CO5 | 2                                 | 1   | 2   | 2           | 1    |       |           |           | 2      |             |      | 1    | 3    |      |
| CO6 | 3                                 | 2   | 1   | 1           | 2    |       |           |           |        |             | 2    | 1    |      | 2    |

|          | COURSE ASSESSMENT METHODS |                             |  |  |  |  |  |  |  |  |
|----------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| DIRECT   | 1                         | Continuous Assessment Tests |  |  |  |  |  |  |  |  |
|          | 2                         | Assignment                  |  |  |  |  |  |  |  |  |
|          | 3                         | End Semester Examinations   |  |  |  |  |  |  |  |  |
| INDIRECT | 1                         | Course End Survey           |  |  |  |  |  |  |  |  |

| COURSE CONTENT                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|----------|---|--|-----------|---|--|-------|----|
| Т                                                                                                                                                                                                  | opic - 1                                                                                                                                  | FPGA TECHNOLOGY                                                                                                       |  |          |   |  |           |   |  |       |    |
| Introduction to FPGA - FPGA Design flow - Programming languages - programming technology.                                                                                                          |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
| Т                                                                                                                                                                                                  | opic - 2                                                                                                                                  | BASIC BUILDING BLOCKS                                                                                                 |  |          |   |  |           |   |  |       |    |
| Number Representation - Binary adders - Binary dividers - Floating point arithmetic - MAC & SOP unit.                                                                                              |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
| Т                                                                                                                                                                                                  | opic - 3                                                                                                                                  | DIGITAL FILTER IMPLEMENTATION                                                                                         |  |          |   |  |           |   |  |       |    |
| <b>FIR FILTER:</b> Theory and structure - Filter Design - Constant coefficient - FIR Design.<br><b>IIR FILTER:</b> IIR theory - Coefficient computation - Implementation detail - Fast IIR filter. |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
| Т                                                                                                                                                                                                  | opic - 4                                                                                                                                  | FOURIER TRANSFORM                                                                                                     |  |          |   |  |           |   |  |       |    |
| DFT algorithms - Goertzel algorithm - Hartley transform - Winograd DFT - Blustein chirp–z transform - Rader algorithm - FFT algorithms - Cooley-tukey - Good thomas - Winograd FFT.                |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
| Topic - 5                                                                                                                                                                                          |                                                                                                                                           | COMMUNICATION BLOCKS                                                                                                  |  |          |   |  |           |   |  |       |    |
| Error control codes - Linear block code - Convolution codes - Modulation and Demodulation - Adaptive filters - LMS - RLS - Decimator and Interpolator - High Decimation Rate filters.              |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
| THEORY                                                                                                                                                                                             |                                                                                                                                           | 45                                                                                                                    |  | TUTORIAL | 0 |  | PRACTICAL | 0 |  | TOTAL | 45 |
| BOOK REFERENCES                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                       |  |          |   |  |           |   |  |       |    |
| 1                                                                                                                                                                                                  | Uwe.Mo<br>Third ec                                                                                                                        | we.Meyer-Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer,<br>hird edition, May 2007. |  |          |   |  |           |   |  |       |    |
| 2                                                                                                                                                                                                  | Keshab<br>Science                                                                                                                         | K. Parhi, "VLSI Digital Signal Processing systems, Design and implementation", Wiley, Inter<br>e, 1999.               |  |          |   |  |           |   |  |       |    |
| 3                                                                                                                                                                                                  | John G.                                                                                                                                   | an G. Proakis, "Digital Communications," Fourth Ed. McGraw Hill International Edition,2000.                           |  |          |   |  |           |   |  |       |    |
| 4                                                                                                                                                                                                  | 4 Michael John Sebastian Smith, "Applications Specific Integrated Circuits", PearsonEducation,<br>Ninth Indian reprint,13th edition,2004. |                                                                                                                       |  |          |   |  |           |   |  |       |    |

5 Sophocles J. Orfanidis, "Introduction to Signal Processing", Prentice Hall, 1996

| OTHER REFERENCES |                                               |  |  |  |  |  |
|------------------|-----------------------------------------------|--|--|--|--|--|
| 1                | https://nptel.ac.in > courses                 |  |  |  |  |  |
| 2                | https://www.youtube.com/watch?v=CLUoWkJUnN0   |  |  |  |  |  |
| 3                | https://www.youtube.com/watch?v=jbOjWp4C3V4   |  |  |  |  |  |
| 4                | https://www.youtube.com/watch?v=jVYs-GTqm5U g |  |  |  |  |  |
| 5                | https://www.youtube.com/watch?v=VySEvtpM_To   |  |  |  |  |  |

Al-Ameen Engineering College (Autonomous) – M.E. VLSI