

AL-AMEEN ENGINEERING COLLEGE

(Autonomous)

Accredited by NAAC with "A" Grade :: An ISO Certified Institution (Affiliated to Anna University, Chennai & Approved by AICTE, New Delhi) Karundevanpalayam, NanjaiUthukkuli Post, Erode – 638 104, Tamilnadu, INDIA.

CURRICULUM & SYLLABI

SEMESTERS – I to VIII (Regulations 2020)

CHOICE BASED CREDIT SYSTEM B.E. CIVIL ENGINEERING

Applicable to the Students admitted from the AY 2021-22 onwards

KNOWLEDGE LEVELS (BLOOM'S TAXONOMY)

Notation	Knowledge Levels
K1	Remembering
K2	Understanding
К3	Applying
K4	Analysing
K5	Evaluating
K6	Creating

INSTITUTION VISION

To be a multi-disciplinary institute of academic excellence in Engineering, Technology and allied fields for uplifting the under-privileged and rural; inculcating brotherhood and positivism among its students.

INSTITUTION MISSION

To groom confident, wholesome students with social consciousness and values, by endeavoring experiences for the ever-changing world of work.

DEPARTMENT VISION

To establish an outstanding centre of regional and national reputation for providing a quality engineering education to the students from the rural areas, excellent services to the professional and the community; to produce quality civil engineers; and to employ principles of continual quality improvement to enhance its programme and faculty.

DEPA	DEPARTMENT MISSION								
M1	To serve the people and the country by providing a broad and high-quality education to its student for a successful professional career.								
M2	To conduct strong basic for national needs.								
M3	To serve the construction industry; civil engineering profession and rural community through dissemination of knowledge and technical services.								

PROGRA	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)									
PEO 1	To train the students so that they can work and contribute to the infrastructure development projects being undertaken by Govt. and private or any other sector companies.									
PEO 2	To train students in such as a way that they can pursue higher studies so that they can contribute to the teaching profession / research and development of civil engineering and other allied fields.									
PEO 3	To train students in a manner that they should function effectively in the multicultural and multidisciplinary groups for the sustainable development and growth of civil engineering projects and profession.									

	PROGRAM OUTCOMES (POs)
PO 1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/Development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

	PROGRAM SPECIFIC OUTCOMES (PSOs)									
PSO 1	Apply interdisciplinary engineering knowledge and skills, specifically for integrated infrastructural systems in order to fit into socially acceptable, economically viable, aesthetically appealing and technically feasible Civil engineering systems.									
PSO 2	Designing, detailing, constructing and maintaining environmentally sustainable systems promoting locally available materials and labour, preserving the regional and national culture.									

CURRICULUM

SEMESTER I

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C		
	THEORY COURSES										
1	20MA1T1	Engineering Mathematics I	BS	40	60	3	1	0	4		
2	20CY1T2	Engineering Chemistry	BS	40	60	3	0	0	3		
3	20EN1T3	Communicative English I	HS	40	60	3	1	0	4		
4	20PH1T4	Engineering Physics	BS	40	60	3	0	0	3		
5	20CS1T5	Fundamentals of Computing and Programming	ES	40	60	3	0	0	3		
		LABORATORY (COURS	ES							
6	20GE1L1	Physics and Chemistry Laboratory	BS	60	40	0	0	3	1.5		
7	20CS1L2	Computer Practices Laboratory	ES	60	40	0	0	3	1.5		
	MANDATORY COURSE										
8		Universal Human Values 1 - Induction Programme	MC	-	-	-	-	-	-		
	Total						2	6	20		

SEMESTER II

Sl. No.	Course Code	Course Title	Category	CIA	ESE	L	Т	P	C
THEORY COURSES									
1	20MA2T1	Engineering Mathematics II	BS	40	60	3	1	0	4
2	20CE2T3	Engineering Geology	ES	40	60	3	0	0	3
3	20CE2T4	Civil Engineering Materials and Construction-I	ES	40	60	3	0	0	3
4	20ME2T5	Engineering Mechanics	ES	40	60	3	1	0	4
	THEORY COURSES WITH LABORATORY COMPONENTS								
5	20ME2LT	Engineering Drawing Practices	ES	50	50	2	0	2	3
		LABORATOR	Y COURSE	S					
6	20EM2L1	Engineering Practices Laboratory	ES	60	40	0	0	3	1.5
7	20ENCL1	Communication Skills Laboratory	HS	60	40	0	0	2	1
		MANDATOR	Y COURSE						
8	20CY2T2	Environmental Sciences	MC	100		3	0	0	0
	Total							7	19.5

SEMESTER III

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	T	P	C		
	THEORY COURSES										
1	20MA3T2	Probability and Statistics	BS	40	60	3	1	0	4		
2	20CE3T3	Mechanics of Solids-I	ES	40	60	3	0	0	3		
3	20CE3T4	Civil Engineering Materials and Construction-II	ES	40	60	3	0	0	3		
4	20CE3T5	Fluid Mechanics	PC	40	60	3	0	0	3		
5	20CE3T6	Surveying	PC	40	60	3	0	0	3		
		LABORATORY C	OURSE	S							
6	20CE3L1	Surveying Laboratory	PC	60	40	0	0	2	1		
7	20CE3L2	Strength of Materials Laboratory	PC	60	40	0	0	2	1		
8	20CE3L3	Computer Aided Building Drawing	ES	60	40	0	0	2	1		
		MANDATORY C	OURSE	1							
9	20HSCT1	Universal Human Values 2 : Understanding Harmony	HS	100		2	1	0	3		
		Total				17	2	6	22		

SEMESTER IV

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20CE4T1	Mechanics of Solids-II	PC	40	60	3	0	0	3	
2	20CE4T2	Applied Hydraulic Engineering	PC	40	60	3	0	0	3	
3	20CE4T3	Concrete Technology	PC	40	60	3	0	0	3	
4	20MA4T4	Numerical Methods	BS	40	60	3	1	0	4	
5		Professional Elective– I	PE	40	60	3	0	0	3	
6		Open Elective–I	OE	40	60	3	0	0	3	
		LABORATORY CO	URSES							
7	20CE4L1	Fluid Mechanics and Machinery Laboratory	PC	60	40	0	0	2	1	
8	20CE4L2	Concrete& Highway Engineering Laboratory	PC	60	40	0	0	2	1	
	Total						1	4	21	

SEMESTER V

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C
	THEORY COURSES								
1	20CE5T1	Structural Analysis-I	PC	40	60	3	1	0	4
2	20CE5T2	Design of Reinforced Concrete Elements and Structures	PC	40	60	3	1	0	4
3		Open Elective–II	OE	40	60	3	0	0	3
4		Professional Elective–II	PE	40	60	3	0	0	3
	THEORY COURSE WITH LABORATORY COMPONENTS								
5	20CE5LT1	Geotechnical Engineering-I	PC	50	50	2	0	4	4
		ENHANCEMENT	Γ COURS	SE					
6	20CE5L1	Internship & Innovation Practices	EEC	100		0	0	3	1.5
		MANDATORY	COURS	E					
7	20MCCT1	Constitution of India	MC	100	-1	2	0	0	0
	Total						2	7	19.5

SEMESTER VI

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C	
	THEORY COURSES									
1	20CE6T1	Structural Analysis-II	PC	40	60	3	1	0	4	
2	20CE6T2	Design of Steel Structures	PC	40	60	3	1	0	4	
3	20CE6T3	Geotechnical Engineering-II	PC	40	60	3	1	0	4	
4		Professional Elective –III	PE	40	60	3	0	0	3	
	TH	EORY COURSES WITH LABO	DRATOF	RY CO	MPON	ENTS				
5	20CE6LT1	Environmental Engineering	PC	50	50	2	0	4	4	
6	20CE6LT2	Structural Design and Drawings	PC	50	50	2	0	4	4	
		LABORATORY	COURSI	ES						
7	20CE6L1	Comprehensive Course	EEC	100	-	0	-	2	2	
8	20CE6L2	Design Project	EEC	60	40	0	0	4	2	
	Total						3	14	27	

SEMESTER VII

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	T	P	C
	THEORY COURSES								
1	20CE7T1	Quantity Surveying and Estimation	PC	40	60	3	1	0	4
2	20HSCT2	Professional Ethics	HS	40	60	3	0	0	3
3		Professional Elective–IV	PE	40	60	3	0	0	3
4		Professional Elective–V	PE	40	60	3	0	0	3
5		Professional Elective-VI	PE	40	60	3	0	0	3
6		Professional Elective-VII	HS	40	60	3	0	0	3
		LABORATORY	COURS	E					
7	20CE7L1	Computer Analysis and Design Laboratory	PC	60	40	0	0	4	2
		ENHANCEMENT	COURS	SE					
8	20CE7L2	Project Work–Phase I	EEC	60	40	0	0	6	3
	Total						1	10	24

SEMESTER VIII

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C
	LABORATORY COURSES								
1	20CE8L1	Project Work-Phase II	EEC	60	40	0	0	16	8
2	20CE8L2	Industrial Training	Industrial Training EEC 100 0			0	0	4	2
	Total							20	10

Total Credits: 163

HUMANITIES AND SOCIAL SCIENCES INCLUDING MANAGEMENT (HS)

S. No.	Course Code	Course Title	L	T	P	C
1	20EN1T3	Communicative English	3	1	0	4
2	20ENCL1	Communication Skills Laboratory	0	0	2	1
3	20HSCT1	Universal HumanValues2: Understanding Harmony	2	1	0	3
4	20HSCT2	Professional Ethics	3	0	0	3

BASIC SCIENCES (BS)

Sl.No.	Course Code	Course Title	L	Т	P	C
1	20MA1T1	Engineering Mathematics – I	3	1	0	4
2	20PH1T4	Engineering Chemistry	3	0	0	3
3	20CY1T2	Engineering Physics	3	0	0	3
4	20GE1L1	Physics and Chemistry Laboratory	0	0	3	1.5
5	20MA2T1	Engineering Mathematics II	3	1	0	4
6	20MA3T2	Transforms and Partial Differential Equations	3	1	0	4
7	20MA4T4	Numerical Methods	3	1	0	4

ENGINEERING SCIENCES (ES)

Sl.No.	Course Code	Course Title	L	T	P	C
1	20CS1T5	Fundamentals of Computing and Programming	3	0	0	3
2	20CS1L2	Computer Practices Laboratory	0	0	3	1.5
3	20ME2T5	Engineering Mechanics	3	1	0	4
4	20CE2T3	Engineering Geology	3	0	0	3
5	20CE2T4	Civil Engineering Materials and Construction-I	3	0	0	3
6	20ME2LT	Engineering Drawing Practices	2	0	2	3
7	20EM2L1	Engineering Practices Laboratory	0	0	3	1.5

8	20CE3T3	Mechanics of Solids-I	3	0	0	3
9	20CE3T4	Civil Engineering Materials and Construction-II	3	0	0	3
10	20CE3L3	Computer aided Building Drawing	0	0	2	1

PROFESSIONAL CORE (PC)

Sl.No.	Course Code	Course Title	L	Т	P	C
1	20CE3T5	Fluid Mechanics	3	0	0	3
2	20CE3T6	Surveying	3	0	0	3
3	20CE3L1	Surveying Laboratory	0	0	2	1
4	20CE3L2	Strength of Materials Laboratory	0	0	2	1
5	20CE4T1	Mechanics of Solids-II	3	0	0	3
6	20CE4T2	Applied Hydraulic Engineering	3	0	0	3
7	20CE4T3	Concrete Technology	3	0	0	3
8	20CE4L1	Fluid Mechanics and Machinery Laboratory	0	0	2	1
9	20CE4L2	Concrete & Highway Engineering Laboratory	0	0	2	1
10	20CE5T1	Structural Analysis-I	3	1	0	4
11	20CE5T2	Design of Reinforced concrete Elements and Structures	3	1	0	4
12	20CE5LT1	Geotechnical Engineering-I	3	0	2	4
13	20CE6T1	Structural Analysis-II	3	1	0	4
14	20CE6T2	Design of Steel Structures	3	1	0	4
15	20CE6T3	Geotechnical Engineering-II	3	1	0	4
16	20CE6LT1	Environmental Engineering	3	0	2	4
17	20CE6LT2	Structural Design and Drawing	3	0	2	4
18	20CE7T1	Quantity Surveying and Estimation	3	1	0	4
19	20CE7L1	Computer Analysis and Design Laboratory	0	0	4	2

PROFESSIONAL ELECTIVES (PE)

	Semester –IV (Elective I)								
Sl. No.	Course Code	Course Title	L	Т	P	С			
1	20CE4E1	Highway and Railway Engineering	3	0	0	3			
2	20CE4E2	Remote Sensing and GIS	3	0	0	3			
3	20CE4E3	Industrial Structures	3	0	0	3			

	Semester –V (Elective II)									
Sl.No.	Course Code	Course Title	L	T	P	C				
1	20CE5E1	Air pollution management	3	0	0	3				
2	20CE5E2	Industrial safety	3	0	0	3				
3	20CE5E3	Traffic Engineering and Management	3	0	0	3				

	Semester –VI (Elective III)									
Sl.No.	Course Code	Course Title	L	T	P	C				
1	20CE6E1	Prefabricated Structures	3	0	0	3				
2	20CE6E2	Irrigation Engineering and Hydraulic Structures	3	0	0	3				
3	20CE6E3	Industrial Waste Management	3	0	0	3				

Semester –VII (Elective IV)									
Sl.No.	Course Code	Course Title	L	T	P	C			
1	20CE7E1	Basics of Dynamics and Aseismic Design	3	0	0	3			
2	20CE7E2	Design of Reinforced Concrete & Brick Masonry Structures	3	0	0	3			
3	20CE7E3	Ground Improvement Techniques	3	0	0	3			

	Semester –VII (Elective V)									
Sl.No.	Course Code	Course Title	L	Т	P	C				
1	20CE7E4	Urban Planning and Development	3	0	0	3				
2	20CE7E5	Municipal Waste and Management	3	0	0	3				
3	20CE7E6	Housing, Planning and Management	3	0	0	3				

	Semester –VII (Elective VI)									
Sl.No.	Course Code	Course Title	L	Т	P	C				
1	20CE7E7	Design of Bridge Engineering	3	0	0	3				
2	20CE7E8	Design of Tall Buildings	3	0	0	3				
3	20CE7E9	Prestressed Concrete Structures	3	0	0	3				

	Semester –VII (Elective VII)											
Sl.No.	Course Code	Course Title	L	Т	P	C						
1	20CE7E10	Maintenance and Rehabilitation of Structures	3	0	0	3						
2	20CE7E11	Construction Safety Practices	3	0	0	3						
3	20CE7E12	Smart Materials and Smart Structures	3	0	0	3						

OPEN ELECTIVES (OE)

Sl.No.	Course Code	Course Title	L	Т	P	C
1	20CEO01	Disaster Management	3	0	0	3
2	20CEO02	Environmental and Agriculture Engineering	3	0	0	3
3	20CEO03	Corrosion for Civil Engineering	3	0	0	3
4	20CEO04	Global Warming and Climate Change	3	0	0	3
5	20CEO05	Water Pollution and its Management	3	0	0	3
6	20CEO06	Basics of Civil Engineering	3	0	0	3
7	20CEO07	Civil Engineering Materials	3	0	0	3
8	20CEO08	Green Building	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

Sl. No.	Course Code	Course Title	L	T	P	C
1	20CE5L1	Internship &Innovation Practices	0	0	3	1.5
2	20CE8L2	Industrial Training	0	0	4	2
3	20CE6L2	Design Project	0	0	4	2
4	20CE7L2	Project Work-Phase I	0	0	6	3
5	20CE8L1	Project Work- Phase II	0	0	16	8
6	20CE6L1	Comprehensive Course	0	2	0	2

MANDATORY COURSES (MC)

Sl.No.	Course Code	Course Title	L	T	P	C
1		Universal Human Values 1 - Induction Programme	0	0	0	0
2	20CY2T2	Environmental Sciences	3	0	0	0
3	20MCCT1	Constitution of India	3	0	0	0
4	20HSCT1	Universal Human Values 2: Understanding Harmony	2	1	0	3

VALUE ADDED COURSES (VAC)

S.No.	Course Code	Course Title	Credit
1	20CEV01	Total Station Surveying	1
2	20CEV02	Tender Document Preparation	1
3	20CEV03	3D Software for Modeling and Rendering Revit Architecture	1

CURRICULUM BREAKDOWN STRUCTURE

Subject	AICTE suggested breakdown of credits	Total number of credits	Curriculum Content (% of total number of credits of the program)
Humanities and Social Sciences including Management (HS)	15 11		6.75
Basic Sciences (BS)	26	23.5	14.42
Engineering Sciences (ES)	29	26	15.95
Professional Core (PC)	47	57	34.97
Program Electives (PE)	23	21	12.88
Open Electives (OE)	11	6	3.68
Employability Enhancement Courses (EEC) – Practical Courses and Project Work	12	18.5	11.35
Mandatory Courses (MC)	0	0	0
Total	163	163	100.00

CREDIT SUMMARY

CI No	Subject			Cre	dits pe	er Sen	nester			Total	AICTE	
Sl. No.	Area	I	II	Ш	IV	V	VI	VII	VIII	Credits	Suggested Credits	
1	HS	4	1	3				3		11	15	
2	BS	11.5	4	4	4					23.5	26	
3	ES	4.5	14.5	7						26	29	
4	PC			8	11	12	20	6		57	47	
5	PE				3	3	3	12		21	23	
6	OE				3	3				6	11	
7	EEC					1.5	4	3	10	18.5	12	
TOTAL		20	19.5	22	21	19.5	27	24	10	163	163	

HS – Humanities and Social Sciences including Management

BS – Basic Sciences

ES – Engineering Sciences

PC – Professional Core

PE – Professional Electives

OE – Open Electives

EEC – Employability Enhancement Courses

MC – Mandatory Courses

SEMESTER I

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C
		THEORY COUR	SES						
1	20MA1T1	Engineering Mathematics I	BS	40	60	3	1	0	4
2	20CY1T2	Engineering Chemistry	BS	40	60	3	0	0	3
3	20EN1T3	Communicative English I	HS	40	60	3	1	0	4
4	20PH1T4	Engineering Physics	BS	40	60	3	0	0	3
5	20CS1T5	Fundamental of Computing and Programming	ES	40	60	3	0	0	3
		LABORATORY CO	URSES						
6	20GE1L1	Physics and Chemistry Laboratory	BS	60	40	0	0	3	1.5
7	20CS1L2	Computer Practices Laboratory	ES	60	40	0	0	3	1.5
		MANDATORY CO	URSE						
8	Universal Human Values 1 - MC								-
		Total				15	2	6	20

Semester	Programme	Course Code	Course Name	L	Т	P	C
Ι	B.E. / B.Tech., Common to all	20MA1T1	ENGINEERING MATHEMATICS I	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)											
	After Successful completion of the course, the students should be able to	RBT Level	Topics Covered									
CO1	Identify Eigen values and Eigenvectors and apply orthogonal diagonalization to convert quadratic form to canonical form.	К3	1									
CO2	Apply differentiation and integration technique to solve algebraic and transcendental function	К3	2									
CO3	Evaluate the total derivative of the function, expand the given as series and locate the maximum and minimum for multivariate function	K5	3									
CO4	Solve first order Ordinary Differential Equations and apply them to certain physical situations	К3	4									
CO5	Choose appropriate integral techniques to find area and volume of the given region	K5	5									

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)													SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3				1	3	3		3		
CO2	3	3		3				1	3	3		3		
CO3	3	3		3				1	3	3		3		
CO4	3	3		3				1	3	3		3		
CO5	3	3		3				1	3	3		3		

	COURSE ASSESSMENT METHODS											
DIRECT	DIRECT 1 Continuous Assessment Tests											
	2	Assignments and Tutorials										
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

COURSE CONTENT 9 + 3Topic - 1 **MATRICES** Eigen values and Eigen vectors of a real matrix – properties of Eigen values and Eigen vectors (without proof) – Cayley-Hamilton theorem (statement and applications) – orthogonal transformation of a symmetric matrix to diagonal form (concept only) – Reduction of quadratic form to canonical form by an orthogonal transformation DIFFERENTIATION AND INTEGRATION Topic - 2 9 + 3Basic differentiation formula for algebraic and transcendental functions - derivatives - differentiability rules and properties (without proof) - basic integral formula for algebraic and transcendental functions - integration by parts partial fraction methods. Topic - 3 FUNCTIONS OF SEVERAL VARIABLES 9 + 3Total derivatives - Taylor's series expansion - maxima and minima - Lagrange's multipliers method - Jacobian's method Topic - 4 FIRST ORDER ORDINARY DIFFERENTIAL EQUATION 9 + 3Leibnitz's equations – Bernoulli's equation – equation of first order and higher degree – Clairaut's form – Linear first order differential equations and its applications. Topic - 5 MULTIPLE INTEGRALS 9 + 3Double integrals: Double integration in Cartesian co-ordinates - change of order of integration - area as a double integration in Cartesian – volume as a triple integral in Cartesian co-ordinates (simple problems) TUTORIAL **THEORY** 45 15 PRACTICAL **TOTAL** 60 **BOOK REFERENCES** Jain R.K and Iyengar S.R.K, "Advanced Engineering Mathematics", 3rd Edition, Narosa Publishing House, New 1 Delhi, Reprint 2009. Ramana B.V., "Higher Engineering Mathematics", Tata Mcgraw Hill Publishing Company, New Delhi, 2008. Kreyszig E., "Advanced Engineering Mathematics", 9th Edition, John Wiley Sons, 2012. 3 Glyn James., "Advanced Modern Engineering Mathematics", Pearson Education Limited, 2007. 4 N P Bali, Manish Goyal, "A Text Book of Engineering Mathematics", 3rd Edition, Laxmi Publication Private 5 Limited, 2009. OTHER REFERENCES https://www.slideshare.net/mailrenuka/matrices-and-application-of-matrices 1

3

https://youtu.be/wtuq1oSButE

https://www.slideshare.net/mailrenuka/matrices-and-application-of-matrices

https://www.slideshare.net/abhinavsomani3/applications-of-maths-in-our-daily-life-41607055

Semester	Programme	Course Code	Course Name	L	T	P	C
I	B.E. / B.Tech., Common to all	20CY1T2	ENGINEERING CHEMISTRY	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)											
	After Successful completion of the course, the students should be able to											
CO1	Explain the properties & working techniques along with potential applications.	K2	1									
CO2	Choose the appropriate method for specific application in engineering technology.	К3	2									
CO3	Analyse new solutions to problems in materials and energy usage in daily life	K4	3									
CO4	Identify the structure of unknown/new compounds with their properties.	К3	4									
CO5	Categorize the important features of various materials and methods for burgeoning society.	K4	5									

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2					1	3	3		3		
CO2	3	2						1	3	3		3		
CO3	3	2						1	3	3		3		
CO4	3		2					1	3	3		3		
CO5	3	2	2					1	3	3		3		

	COURSE ASSESSMENT METHODS										
	1	Continuous Assessment Tests									
DIRECT	2	Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT												
To	pic - 1					WATER C	HEMISTRY				9		
(pho	Hardness of water – types – units –boiler troubles (scale and sludge) – treatment of boiler feed water – Internal treatment (phosphate, colloidal, carbonate and calgon conditioning) external treatment – Ion exchange process, zeolite process – desalination of brackish water – Reverse Osmosis.												
To	pic - 2		FUELS AND COMBUSTION										
meta	Fuels: Introduction - classification of fuels - Combustion- coal - Analysis of coal - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol.												
To	pic - 3				ENE	ERGY STO	RAGE DEVICES				9		
	Batteries - Types of batteries - primary battery - dry cell. Secondary battery - lead acid battery, Nickel- Cadmium battery, fuel cells - Hydrogen -Oxygen fuel cell Solar energy conversion - solar cells - Application.												
To	pic - 4					SPECTRO	SCOPY				9		
							nentation, Working photometry – Atom				etroscopy		
To	pic - 5				EN	GINEERIN	G MATERIALS				9		
Туре		bers – S	SBR –	Nanomaterial –			uses of Nylon(6,6) applications of N						
THI	EORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45		
BOC	OK REF	ERENC	CES										
1	S.S Da	ra and S	.S. Uma	are 'Engineering	Chen	nistry', S.Ch	and Publication, 20)13					
2	Jain &	Jain 'En	gineeri	ng chemistry' Dł	anpa	t Rai Publisł	ning Company, 201	2					
3	Shikha	Agarwa	ıl , Engi	neering Chemist	ry, Ca	ambridge Ur	niversity Press, 201	5 editi	on				
4	Manas	Senapat	i, Adva	nced Engineering	g Che	mistry, Fire	wall Media, 2006						
OTI	HER RE	FEREN	ICES										
1	https://	//x/x/x/x/ f	reebool	centre net/chemi	strv_l	hooks-down	load						

ОТН	OTHER REFERENCES								
1	https://www.freebookcentre.net/chemistry-books-download								
2	https://nptel.ac.in/course.html								
3	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/polymers.htm								
4	https://edu.rsc.org/resources/collections/analytical-chemistry-introductions								

Semester	Programme	CourseCode	Course Name	L	Т	P	C
Ι	B.E. / B.Tech., Common to all	20EN1T3	COMMUNICATIVE ENGLISH I	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Apply the rules of grammar to parts of speech, tenses, voices, degrees of comparison, compound nouns and articles	К3	1								
CO2	Interpret graphical representation for composing passages and paraphrase technical texts	K4	2								
CO3	Analyze different spoken discourses like, short talks, comprehend different dialogues, practice conversation for speaking skills	K4	3								
CO4	Examine grammatical errors using correct vocabulary and generating ideas logically on a topic	K5	4								
CO5	Develop language and vocabulary effectively for our real-life contexts	K6	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)													SOs
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3			2	3		3		
CO2						2			2	3		2		
СОЗ						3			2	2		1		
CO4						2			2	3		2		
CO5						3			1	3		2		

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2 Grammar Quizzes									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT							
Topic - 1	GRAMMAR AND VOCABULARY	9+3						
Word formation with Prefix and Suffix – Parts of Speech – Tenses - Voices – Degrees of comparison – Compound Nouns - Basic Vocabulary – Homonyms and Homophones – Articles- Idioms – Phrasal verbs – Subject-Verb Agreement.								
Topic - 2	LISTENING	9+3						
	Introduction to Listening – Listening Comprehension – Extensive and Intensive listening – Pronunciation – Intonation – Stress – Pause – Rhythm – Short and Long conversations.							
Topic - 3	SPEAKING	9+3						
	on to Speech sounds – Verbal and Non-verbal Communication – Describing places, people, Telephonic skills – Different types of Interview – Group Discussions – Debates.	chnical						
Topic - 4	READING	9+3						
	Skimming and Scanning – Reading Newspaper articles – Reading different types of texts – SpeedReading – Reading to identify Stylistic Features (Syntax, Lexis, Sentence Structures) – Comprehension.							
Topic - 5	WRITING	9+3						
Resume - Off	Introduction to aspects of technical writing – Letter writing – Formal Letters – Job application letter with CV and Resume - Official letters- Business letters- Circular letters- Employment letters – Punctuation – Writing reviews on books and movies – recommendations – Creative writing – email writing.							

BC	BOOK REFERENCES							
1	Board of Editors, Using English, Orient Black Swan, 2015.							
2	Practical English Usage, Michael Swan, OUP 1995.							
3	Communicative English, J.Anbazhagan Vijay, Global Publishers – Chennai 2018.							
4	Effective Communication, Adair, John. London: Pan Macmillan Ltd., 2003.							
5	Brilliant Communication Skills, Hasson, Gill. Great Britain: Pearson Education, 2012.							

PRACTICAL

ОТ	OTHER REFERENCES							
1	1 http://networketiquette.net/							
2	http://www.englishdaily626.com/c-errors.php							
3	http://www.dailywritingtips.com/							

TUTORIAL

15

THEORY

45

TOTAL

60

Semester	Programme	Course Code	Course Name	L	T	P	C
I	B.E. / B.Tech., Common to all	20PH1T4	ENGINEERING PHYSICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Classify the extensive properties of solid materials to use in current field.	K2	1							
CO2	Identify and develop the knowledge of atoms in solid crystals to apply recent engineering fields.	К3	2							
CO3	Describe the fundamentals of lasers, laser systems, their characteristics and diversified applications including industry and medicine.	K4	3							
CO4	Demonstrate a mastery of the core knowledge base in thermal physics.	К3	4							
CO5	Evaluate the nano materials and its fabrication with behaviour by using advanced technical methods.	K5	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			1	3	2	3	3	3	3	3		
CO2	2	1				3	2	3	3	3	3	3		
CO3	3	2	2			3	2	3	3	3	3	3		
CO4	2					3	2	3	3	3	3	3		
CO5	3	2				3	2	3	3	3	3	3		

	COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests							
2 Mini Project									
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

Topic - 1 PROPERTIES OF MATTER 9

Hooke's Law - Stress-Strain Diagram - Elastic moduli - Poisson's Ratio - Expression for bending moment of beam and depression of Cantilever - Expression for Young's modulus by Non-uniform bending and its experimental determination.

Topic - 2 CRYSTAL PHYSICS 9

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - growth of single crystals: solution and melt growth techniques.

Topic - 3 LASER TECHNOLOGY 9

Introduction – principle of spontaneous emission and stimulated emission, population inversion, pumping mechanism. Laser characteristics - Einstein's A and B coefficients derivation. Two, three and four level systems. Threshold gain coefficient- Component of laser. Solid state laser (Nd:YAG). Diode lasers –Application of laser in science and engineering.

Topic - 4 THERMAL PHYSICS 9

Transfer of heat energy - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Lee's disc method - theory and experiment - conduction through compound media (series and parallel) - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters.

Topic - 5 NANO TECHNOLOGY 9

Introduction to Nano materials- Moore's law- Properties of Nano materials- Quantum well, wire and dot- Fullerene, Carbon Nanotubes- Application of Nanotechnology in industry.

THEORY 45 TUTORIAL 00 PRACTICAL 00 TOTAL 45

BOOK REFERENCES 1 Serway and Jewett, "Physics for Scientists and Engineers with Modern Physics", 6th Edition, Thomson Brooks Cole, 2008 2 Charles P. Poole and Frank J.Owens, "Introduction to Nanotechnology", 2nd Edition, Wiley, Delhi, 2008. 3 S.O. Pillai, "Solid state Physics", 6th Edition, New Age International Publishers, 2008.

OT	OTHER REFERENCES							
1	https://nptel.ac.in/courses/115/105/115105099/							
2	https://nptel.ac.in/courses/115/106/115106061/							
3	https://www.youtube.com/watch?v=_JOchLyNO_w							
4	https://www.journals.elsevier.com > Journals							
5	https://nptel.ac.in/courses/118/104/118104008/							

Semester	Programme	Course Code	Course Name	L	T	P	C
I	B.E. / B.Tech., Common to all	20CS1T5	FUNDAMENTALS OF COMPUTING AND PROGRAMMING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Understand the word processing tools with text documents	K2	1							
CO2	Organize spreadsheet manipulation tools with sheets also describe the presentation and sliding with layouts	К3	2							
CO3	Develop C program using managing input and output operations.	K6	3							
CO4	Design array and string implementation in C	K6	4							
CO5	Evaluate the function and structure concepts in C	K5	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)															
CO	COs	Programme Learning Outcomes (POs)												PS	PSOs	
	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	CO1	3				3		3	1	3	3		3			
	CO2	3		2		2			1	3	3		3			
	СОЗ	3		2		3			1	3	3		3			
	CO4	3							1	3	3		3			
	CO5	3				2			1	3	3		3	2		
	CO6	3				3		3	1	3	3		3			

	COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests							
2 Assignments									
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT Topic - 1 INTRODUCTION TO MS-WORD AND MS-EXCEL 9 Introduction to word – Creating, editing, saving and printing text documents - Font and paragraph formatting - Simple character formatting -Inserting tables, smart art, page breaks -Using lists and styles-Working with images -Using Spelling and Grammar check -Understanding document properties Introduction to Spreadsheet basics - Creating, editing, saving and printing spreadsheets -Working with functions & formulas -Modifying worksheets with color & auto formats -Graphically representing data : Charts & Graphs - Data Menu, Subtotal, Filtering Data -Formatting worksheets -Securing & Protecting spreadsheets Topic - 2 9 MS-POWERPOINT AND INTERNET Introduction to Powerpoint- Opening, viewing, creating, and printing slides -Applying auto layouts -Adding custom animation -Using slide transitions -Graphically representing data : Charts & Graphs -Creating Professional Slide for Presentation. Internet - Understanding how to search/Google -bookmarking and Going to a specific website -Copy and paste Internet content into your word file and emails -Understanding social media platforms such as Facebook & Many more -learn with best practices Topic - 3 C PROGRAMMING BASICS Problem formulation - Problem Solving - Introduction to 'C' programming -fundamentals - structure of a 'C' program compilation and linking processes – Constants, Variables – Data Types – Expressions using operators in 'C' – Managing Input and Output operations - Decision Making and Branching - Looping statements - solving simple scientific and statistical problems. Topic - 4 ARRAYS AND STRINGS 9 Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String operations – String Arrays. Simple programs- sorting- searching – matrix operations. Topic - 5 FUNCTIONS, STRUCTURES AND UNIONS Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion - Structure – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives. **THEORY** 45 **TUTORIAL** PRACTICAL **TOTAL** 45 BOOK REFERENCES Microsoft Office 2010 In Depth 1st Edition by Joe Habraken (Author), 2010 2 Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006. 3 "Computer basics absolute beginners"9thEdition, Michale Miller,2019

OT	HER REFERENCES							
1	https://youtu.be/ZXAPCy2c33o							
2	https://courses.lumenlearning.com/wm-compapp/chapter/internet-and-powerpoint/							
3	https://www.geeksforgeeks.org/c-language-set-1-introduction/							
4	https://www.studytonight.com/c/string-and-character-array.php							
5	5 https://www.geeksforgeeks.org/difference-structure-union-c/							

Semester	Programme	Course Code	Course Name	L	T	P	C
I	B.E. / B.Tech., Common to all	20GE1L1	PHYSICS & CHEMISTRY LABORATORY	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Physics & Chemistry laboratory Course	К3							
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3							
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4							
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4							
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3							
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 - Weak, 2 - Medium, 3 - Strong)														
COa	Programme Learning Outcomes (POs)												PSOs		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3								3	3					
CO2	3				3			2	3		1				
CO3	3	2		2		1				3					
CO4	3									3					
CO5	3									3		1			
CO6						2		2	2	2		1			

		COURSE ASSESSMENT METHODS
DIRECT	1	Lab Record
DIRECT	2	End Semester Examinations
INDIRECT	1	Course exit Survey

					LIST	OF EXP	ERIMENTS						
	PHYSICS LABORATORY (Any Fire Forestiments)												
	(Any Five Experiments)												
1	Torsional pendulum - determination of moment of inertia and rigidity modulus												
2	Deter	minatio	on of y	oung's modulus	by non	- uniform	bending						
3	(a) Determination of Wavelength, and particle size using Laser (b) Determination of acceptance angle in an optical fiber.												
4	Deter	minatio	on of v	elocity of sound	and co	mpressibi	lity of liquid – Ultras	sonic I	nterferoi	neter.			
5	Air w	edge –	deteri	nination of thicl	ness of	a thin wi	re.						
6	Deter	minatio	on of b	oand gap of a ser	nicondı	ictor.							
					LIST	OF EXP	ERIMENTS						
				(CHEMI	STRY L	ABORATORY						
					(Ang	Five Ex	periments)						
1	Deter	minatio	n of t	otal, temporary	and peri	nanent ha	ardness of water by E	DTA r	nethod.				
2	Estim	ate the	disso	ved oxygen con	tent of 1	he given	water sample by Win	kler's	method.				
3	Deter		e chlo	oride content of	he give	n potassiı	ım chloride sample u	sing st	andardiz	zed silver nitrat	e		
4	Deter	minatio	n of i	ron content of th	e given	solution	using a potentiometer	r					
5	Deter	minatio	on of s	trength of acid u	sing co	nductivity	/ meter.						
6	Using	condu	ctance	e measurements,	determ	ine the sti	rength of acids in a m	ixture.	,				
THEC	ORY	0		TUTORIAL	0		PRACTICAL	45		TOTAL	45		

BO	OK REFERENCES				
1 C. Ramesh Kumar & Y. Devakumari, "Physics Laboratory Manual", Al-Ameen Publications, 2020.					
2	N. Jafarulla & C. Krishna Moorthy C "Chemistry Laboratory Manual", Al-Ameen Publications, 2020.				

Semester	Programme	Course Code	Course Name	L	Т	P	С
I	B.E. / B.Tech., Common to all	20CS1L2	COMPUTER PRACTICES LABORATORY	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)							
After Successful completion of the course, the students should be able to							
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Computer Practices Laboratory Course	К3					
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3					
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4					
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4					
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3					
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3					

PRE-REQUISITE	NIL
---------------	-----

CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)															
COs	Programme Learning Outcomes (POs)													PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3								3	3					
CO2	3				3			2	3		1				
CO3	3	2		2		1				3					
CO4	3									3					
CO5	3									3		1			
CO6						2		2	2	2		1			

COURSE ASSESSMENT METHODS									
DIRECT	1	Laboratory Record							
	2 Model Practical Examinations								
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

				LIST	OF EXPI	ERIMENTS				
1	Study Exp									
a) Hardware specification and PC Assembly										
	b) Ge	b) Getting connected to internet								
2	Word proc	essing								
	a) Do	cumenta	tion creation, Text	Man	ipulation w	ith scientific notation	n			
	b) Ta	ble Creat	tion, Table Format	ting a	nd Convers	sion				
	1 ′	ail Merge								
	d) Flo	ow Chart	Preparation.							
3	Spread Sho	eet								
	a) Ch	arts- Bar	Chart, Pie Chart,	Line (Chart, X,Y	-Chart				
	b) Ob	b) Object Inclusion, Picture and Graphics								
		c) Protecting the Document								
4	Power Point Presentation and Access									
	/		Presentation							
			of Report Using A	ccess						
5	C Program	_								
	1	-	-		-	ons and Comment L	ines			
	b) Programming with Conditional Statements									
	1	_	ng with Branching			atements				
		_	ng with Arrays and		_					
	e) Pro	ogrammi	ng with Function a	nd St	ructure					
THEC	DRY 0		TUTORIAL	0		PRACTICAL	45		TOTAL	45

ВО	BOOK REFERENCES						
1	Computer Practices Laboratory manual, Al - Ameen Publications 2020						
2	Microsoft Office 2008 In Depth 2nd Edition by Joe (Author), 2010						

OT	OTHER REFERENCES						
1	https://youtu.be/ftyWKjT20S4						
2	https://nptel.ac.in/about_nptel.html						
3	https://nptel.ac.in/courses/106/106/106106092/						

SEMESTER II

Sl. No	Course Code	Course Title	Categor y	CI A	ES E	L	Т	P	C	
		TH	IEORY CO	DURSI	ES					
1	20MA2T1	Engineering Iathematics II	BS	40	60	3	1	0	4	
2	20CE2T3	Engineering Geology	ES	40	60	3	0	0	3	
3	20CE2T4	Civil Engineering Materials and Construction-I	ES	40	60	3	0	0	3	
4	20ME2T5	Engineering Mechanics	ES	40	60	3	1	0	4	
	THEORY COURSES WITH LABORATORY COMPONENTS									
5	20ME2L T	Engineerin g Drawing Practices	ES	50	50	2	0	2	3	
		LABO	RATORY	COU	RSES					
6	20EM2L 1	Engineering Practices Laboratory	ES	60	40	0	0	3	1. 5	
7	20ENCL 1	Communication Skills Laboratory	HS	60	40	0	0	2	1	
	MANDATORY COURSE									
8	20CY2T2	Environmental Sciences	MC	100		3	0	0	0	
		Sl. No.	Cours e Code		Categor y	CIA				

Semester	Programme	Course Code	Course Name	L	T	P	C
II	B.E. / B.Tech., Common to all	20MA2T1	ENGINEERING MATHEMATICS II	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to	RBT Level	Topics Covered							
CO1	Solve higher order differential equations and apply them to certain physical situations	К3	1							
CO2	Apply various integral theorems for solving engineering problems involving cubes and parallelepipeds.	К3	2							
CO3	Solve linear differential equations using Laplace transform techniques.	К3	3							
CO4	Construct analytic function of complex variables and transform functions from z- plane to w- plane and vice-versa using conformal mappings.	К3	4							
CO5	Apply the techniques of complex integration to evaluate real and complex integrals over suitable closed paths or contours	К3	5							

PRE-REQUISITE	ENGINEERING MATHEMATICS I
---------------	---------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PS	SOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3				1	3	3		3		
CO2	3	3		3				1	3	3		3		
CO3	3	3		3				1	3	3		3		
CO4	3	3		3				1	3	3		3		
CO5	3	3		3				1	3	3		3		

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	2 Assignments and Tutorials									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

COURSE CONTENT Topic - 1 SECOND AND HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS 9 + 3Second order linear differential equations with constant co-efficient – Cauchy equation – Euler equation – Cauchy – Legendre equation- Method of variation of parameters- Solution of simultaneous equation with constant coefficients **VECTOR CALCULUS** Topic - 2 9 + 3Introduction- gradient-directional derivative-divergence and curl-angel between the surfaces-solenoidal and irrotational vector fields-Green's theorem in a plane-Gauss divergence theorem-Stoke's theorem (without proof). Topic - 3 LAPLACE TRANSFORMS 9 + 3Condition for existence—Transform of elementary function—Basic properties (without proof)—Derivatives and integrals of transforms- Transform of unit step function- Initial and final value theorem (statement only)- Transform of a periodic function- Inverse Laplace transform- Partial fractions method-convolution theorem (statement only) - Solution of linear ODE of second order with constant co-efficients. ANALYTIC FUNCTIONS Topic - 4 9 + 3Analytic function – Necessary and sufficient condition – Cauchy Rieman equation (without proof) – Properties of analytic function (statement only) - Harmonic function - Constructions of analytic function - Bilinear transformation -Conformal mappings w = z + a, w = az, $w = \frac{1}{a}$ Topic - 5 **COMPLEX INTEGRATION** 9 + 3Cauchy's integral theorem (without proof) -Cauchy integral formula -Taylor's and Laurent's series (without proof) -Singularities –Cauchy's residue theorem – Contour Integration: Circular and Semi circular contour (excluding polar on real axis).

TH	EORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
ВО	BOOK REFERENCES										
1	Grewal B.S., "Higher Engineering Mathematics", 42 nd Edition, Khanna Publications New Delhi, 2011										
2	Jain R.K and Iyengar S.R.K, "Advanced Engineering Mathematics",4 th Edition, Narosa Publishing House, New Delhi, Reprint 2014.										
3	Ramana B.V., "Higher Engineering Mathematics", Tata Mcgraw Hill Publishing Company, New Delhi, 2011.										
4	Kreyszig E., "Advanced Engineering Mathematics", 10 th Edition, John Wiley Sons, 2010										

Semester	Programme	Course Code	Course Name	L	T	P	C
II	B.E. CIVIL	20CE2T3	ENGINEERING GEOLOGY	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
Afte	er Successful completion of the course, the students should be able to	RBT Level	Topics Covered								
CO1	Analyze the relevance of Engineering Geology in Civil Engineering.	K4	1								
CO2	Understand the common rock forming minerals and common rocks based on their physical properties.	K2	2								
CO3	Evaluate the earthquakes in relation to internal structure of theearth	K5	3								
CO4	Understand processes and geological agents involved in the shaping surface of the earth and explain the internal structure of the Earth.	K2	4								
CO5	Understand the hazards due to volcanic and seismic activity.	K2	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
		Programme Learning Outcomes (POs)											PSC	PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1						2		1	3	3		3			
CO2	3	3						1	3	3		3			
CO3			2					1	3	3		3			
CO4	3			2	2		2	1	3	3		3	2		
CO5	2	2	2	2				1	3	3		3	2		

		COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests						
	2 Assignment							
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE CONTENT							
Topic - 1	GENERAL GEOLOGY	9					

Importance of Geology in Civil Engineering – Branches of geology – Earth structures and composition - Earth processes – Weathering – work of rivers, wind and their Engineering importance. Groundwater : Mode of occurrence - Importance in Civil Engineering – Earthquake – causes - zones in India.

Topic - 2 MINERALOGY 9

Elementary knowledge on symmetry elements of crystallographic systems (normal class)— Physical properties of minerals — Study of the rock forming minerals — Quartz family –Feldspar family — Pyroxene family minerals – Mica — Fundamentals of ore mineralformation.

Topic - 3 PETROLOGY 9

Rocks - Rock cycle - Classification and Distinction of rocks - Igneous rocks: Granite, Syenite, Basalt and Dolerite - Sedimentary rocks: Conglomerate, Breccia, Sandstone, Shale and Limestone Metamorphic rocks: Gneiss, Schist, Quartzite and Marble.

Topic - 4 STRUCTURAL GEOLOGY AND GEOPHYSICAL INVESTIGATIONS 9

Dip and Strike – Outcrops – Folds - Faults and joints: causes and types – bearing on engineering construction Electrical survey for civil engineering investigations

Topic - 5 GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING 9

Applications of remote sensing technique – Interpretation for civil engineering projects –Geological considerations for construction of dam, reservoir and Tunnels – Landslides –causes and preventions.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL
--

BOO	OK REFERENCES
1	Duggal, SK,Rawal,N and Pandey, HK (2014) Engineering Geology, McGraw Hill Education, New Delhi
2	Garg, SK (2012) Introduction to Physical and Engineering Geology, Khanna Publishers, New Delhi
3	Gokhale, KVGK (2010) Principles of Engineering Geology, BS Pubications, Hyderabad
4	Kanithi V (2012) Engineering Geology, Universities Press (India) Ltd., Hyderabad
5	Singh, P (2004) Engineering and General Geology, S. K. Kataria and Sons, New Delhi

OTHER REFERENCES								
1	https://nptel.ac.in/courses/105/105/105105106/							
2	https://nptel.ac.in/courses/105/105/105105170/							
3	https://nptel.ac.in/courses/105/104/105104147/							
4	https://www.youtube.com/watch?v=6k9mtTmvPjw							
5	https://www.youtube.com/watch?v=NhrNJB-43bo							

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	B.E. CIVIL	20CE2T4	CIVIL ENGINEERING MATERIALS AND CONSTRUCTIONS-I	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Understand the concept of suitable building materials and its uses.	K2	1						
CO2	Understand the typical and potential applications of lime, cement and aggregates	K2	2						
CO3	Understand the production of concrete and also the method of placing and making of concrete elements.	K2	3						
CO4	Understand the applications of timbers and other materials	K2	4						
CO5	Analyze the modern materials for the buildings.	K4	5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			3	2	2	2	3	3		3	3	
CO2	3	2			3		2	2	3	3		3	3	
CO3	3	3			3		2	2	3	3		3	3	
CO4	3	3			3		2	2	3	3		3	3	
CO5	3	3			3		2	2	3	3		3	3	

COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests									
	2	Seminar							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	COURSE CONTENT										
То	Topic - 1 STONES – BRICKS – CONCRETE BLOCKS										9
wo Wa	Stone as building material – Criteria for selection – Tests on stones – Deterioration and Preservation of stone work – Bricks – Classification – Manufacturing of clay bricks – Tests on bricks – Compressive Strength – Water Absorption – Efflorescence – Bricks for special use - Refractory bricks – Cement, Concrete blocks – Light weightconcrete blocks.										
To	pic - 2			LIME – C	EMI	ENT – AG	GGREGATES – M	IORT	AR		9
Pro Sto	Lime: Characteristics, Classification, Manufacturing Process – Cement: Ingredients, Types and Grades, Properties, Manufacturing process, Testing of Cement– Industrial By-products: Fly ash – Aggregates: Natural Stone Aggregates, Classification Characteristics of Aggregates, Testing of Aggregates - Cement Mortar: Functions, Uses of Mortar, Types of Mortar, Ingredients of Mortar, Tests.									Natural	
To	pic - 3					CON	CRETE				9
Slu stre	Concrete – Ingredients – Manufacturing Process – Batching plants – RMC – Properties of fresh concrete – Slump – Flow and compaction Factor – Properties of hardened concrete – Compressive, Tensile and shear strength – Modulus of rupture – Tests – Mix specification – Mix proportioning – BIS method – High Strength Concrete and HPC – Self compacting Concrete – Other types of Concrete – Durability of Concrete.										
To	pic - 4			TIMB	ER A	AND OTH	IER MATERIALS	S			9
Al	uminum a	and Other	Met		Con	nposition -	Veneer – Thermac - Aluminium comp s – Bitumens.				
To	pic - 5				M	ODERN	MATERIALS				9
Co	mpositen		$-Ty_{j}$	pes – Application			reinforced plastic composites – Fibre				
TH	EORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
ВО	OK REF	ERENCI	ES								
1	Jha J ai	nd Sinha S	S.K.,	"Construction ar	ıd Fo	undation l	Engineering", Khar	nna Pu	ıblishers,	1999.	
2	Sharma	S.C. "Co	onstr	uction Equipmen	t and	Managem	ent", Khanna Publ	ishers	New De	lhi,2002.	
3	Deodha	ar, S.V. "C	Cons	truction Equipme	nt ar	nd Job Plar	nning", Khanna Pu	blishe	rs, New I	Delhi, 2012.	
4	Glyn Ja	mes., "A	dvan	ced Modern Eng	ineer	ing Mathe	matics", Pearson E	ducat	ion Limit	ted, 2007.	
5	Mahesh Varma, "Construction Equipment and its Planning and Application", Metropolitan Book Company, New Delhi, 1983.										
OT	HER RE	FERENC	CES								
1	https://	www.digi	imat.	in/nptel/courses/	video	0/1051020	88/L01.html				
2	https://	www.digi	imat.	in/nptel/courses/	video	0/1051060	53/L01.html				
3	https://	www.you	itube	.com/watch?v=w	OyQ	BVfM1eo	,				
4	http://w	ww.nitttr	rc.ed	u.in/nptel/courses	s/vid	eo/105102	088/L09.html				
5	https://	https://www.digimat.in/nptel/courses/video/105102088/L09.html									

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	B.E. MECH & CIVIL	20ME2T5	ENGINEERING MECHANICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
Ai	After Successful completion of the course, the students should be able to									
CO1	Explain the basic laws and resolution of forces.	K2	1							
CO2	Construct free body diagram to resolve the forces in real world mechanical systems.	К3	2							
CO3	Examine the appropriate support system for the given force system due to various reactions & moment created by the applied force.	K4	3							
CO4	Determine the centroid and moment of inertia for two dimensional sections, centre of gravity for geometrical bodies.	K5	4							
CO5	Analyse the frictional forces in wedge and ladder.	K4	5							

PRE-REQUISITE

NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		1		3	2	3	3	3	3	3	3	
CO2	3	3	2	3		3	2	3	3	3	3	3	3	
CO3	3	3	3	2		3	2	3	3	3	3	3	3	3
CO4	3	3	3	3		3	2	3	3	3	3	3	3	3
CO5	3	3	3	3		3	2	3	3	3	3	3	3	3
CO6	3	2		1		3	2	3	3	3	3	3	3	

	COURSE ASSESSMENT METHODS							
DIRECT	1	Continuous Assessment Tests						
	2	Mini project						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	COURSE CONTENT										
Topic - 1	Topic - 1 BASIC LAWS AND FORCE SYSTEMS										
Introduction to mechanics - Law of Mechanics - Lami's Theorem, Parallelogram, triangular and polygon law forces - Principles of transmissibility - Force system - resultant force, composition of force, resolution of force											
Topic - 2			ST	ATICS O	F PARTICLES				9		
	Free body diagram - Force on a particle – resultant of two forces and several concurrent forces – resolution of a force – equilibrium of a particle										
Topic - 3		\$	STA	TICS OF	RIGID BODIES				9		
		odies– transmissibilit eams – types of loads				's the	orem– Si	implification of	of forces		
Topic - 4	CE	NTROID, CENTRE	OF	GRAVIT	Y AND MOMEN	T OF	INERT	IA	9		
		nposite areas, determ ass moment of inertia			•	ane fi	gures, po	lar moment of	inertia-		
Topic - 5 FRICTION							9				
Laws of fricti	on – angl	es of friction- coeffic	ient	of friction	- angle of repose -	wedg	es Ladde	r.			
THEORY									45		

ВО	OK REFERENCES
1	Bansal R K, "Engineering Mechanics", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
2	Young D H and Timashenko S, "Engineering Mechanics", Tata Mcgraw-Hill, 2006.
3	Bhavikatti S S, "Engineering Mechanics", New Age International Pvt. Ltd., New Delhi, 2003.

ОТ	THER REFERENCES					
1	https://www.youtube.com/watch?v=LG0YzGeAFxk					
2	https://www.youtube.com/watch?v=nGfVTNfNwnk					
3	https://www.youtube.com/watch?v=v6VTMwxx4oA					
4	https://www.youtube.com/watch?v=V0PLWR6mQkk					
5	https://www.youtube.com/watch?v=yrJBouQkPhY					

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	B.E. MECH & CIVIL	20ME2LT	ENGINEERING DRAWING PRACTICES	2	0	2	3

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Identify the drawing instruments effectively and able to dimension the figure.	K1	1								
CO2	Appraise the usage of engineering curves in tracing the path of simple machine components.	K4	2								
CO3	Interpret the concept of projection and acquire visualization skills, projectionof points.	К3	3								
CO4	Construct the basic views related to projections of lines, planes.	K2									
CO5	Plan to use the modern tool for drawing communication.	K4	LAB								
CO6	Express the symbolic representation as per BIS SP:4 -2003.	K4									

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				3				2	3			3	2
CO2	3	2	3		2				2	3		2	3	3
CO3	3	2	3						2	3			3	3
CO4	3	2	2		2				2	3			3	3
CO5	3		3		3				2	3		3	3	3
CO6	3	2	3	2					3	3			3	3

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignments
	3	Laboratory Record
	4	Model Practical Examinations
	5	End Semester Examinations
INDIRECT	1	Course Exit Survey

COURSE CONTENT BASICS OF ENGINEERING DRAWING 10 Topic - 1 Introduction and its importance – conventions – Engineering drawing sheets, Drawing instruments as per BIS SP:4-2003. – Types of lines and its application. Geometric figures—Lettering and Numbering as per BIS SP:4-2003. Dimensioning – Types, Methods, Arrow head and leader line. Topic - 2 ORTHOGRAPHIC PROJECTION 10 Concept of axes, planes and quadrant - Projection of plane figure - Visualisation of object - Procedure of Orthographic projection – related exercise. Topic - 3 ISOMETRIC DRAWING **10** Types of pictorial drawing (Isometric, Oblique, Perspective drawing) - Procedure of isometric Drawing – Simple isometric related exercise. **THEORY** 30 **TUTORIAL PRACTICAL** 0 TOTAL 30 LIST OF EXPERIMENTS Experiment -1 Draw the 2D line diagram using AutoCAD software. 3 Experiment -2 Draw the 2D rectangle block using AutoCAD software. 3 Experiment -3 Practice Dimensioning and all Commands using Auto CAD Software. 3 Draw the Isometric diagram using AutoCAD software. Experiment -4 3 Draw the home civil layout plan using AutoCAD software. Experiment -5 3 **THEORY TUTORIAL** PRACTICAL 30 **TOTAL** 30 **BOOK REFERENCES** Bansal R K, "Engineering Mechanics", Laxmi Publications Pvt. Ltd., New Delhi, 2006. Young D H and Timashenko S, "Engineering Mechanics", Tata Mcgraw-Hill, 2006. 3 Bhavikatti S S, "Engineering Mechanics", New Age International Pvt. Ltd., New Delhi, 2003. 4 R.K. Dhawan, "A text book of Engineering Drawing", S.Chand Publishers, Delhi, 2010. Dhananjay. A.Jolhe, "Engineering Drawing with an introduction to AutoCAD", Tata Mc Graw Hill Publishing Company Ltd., Delhi, 2008.

ОТ	THER REFERENCES					
1	https://www.youtube.com/watch?v=LG0YzGeAFxk					
2	2 https://www.youtube.com/watch?v=nGfVTNfNwnk					
3	3 https://www.youtube.com/watch?v=v6VTMwxx4oA					
4	4 https://www.youtube.com/watch?v=V0PLWR6mQkk					
5	https://www.youtube.com/watch?v=yrJBouQkPhY					

Basant Agarwal and Agarwal.C.M., "Engineering Drawing" Tata McGraw Hill Publishing Company Ltd.,

Delhi,2008.

Semester	Programme	Course Code	Course Name	L	T	P	C
II	B.E./B.Tech (Common to all)	20EM2L1	ENGINEERING PRACTICES LABORATORY	0	0	3	1.5

COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Engineering Practices Laboratory Course	К3							
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3							
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4							
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4							
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3							
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3				
CO2	3				3			2	3		1			
CO3	3	2		2		1				3				
CO4	3									3				
CO5	3									3		1		
CO6						2		2	2	2		1		

COURSE ASSESSMENT METHODS										
DIRECT	1	Laboratory Record								
	2	2 Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

				Ll	ST C	F EXPE	RIMENTS				
1	GR	OUP A	(CIVI	L & MECHAN	CAI	.) I. CI	VIL ENGINEER	ING I	PRACT	ICE	
1	Bui	ldings:				_					
		a)	Study	of plumbing a	nd ca	arpentry o	components of re	sidenti	ial and	industrial	
				ngs safety aspect	s.						
	Plu	mbing '									
		a) Study of pipeline joints, its location and functions: valves, taps, couplings,									
		unions, reducers, elbows in household fittings.									
		b) Preparation of plumbing line sketches for water supply and sewage works.									
		C)		s-on-exercise:	. 1.4	r: 1	4	г	·		
							material connecti	on – F	ipe		
		٩)		ections with diffe			nponents. ents of high-rise b	uildin	ora.		
	Con			manual and pov			ents of mgn-rise o	unum	gs.		
	Cal						ndows and furnitu	re			
				s-on-exercise:	0015,	d0015, W1	ndows and furnitu	IC.			
		5)		l work, joints by	sawir	o nlannii	ng and cutting				
	II N	MECH A		L ENGINEERI							
2		ding:	MILLA	L ENGINEERI	101	KACIK	<u>, E</u>				
	""	0	Prepar	ration of butt join	ts. laı	n ioints ar	nd T- joints by Shi	elded 1	metal ar	c welding.	
				elding practice	, 100	p Jonnes un	iu i jemie ej em			o wording.	
	Bas	sic Mac									
				Turning and Ta	er tu	rning					
				g Practice	•						
	She	et Meta	al Wor	k:							
				ng & Bending							
				making – Trays	and fi	unnels.					
				ent type of joints.							
	Ma			ractice:							
				of centrifugal pu							
	CD			of air conditione		CTDON	ICC)				
3				CTRICAL AND L ENGINEERI							
	111.	_			-						
		_		ng and connection	1 01 F	luorescen	t famp wiring.				
				case wiring.			•				
							phase energy mete	r.			
				nbly of Residenti							
		5	. Meas	urement of earth	resist	ance of a	n electrical equipm	nent us	ing meg	gar.	
4	IV.	ELECT	RONI	CS ENGINEER	ING	PRACTI	CE				
		1.					nt of AC signal pa	ramet	ers		
		_		-Peak, RMS peri							
		2.		of logic gates A							
	3. Measurement of ripple factor of HWR and FWR.4. Soldering practice for Components, Devices and Circuits.										
		4. 5.		ring practice for ration of Clock S			Devices and Circui	ıs.			
		3.	Gene		ignai.						
TH	EORY	0		TUTORIAL	0		PRACTICAL	45		TOTAL	45
POC	K REF	FDFNC	TEC								
				T -1 4 - 22 - 41	A	D 11'	41				
1	Engine	ering Pra	actices	Laboratory", Al-	Ame	en Publica	ttions, 2020.				

Semester	Programme	Course Code	Course Name	L	Т	P	С
II	B.E., /B.Tech Common to all	20ENCL1	COMMUNICATION SKILLS LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Communication Skills Laboratory Course	К3							
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3							
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4							
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4							
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3							
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3							

PRE-REQUISITE	COMMUNICATIVE ENGLISH I
---------------	-------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
Cos	Programme Learning Outcomes (POs)											PS	Os	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3				
CO2	3				3			2	3		1			
CO3	3	2		2		1				3				
CO4	3									3				
CO5	3									3		1		
CO6						2		2	2	2		1		

COURSE ASSESSMENT METHODS										
DIRECT	1	Laboratory Record								
	2	Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

				I	IST	OF EXPI	ERIMENTS			
1	Labor	ratory	Practi	ce Sessions						
2	Conve	ersatio	on Pra	ctice Sessions (To	o be o	done as rea	al life interactions)			
3	Group Discussion Sessions									
4	Interv	riew S	ession	ıs						
5	5 Presentation									
THEC	ORY	0		TUTORIAL	0		PRACTICAL	30	TOTAL	30

BO	OK REFERENCES
1	Baul Emmerson and Nick Hamilton, "Five Minute Activities for Business English", Cambridge University Press, New York, 2005.
2	Arthur Brookes and Peter Grundy, "Beginning to Write: Writing Activities for Elementary and Intermediate Learners", Cambridge University Press, New York, 2003.
3	George, Livingston. "Using Communication Skills Lab in Enhancing Speaking Skills of Engineering Students" 2018.
4	NiraKonar: English Language Laboratory: A Comprehensive Manual, PHI Learning, 2011.
5	Pandey, Dr.Meenu. "A Practical Book of Communication Skills", NIRALI Prakashan advancement of knowledge, second edition 2018.

OT	OTHER REFERENCES						
1	Khan Academy Videos on English Speaking and Writing						
2	https://learningenglish.britishcouncil.org/en/listening						
3	Adrian Duff et.al. (ed.): Cambridge Skills for Fluency						
4	Mark Hancock: English Pronunciation in Use						
5	Audio Cassettes/CD'S OUP 2004						

Semester	Programme	Course Code	Course Name	L	Т	P	C
II	B.E. / B.Tech., Common to all	20CY2T2	ENVIRONMENTAL SCIENCES	3	0	0	0

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Demonstrate the importance of interdisciplinary nature of environment and health risk assessment.	K2	1							
CO2	Discuss the ecosystem and their importance in the environment and conservation of biodiversity.	K2	2							
CO3	Design the rain water harvesting system in their living area.	K6	3							
CO4	Analyze the impact of pollution and hazardous waste in a global and societal context.	K4	4							
CO5	Understand contemporary issues that result in environmental degradation that would attempt to provide solutions to overcome the problems.	К3	5							

PRE	-REQUISITE	ENGINEERING CHEMISTRY
-----	------------	-----------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1					2	1	3	3		3		
CO2	2	2					1	1	3	3		3		
CO3	3	1	1					1	3	3		3		
CO4	3	2	1					1	3	3		3		
CO5	3	1					2	1	3	3		3		

	COURSE ASSESSMENT METHODS									
DIRECT	IRECT 1 Continuous Assessment Tests									
	2	2 Assignment								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT

Topic - 1

ENVIRONMENT AND ECOSYSTEMS

9

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs – Introduction, types, characteristic features, structure and function of the forest ecosystem aquatic ecosystems (ponds, river and marine).

Activity: Study of the ecosystem structure in Cauvery River.

Topic - 2

BIODIVERSITY

9

Introduction to biodiversity definition: genetic, species and ecosystem diversity –value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity – endangered and endemic species of India – In-situ and ex- situ conservation of biodiversity.

Activity: Study of common plants, insects, birds.

Topic - 3

ENVIRONMENTAL POLLUTION

9

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Thermal pollution (d) Noise pollution – solid waste management: causes, effects and control measures of municipal solid wastes – Hazardous and biomedical waste management -pollution case studies.

Activity: Study of air and water pollution in industry.

Topic - 4

NATURAL RESOURCES

9

Forest resources: over-exploitation, deforestation, – Water resources: Rain water harvesting-watershed management - utilization of surface and ground water, conflicts over water, dams-benefits and problems Food resources: effects of modern agriculture, fertilizer-pesticide problems - Principles of Green Chemistry- Case studies

Activity: Tree plantation and maintenance within the campus.

TUTORIAL

Topic - 5

SUSTAINABILITY AND POPULATION

9

From unsustainable to sustainable development – environmental Impact Assessment (EIA) – environmental ethics: Issues and possible solutions – climate change, acid rain, ozone layer depletion, and case studies – environment production act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – environment and human health – value education – HIV / AIDS – women and child welfare

Activity: Small group meetings about environment and human health in local area peoples and making poster and short films about HIV / AIDS – women and child welfare.

THEORY 45

-

00

PRACTICAL

00

TOTAL

45

BOOK REFERENCES

- 1 Erach Bharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hydrabad, 2015.
- 2 Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 3 Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill Education, 2014.

OTHER REFERENCES

- 1 https://www.onlinebiologynotes.com/food-chain-food-web-and-ecological-pyramids/
- 2 https://vikaspedia.in/energy/environment/biodiversity-1/conservation-of-biodiversity
- 3 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ozone-layer-depletion

SEMESTER III

Sl. No.	Course Code	Course Title	L	Т	P	C			
1	20MA3T2	Probability and Statistics	BS	40	60	3	1	0	4
2	20CE3T3	Mechanics of Solids-I	ES	40	60	3	0	0	3
3	20CE3T4	Civil Engineering Materials and Construction-II	ES	40	60	3	0	0	3
4	20CE3T5	Fluid Mechanics	PC	40	60	3	0	0	3
5	20CE3T6	Surveying	Surveying PC 40 60						3
		LABORATORY CO	OURSE	S					
6	20CE3L1	Surveying Laboratory	PC	60	40	0	0	2	1
7	20CE3L2	Strength of Materials Laboratory	PC	60	40	0	0	2	1
8	20CE3L3	Computer Aided Building Drawing	ES	60	40	0	0	2	1
	MANDATORY COURSE								
9	20HSCT1	Universal Human Values 2 : Understanding Harmony HSM C 100 0					1	0	3
		Total				17	2	6	22

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	B.E. CIVIL	20MA3T2	PROBABILITY AND STATISTICS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)									
Af	After Successful completion of the course, the students should be able to									
CO1	Relate and apply the concept of probability and random variables and predict probabilities of events in models following normal distribution.	К3	1							
CO2	Identify the types of correlation, correlation between variables, and predict unknown values using regression.	К3	2							
CO3	Justify the concept of testing of hypothesis for small and large samples and interpret the results.	K5	3							
CO4	Classify the principles of design of experiments and perform analysis of variance.	K2	4							
CO5	Sketch control charts and criticize on the process control.	K5	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PS	PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3					1	3	3		3		
CO2	3		2					1	3	3		3		
CO3			2		3			1	3	3		3		
CO4	3				2			1	3	3		3	2	
CO5	3		3	3				1	3	3		3		

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2 Assignments and Tutorials									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT									
Topic - 1			PROBA	BILI	TY AND	RANDOM VARI	ABLI	ES		9+3
_	Basic concepts of probability – Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Exponential and Normal distributions									
Topic - 2			TWO – D	IME	NSIONA	L RANDOM VAR	RIABI	LES		9+3
	Joint distributions – Marginal and conditional distributions – Covariance – Correlation coefficient and linear regression – Transformation of random variables – Central limit theorem (statement only).									
Topic - 3				TES	TING OF	HYPOTHESIS				9+3
distribution for	or singl	e mea	n and difference	of m	neans -Tes	stical hypothesis – ts based on t, Chi- pendent) – Goodne	squar	e and F		
Topic - 4				DES	IGN OF I	EXPERIMENTS				9+3
One way and design	two wa	y clas	sifications – Con	nplete	ely randon	nized design – Ran	domiz	zed block	design – Latii	n square
Topic - 5	5 STATISTICAL QUALITY CONTROL 9+3							9+3		
Control charts for measurements (X and R charts) – Control charts f or attributes (p, c and np charts) – Tolerance limits – Acceptance sampling										
THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
DOOK DEED	DOOK DEEEDENCES									

ВО	BOOK REFERENCES								
1	Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3 rd Indian Edition, 2012								
2	Miller. S.L. and Childers. D.G., — "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2013.								
3	Vijay K. Rohatgi, Ehsanes Saleh,"An Introduction to Probability and Statisics", 2 nd Edition,2009								
4	N. G. Das.,"Statistical Methods", Tata McGraw Hill Publishing Ltd,2008								

ОТ	OTHER REFERENCES							
1	https://www.cuemath.com/learn/mathematics/probability-in-real-life/							
2	https://sciencing.com/examples-of-real-life-probability-12746354.html							
3	http://www.iraj.in/journal_file/journal_pdf/14-358-149822091462-64.pdf							

Semester	Programme	Course Code	Course Name	L	T	P	C
III	B.E. CIVIL	20CE3T3	MECHANICS OF SOLIDS-I	3	0	0	3

COURSE LEARNING OUTCOMES (COs)								
	RBT Level	Topics Covered						
CO1	Understand the concept of simple stresses and strains and the various elastic constants.	K2	1					
CO2	Analyse the shear force and bending moment diagrams and determine bending and shear stress distribution in beams	K4	2					
CO3	Analyse the deflection of statically determinate beams.	K4	3					
CO4	Apply the normal, shear, torsion and bending stresses and strains in structural member.	К3	4					
CO5	Analyse stress at a point and determine the principal and maximum shear stresses using equations as well as the Mohr's circle.	K4	5					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2						1	3	3		3	3	
CO2	3	3		3				1	3	3		3		
СОЗ	3	3		3				1	3	3		3	3	
CO4	3	2						1	3	3		3		
CO5	3	3		3				1	3	3		3		

COURSE ASSESSMENT METHODS							
DIRECT	1	Continuous Assessment Tests					
	2 Assignments						
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

COURSE CONTENT Topic - 1 STRESS AND STRAIN Stress and strain at a point – Tension, Compression, Shear Stress – Hooke's Law – Relationshipamong elastic constants - Stress Strain Diagram for Mild Steel, TOR steel, Concrete - Ultimate Stress - Yield Stress - Factor of Safety - Thermal Stresses - Thin Cylinders and Shells - Strain Energy due to Axial Force – Resilience – Stresses due to impact and Suddenly Applied Load. Topic - 2 **SHEAR AND BENDING IN BEAMS** 9 Beams and Bending- Types of loads, supports - Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly varying load. Theory of Simple Bending – Analysis of Beams for Stresses - Stress Distribution at a cross Section due to bending moment and shear force for Cantilever, simply supported and overhanging beams with different loading conditions. **DEFLECTION** Topic - 3 Double integration method - Macaulay's methods - Area moment method for computation of slopes and deflections of determinant beams. Topic - 4 **TORSION** Torsion of Circular and Hollow Shafts – Elastic Theory of Torsion – Stresses and Deflection in Circular Solid and Hollow Shafts - combined bending moment and torsion of shafts - strain energy due to torsion - Modulus of Rupture - Power transmitted to shaft - Shaft in series and parallel - Closed and Open Coiled helical springs - Leaf Springs - Springs in series and parallel. Topic - 5 **COMPLEX STRESSES AND PLANE TRUSSES** 9 2 D State of Stress - 2 D Normal and Shear Stresses on any plane - Principal Stresses and Principal Planes – Mohr's circle - Plane trusses: Analysis of plane trusses - method of joints. **THEORY** 45 TUTORIAL **PRACTICAL TOTAL** 45

ВО	BOOK REFERENCES						
1	Timoshenko, Strength of Materials Vol. I & Vol. II , CBS Publishers & Distributers,New Delhi						
2	S.S Bhavikatti , Structural analysis Vol, Vikas Publications (P) Ltd.4th Edition						
3	James M Gere & Stephen P Timoshenko , Mechanics of Materials , CBS Publishers & Distributers, New Delhi						
4	Rajput R.K. Strength of Materials, S.Chand&company Ltd., New Delhi						
5	Bansal R.K., —Strength of Materials , Laxmi Publications, New Delhi, 2007						

OTI	OTHER REFERENCES						
1	https://nptel.ac.in/courses/105106172/						
2	https://nptel.ac.in/courses/105104160/						
3	https://nptel.ac.in/courses/105106116/						
4	https://nptel.ac.in/courses/105105108/						
5	https://nptel.ac.in/courses/105105177/						

Semester	Programme	Course Code	Course Name	L	Т	P	С
III	B.E CIVIL	20CE3T4	CIVIL ENGINEERING MATERIALS AND CONSTRUCTIONS-II	3	0	0	3

COURSE LEARNING OUTCOMES (COs)								
	RBT Level	Topics Covered						
CO1	Explain erection techniques and practice for high rise structures.	K4	1					
CO2	Apply different construction techniques in under water construction.	К3	2					
CO3	Apply grouting techniques.	K3	3					
CO4	Analyze super structure construction.	K2	4					
CO5	Show the output of earth moving equipment's.	K4	5					

PRE-REQUISITE CIVIL ENGINEERING MATERIALS AND CONSTRUCTIONS-I	
---	--

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)													Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3			3	3	2	3	3	3	3	3	3	
CO2	3	2			3	3	2	3	3	3	3	3	3	
CO3	3	2			3	3	2	3	3	3	3	3	3	
CO4	3	2			3	3	2	3	3	3	3	3	3	
CO5	3	2			3	3	2	3	3	3	3	3	3	

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Mini Project								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT

Topic - 1 CONSTRUCTION TECHNIQUES

9

Structural systems - Load Bearing Structure - Framed Structure - Load transfer mechanism - floor system - Development of construction techniques - High rise Building Technology - Seismic effect - Environmental impact of materials - responsible sourcing - Eco Building (Green Building) - Material used - Construction methods - Natural Buildings - Passive buildings - Intelligent(Smart) buildings - Meaning - Building automation - Energy efficient buildings for various zones-Case studies of residential, office buildings and other buildings in each zones.

Topic - 2

CONSTRUCTION PRACTICES

9

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations

- basements - temporary shed - centering and shuttering - slip forms - scaffoldings - de-shuttering forms - Fabrication and erection of steel trusses - frames - braced domes - laying brick — weather and water proof - roof finishes - acoustic and fire protection.

Topic - 3

SUB STRUCTURE CONSTRUCTION

9

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunnelling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting - driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

Topic - 4

SUPER STRUCTURE CONSTRUCTION

9

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in- situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks.

Topic - 5

CONSTRUCTION EQUIPMENT

(

Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers — Equipment for foundation and pile driving. Equipment for compaction, batching, mixing and concreting - Equipment for material handling and erection of structures — typesof cranes - Equipment for dredging, trenching, tunneling,

THEORY

45

TUTORIAL

0

PRACTICAL

0

TOTAL

45

BOOK REFERENCES

- 1 Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
- 2 Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi,
- 3 Kumar P Mehta., Paulo J M Monterio., "Concrete Microstructure, Properties and Materials", McGraw Hill Education (India) Private Limited, New Delhi, 2016
- 4 Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.
- Gambhir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi,2007

ОТ	OTHER REFERENCES						
1	https://www.digimat.in/nptel/courses/video/105102088/L01.html						
2	https://www.digimat.in/nptel/courses/video/105106053/L01.html						
3	https://www.youtube.com/watch?v=wOyQBVfM1eo						
4	http://www.nitttrc.edu.in/nptel/courses/video/105102088/L09.html						
5	https://www.digimat.in/nptel/courses/video/105102088/L09.html						

Sen	nester	Programme	Course Code	Course Name	L	Т	P	С
	III	B.E. CIVIL	20CE3T5	FLUID MECHANICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Understand the types of fluid and determine their properties	K2	1						
CO2	Understand the kinematics that exists in the fluid flow and draw the flow net	K2	2						
CO3	Apply Bernoulli's equation for real flow and deduce expressions for orifice meter and venturimeter	К3	3						
CO4	Analyse major and minor losses in pipes	K4	4						
CO5	Apply principles of dimensional analysis to design experiments	К3	5						

PRE-REQUISITE ENGINEERING MATHEMATICS	
---------------------------------------	--

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			3			1	3	3		3		2
CO2	3	3	2					1	3	3		3		
СОЗ	3	3	2	2	3			1	3	3		3		
CO4	3	3	2	2				1	3	3		3		
CO5	3	3	2	3				1	3	3		3		

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	Assignments									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

COURSE CONTENT

Topic - 1 FLUID PROPERTIES AND STATICS

9

9

Definitions – Fluid and fluid mechanics – Dimensions and units – Fluid properties – Continuum Concept of system and control volume – Pascal's Law and Hydrostatic equation – Forces on plane and curved surfaces – Buoyancy – Meta centre – Pressure measurement – Fluid mass under relative equilibrium.

Topic - 2 FLUID KINEMATICS

Fluid Kinematics - Stream, streak and path lines - Classification of flows - Continuity equation (one, two andthree dimensional forms) - Stream and potential functions - flow nets - Velocity measurement.

Topic - 3 FLUID KINETICS 9

Euler and Bernoullis equations – Application of Bernoullis equation – Discharge measurement – Laminar flows through pipes and between plates – Hagen Poisuille equation – Turbulent flow – Darcy-Weisbach formula – Moody diagram – Momentum Principle.

Topic - 4 BOUNDARY LAYER AND FLOW THROUGH PIPES

Definition of boundary layer – Thickness and classification – Displacement and momentum thickness – Development of laminar and turbulent flows in circular pipes – Major and minor losses of flow in pipes – Pipes inseries and in parallel.

Topic - 5 SIMILITUDE AND MODEL STUDIES 9

Dimensional Analysis – Rayleigh's method, Buckingham's Pi theorem – Similitude and models – Scale effectand distorted models.

THEORY	45	TUTORIAL	0		PRACTICAL	0	TOTAL	45
--------	----	----------	---	--	-----------	---	-------	----

BOOK REFERENCES

- Bansal, R.K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt. Ltd., New Delhi, 2008.
- 2 Rajput, R.K., A Text Book Fluid Mechanics, S Chand & Co., New Delhi, 2013.
- 3 K.L. Kumar., Engineering Fluid mechanics, 8th Edition S. Chand & Company Ltd.
- 4 P.M. Modi and S.M. Seth, Hydraulics and Fluid Mechanics, Standard Book House
- 5 K. Subramanya, Theory and Applications of Fluid Mechanics, Tata McGraw Hill.

OTHER REFERENCES

- 1 http://www.nptel.ac.in/
- 2 https://www.youtube.com/watch?v=DW4rItB20h4
- 3 https://www.youtube.com/watch?v=9A-uUG0WR0w
- 4 https://nptel.ac.in/courses/105/103/105103095/
- 5 https://en.wikipedia.org/wiki/Similitude

Semester	Programme	Course Code	Course Name	L	T	P	C
III	B.E., CIVIL	20CE3T6	SURVEYING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
	RBT Level	Topics Covered						
CO1	Understand basic principles and concepts of different surveying methods	K2	1					
CO2	Evaluate the measurements errors and apply correction	K5	2					
CO3	Apply the various survey instruments for a particular survey work	К3	3					
CO4	Evaluate areas and volumes of earth work	K4	4					
CO5	Analyze horizontal and vertical angles	K5	5					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PS	SOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3			3		2	2	3	3		3	3	
CO2	3	3			2		2	2	3	3		3	3	
CO3	3				3		2	2	3	3		3	3	
CO4	3				2		2	2	3	3		3	3	
CO5	3				3		2	2	3	3		3		

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Seminar								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COLIDGE	
COURSE	CONTENT
COUNDE	CONTENT

Topic – 1 FUNDAMENTALS AND CHAIN SURVEYING

9

Definition- Classifications - Basic principles-Equipment and accessories for ranging and chaining – Methods of ranging - well conditioned triangles – Errors in linear measurement and their corrections - Obstacles - Traversing – Plotting – applications- enlarging the reducing the figures – Areas enclosed by straight line irregular figures.

Topic – 2 COMPASS AND PLANE TABLE SURVEYING

9

Compass – Basic principles - Types - Bearing - Systems and conversions- Sources of errors - Local attraction - Magnetic declination-Dip-Traversing - Plotting - Adjustment of closing error – applications - Plane table and its accessories - Merits and demerits - Radiation - Intersection - Resection – Traversing- sources of errors – applications.

Topic – 3 LEVELLING

9

Level line - Horizontal line - Datum - Bench marks -Levels and staves - temporary and permanent adjustments - Methods of levelling - Fly levelling - Check levelling - Procedure in levelling - Booking - Reduction - Curvature and refraction - Reciprocal levelling - Sources of Errors in levelling- Precise levelling - Types of instruments - Adjustments - Field procedure.

Topic – 4 LEVELLING APPLICATIONS

9

Longitudinal and Cross-section-Plotting - Contouring - Methods - Characteristics and uses of contours - Plotting - Methods of interpolating contours - Computations of cross sectional areas and volumes - Earthwork calculations - Capacity of reservoirs.

Topic – 5 THEODOLITE

9

Theodolite - Types - Description - Horizontal and vertical angles - Temporary and permanent adjustments - Heights and distances- Tangential and Stadia Tacheometry Subtense method - Stadiaconstants - Anallactic lens.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES

- 1 Punmia, B.C., —Surveying, Volume. I and II, Laxmi Publications, New Delhi, 2008.
- 2 Duggal, —Surveying, Volumes I and II, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.
- Surveying and Levelling Vol. I and Vol. II by T. P. Kanetkar and S.V.Kulkarni , Pune VidyarthiGrihaPrakashan.
- 4 Surveying and Levelling by Subramanian, Oxford University Press
- 5 Textbook of Surveying by C. Venkatramaiah, University Press.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/105/104/105104101/
- 2 https://nptel.ac.in/courses/105/107/105107122/
- 3 https://nptel.ac.in/courses/105/107/105107157/
- 4 https://www.youtube.com/watch?v=7QyhK 1Ex-s
- 5 https://www.youtube.com/watch?v=c9U0xlmCzGI

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	B.E. CIVIL	20CE3L1	SURVEYING LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to							
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Surveying Laboratory Course	К3						
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3						
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4						
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4						
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3						
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3						

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)										PSOs			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3				
CO2	3				3			2	3		1			
СОЗ	3	2		2		1				3				
CO4	3									3				
CO5	3									3		1		
CO6						2		2	2	2		1		

	COURSE ASSESSMENT METHODS									
DIRECT	1	Laboratory Record								
	2	Model Practical Examinations								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	LIST OF EXPERIMENTS									
1	Study of chains and its accessories									
2	Study of plain table surveying									
3	Compass Traversing									
4	Determination of area by triangulation method									
5	Determination of area by trilateration method									
6	Grid contouring									
7	Radial co	ntourin	g							
8	Check leveling									
9	Levelling – CS and LS									
10	10 Experiments in total station.									
THEO										

ВО	BOOK REFERENCES						
1	Surveying Laboratory, Al-Ameen Publications.						
2	Punmia, B.C., —Surveying, Volumes – I and II, Laxmi Publications, New Delhi,2008.						

OT	OTHER REFERENCES						
1	http://youtube.com/watch?v=VIEZXvHzf1Q						
2	http://youtube.com/watch?v=hiCH-IS3LOI&t=146s						
3	https://www.youtube.com/watch?v=ZRjD9XgMLsQ						
4	https://www.youtube.com/watch?v=1apJJL4j7OI						
5	https://www.youtube.com/watch?v=MhP8K_tWKeE						

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	B.E.CIVIL	20CE3L2	STRENGTH OF MATERIALS LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to							
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Strength of Materials Laboratory Course	К3						
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3						
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4						
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4						
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3						
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3						

PRE-REQUISITE MECHANICS OF SOLIDS-I

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		PSOs												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3				
CO2	3				3			2	3		1			
CO3	3	2		2		1				3				
CO4	3									3				
CO5	3									3		1		
CO6						2		2	2	2		1		

	COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Laboratory Record								
	2	Model Practical Examinations							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	LIST OF EXPERIMENTS											
1	Tension test on metal specimens.											
2	Shear test on metal specimens.											
3	Torsion test on metal specimen.											
4	Impact tests on metal specimens.											
5	Hardness tests on metal specimens.											
6	Test on closed coil helical springs.											
7	Test on open coil helical springs.											
8	Deflection test on beam.											
9	Tests on Brick i) Compressive strength ii) Water absorption											
10	Tests on Cement											
THE												

BOO	BOOK REFERENCES							
1	Strength Of MaterialsLaboratory: - Al-Ameen Publication							
2	Shetty.M.S., "Concrete Technology (Theory and Practice)", S. Chand and Company Ltd.,2008.							

OT	OTHER REFERENCES						
1	https://www.digimat.in/nptel/courses/video/105105108/L01.html						
2	https://www.iare.ac.in/sites/default/files/lab1/IARE_Strength_of_Materials_Laboratory.pdf						
3	https://www.youtube.com/watch?v=BDZhFZn2MQg						
4	https://www.youtube.com/watch?v=pS2HSTwHpSw						
5	https://www.youtube.com/watch?v=YNBAjIysQ0w						

Semester	Programme	Course Code	Course Name	L	Т	P	C
III	B.E. CIVIL	20CE3L3	COMPUTER AIDED BUILDING DRAWING	0	0	2	1

COURSE LEARNING OUTCOMES (COs)							
After Successful completion of the course, the students should be able to							
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Computer Aided Building Drawing Course	К3					
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3					
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4					
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4					
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3					
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	K3					

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO			PSOs											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3				
CO2	3				3			2	3		1			
СОЗ	3	2		2		1				3				
CO4	3									3				
CO5	3									3		1		
CO6						2		2	2	2		1		

	COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Laboratory Record								
	2	2 Model Practical Examinations							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	LIST OF EXPERIMENTS										
1	Stu	Study of Principles of Planning and Building Bye-Laws									
2	Pla	Plan, Elevation and Cross Section of Residential Building – one storied & two storied									
3	Pla	n, Eleva	ition ai	nd Cross Section	of RO	CC Frame	d structure - comm	ercial	and insti	tutional	
4	Plan, Elevation and Cross Section of Industrial Building with north light roof truss										
5	Plan, Elevation and Cross Section of Rain water Harvesting and Septic tank										
6	6 Preparation of Detailed drawing										
7	7 Study of Building Information Modeling (BIM)										
THE	ORY	0		TUTORIAL	0		PRACTICAL	30		TOTAL	30

во	BOOK REFERENCES						
1	Computer Aided BuildingDrawing: - Al-Ameen Publication						
2	Dr. Balagopal T.S. Prabhu, Building Drawing and Detailing, Spades Publishers, Calicut						
3	AutoCAD Essentials, Autodesk official Press, John Wiley & Sons, USA						
4	M.G., Kale, C. M. and Patki, S.Y. Building Drawing With An Integrated Approach to Built Environment, Tata McGraw Hill Publishing Company Limited, New Delhi						
5	M G Shah - Building Drawing with an integrated approach to Built Environment.						

ОТ	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=CiVIk25kCaA						
2	https://www.autodesk.com/solutions/cad-software						
3	https://nptel.ac.in/courses/112/102/112102101/						
4	https://www.youtube.com/watch?v=o4nJ6v501rs						
5	https://www.youtube.com/watch?v=LgvGmwGMeKk						

Semester	Programme	Course Code	Course Name	L	Т	P	C
IV - B.E.	B.E. CIVIL CSE, EEE, ECE, I & B.Tech. IT	20HSCT1	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY	2	1	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Understand and aware of themselves, and their surroundings (family, society, nature)	K2	1,2						
CO2	Build more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind	К3	2,3,5						
CO3	Relate the critical ability and sensitive to their commitment towards what they have understood (human values, human relationship and human society).	K2	1,2,3						
CO4	It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	К3	2,3,4						
CO5	Appraise local, regional and a national culture in harmony with others	K5	2,3,4,5						
CO6	Leading to the development of a holistic and humane world vision: Universal Human Values of truth, love and compassion	K6	3,4,5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3					2					2			
CO2		3					3		2						
CO3								3				2			
CO4		2				2	2								
CO5								3		2		2			
CO6								3		2		3			

COURSE ASSESSMENT METHODS								
DIRECT	T 1 Continuous Assessment Tests							
	2	Practice sessions						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

Topic - 1 Course Introduction - Need, Basic Guidelines, Content and Process for Value Education 9

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Topic - 2 Understanding Harmony in the Human Being - Harmony in Myself! 9

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Topic - 3 Understanding Harmony in the Family and Society- Harmony in Human Relationship 9

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- 16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Topic - 4 Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in all pervasive space

21. Holistic perception of harmony at all levels of existence.

Topic - 5 Implications of the above Holistic Understanding of Harmony on Professional Ethics

9

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and ecofriendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- 28. Sum up

THEORY 4	45	TUTORIAL	0	PRACTICAL	0		TOTAL	45
----------	----	----------	---	-----------	---	--	-------	----

ВО	OK REFERENCES
1	Jeevan Vidya: E.K. Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004
3	The Story of Stuff (Book)by Annie Leonard , 2011
4	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
5	Small is Beautiful - E. F Schumacher.
6	Slow is Beautiful - Cecile Andrews
7	Economy of Permanence - J C Kumarappa
3	India Wins Freedom - Maulana Abdul Kalam Azad
4	Vivekananda - Romain Rolland (English)
4	Gandhi - Romain Rolland (English)

OTHER REFERENCES 1 https://www.youtube.com/watch?v=XGxNCFjDGEg

2 https://www.c-span.org/video/?292709-1/the-story-stuff

SEMESTER IV

Sl. No.	Course Code	Course Title	Cate gory	CIA	ESE	L	T	P	C			
	THEORY COURSES											
1	20CE4T1	Mechanics of Solids-II	PC	40	60	3	0	0	3			
2	20CE4T2	Applied Hydraulic Engineering	PC	40	60	3	0	0	3			
3	20CE4T3	Concrete Technology	PC	40	60	3	0	0	3			
4	20MA4T4	Numerical Methods	BS	40	60	3	1	0	4			
5		Professional Elective– I	PE	40	60	3	0	0	3			
6		Open Elective–I	OE	40	60	3	0	0	3			
		LABORATORY CO	OURSES	S								
7	20CE4L1	Fluid Mechanics and Machinery Laboratory	PC	60	40	0	0	2	1			
8	20CE4L2	Concrete& Highway Engineering Laboratory	60	40	0	0	2	1				
	Total											

Semester	Programme	Course Code	Course Name	L	T	P	С
IV	B.E. CIVIL	20CE4T1	MECHANICS OF SOLIDS – II	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
Ai	After Successful completion of the course, the students should be able to										
CO1	Understand strain energy stored in a body.	K2	1								
CO2	Analyze statically Indeterminate structures.	K4	2								
CO3	Analyze buckling load for columns & struts with different end conditions.	K4	3								
CO4	Analyze principal stresses and planes	K4	4								
CO5	Analyze Unsymmetrical bending of beams	K4	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)												PS	PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2											2			
CO2	3	2	2		2							2		2	
CO3	3	2	3												
CO4	3	2	2				2		2			2		2	
CO5	2	2													

		COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests								
	2 Assignment									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT Topic - 1 **ENERGY PRINCIPLES** 9 Strain energy and strain energy density - strain energy due to axial load, shear, flexure and torsion Castigliano"s theorems - Maxwell"s reciprocal theorems -Principle of virtual work - application of energy theorems for computing deflections in beams and trusses. 9 Topic - 2 **INDETERMINATEBEAMS** Concept of Analysis - Propped cantilever and fixed beams-fixed end moments and reactions - Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams. **COLUMNSANDCYLINDER** Topic - 3 Euler"s theory of long columns - critical loads for prismatic columns with different endconditions; Rankine-Gordon formula for eccentrically loaded columns - Eccentricallyloaded short columns - middle third rule coresection – Thick cylinders. STATE OF STRESS IN THREE DIMENSIONS 9 Topic - 4 Determination of principal stresses and principal planes – Volumetric strain – Theories offailure – Principal stress - Principal strain – shear stress – Strain energy and distortionenergy theories–application in analysis of stress, load carryingcapacity. Topic - 5 ADVANCED TOPICS IN BENDING OF BEAMS 9 Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - curved beams – Winkler Bach formula. **THEORY TUTORIAL** 0 **PRACTICAL TOTAL** 45 0 45 **BOOK REFERENCES** Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand& company Ltd., New Delhi, 2010. 2 PunmiaB.C."Theory of Structures" (SMTS) Vol 1&II, Laxmi Publishing Pvt Ltd, New Delhi 2004. 3 S.Ramamrutham, "Strength of Materials, DhanpatRai& Sons. 4 Bhavikatti, Structural analysis Vol, Vikas Publications (P) Ltd.4th Edition 5 Timoshenko, Strength of Materials Vol. I & Vol. II, CBS Publishers & Distributers, New Delhi **OTHER REFERENCES** 1 https://www.youtube.com/watch?v=Y1KE8eAC9Bk 2 https://www.youtube.com/watch?v=kiiA6WTCQn0 3 https://www.youtube.com/watch?v=Uc2R7GND0Dk 4 https://www.youtube.com/watch?v=icxvLWEOzEA 5 https://www.youtube.com/watch?v=PzbdTfUatIY

Semester	Programme	Course Code	Course Name	L	Т	P	С
IV	B.E. CIVIL	20CE4T2	APPLIED HYDRAULIC ENGINEERING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Understand the different types of flows and channels.	K2	1								
CO2	Understand gradually varied flow profile in detail.	K2	2								
CO3	Understand rapidly varied flow profile in detail.	K2	3								
CO4	Analyse the various components of pumps, efficiency and speed.	K4	4								
CO5	Evaluate the working proportions of hydraulic turbines.	K5	5								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)												PS	PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2			2	1	3	3		3			
CO2	3	3	2	3				1	3	3		3		2	
CO3	3	3	2	3				1	3	3		3			
CO4	3	2	2	2	3	2		1	3	3		3		2	
CO5	2	3	3	2	3	-	2	1	3	3		3		2	

		COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2	Assignment							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

Topic - 1 OPEN CHANNEL FLOW 9

Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of open channel - Fundamental equations - Velocity distribution in open channel - Steady uniform flow: Chezy equation, Manning equation - Best hydraulic sections for uniform flow - Computation in Uniform Flow - Specific energy and specific force - Critical depth and velocity.

Topic - 2 GRADUALLY VARIED FLOW 9

Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic Curve - Profile determination by Numerical method: Direct step method and Standardstep method, Graphical method – Applications.

Topic - 3 RAPIDLY VARIED FLOW 9

Application of the energy equation for RVF - Critical depth and velocity - Critical, Sub-critical and Supercritical flow - Application of the momentum equation for RVF - Hydraulic jumps - Types - Energy dissipation - Surges and surge through channel transitions.

Topic - 4 PUMPS 9

Application of momentum principle - Classification of pumps - Centrifugal pump - Minimum speed to start thepump - Multistage pumps - Reciprocating pump - Negative slip - Air vessels - Indicator diagrams.

Topic - 5 TURBINES 9

Impact of Jet on vanes - Turbines - Classification - Reaction turbines - Francis turbine, Radial flow turbines, draft tube and cavitation - Propeller and Kaplan turbines - Impulse turbine - Performance of turbine - Specific speed - Runaway speed - Similarity laws.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES

- Bansal, R.K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt. Ltd., New Delhi, 2008
- 2 Rajput, R.K., A Text Book Fluid Mechanics, S Chand & Co., New Delhi, 2013.
- 3 K.L. Kumar., Engineering Fluid mechanics, 8th Edition S. Chand & Company Ltd.
- 4 P.M. Modi and S.M. Seth, Hydraulics and Fluid Mechanics, Standard Book House
- 5 K. Subramanya, Flow in open channels, 3rd Edition, Tata McGraw Hill.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/105/105/105105203/#
- 2 https://www.brainkart.com/subject/Applied-Hydraulic-Engineering
- 3 https://ascelibrary.org/journal/jhend8
- 4 https://www.youtube.com/watch?v=tmzInxHyyFk&list=PLbRMhDVUMngdInIhHKoECcrz27t
- 5 https://www.youtube.com/watch?v=70mCi QK8D0

S	emester	Programme	Course Code	Course Name	L	Т	P	C
	IV	B.E. CIVIL	20CE4T3	CONCRETE TECHNOLOGY	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
At	After Successful completion of the course, the students should be able to									
CO1	Understand the concept of building materials – Cement, Aggregate and Water.	К2	1							
CO2	Analyze the suitable Admixtures used in concrete.	K4	2							
CO3	Analyse the suitable mix design of concrete grade.	K4	3							
CO4	Evaluate the fresh and hardened concrete.	K5	4							
CO5	Analyze the different types of special concrete.	K4	5							

PRE-REQUISITE CIVIL ENGINEERING MATERIALS-I, CIVIL ENGINEERING MATERIALS-II

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3			1		1	2	3	3	3	3	3	2	2	
CO2	3			1		1	2	3	3	3	3	3	2	2	
СОЗ	3	3	3	1		1	2	3	3	3	3	3	2	2	
CO4	3			1		1	2	3	3	3	3	3	2	2	
CO5	3			1		1	2	3	3	3	3	3	2	2	

	COURSE ASSESSMENT METHODS											
DIRECT	DIRECT 1 Continuous Assessment Tests											
	2 Mini Project											
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

					CO	URSE C	ONTENT					
T	opic - 1			(CON	STITUE	NT MATE	RIAL	S			9
Cement - Different types - Chemical composition and Properties — Hydration of cement - Tests on cer - IS Specifications - Aggregates — Classification - Mechanical properties and tests as per BIS - Grarequirements — Water - Quality of water for use in concrete.												
T	opic - 2			CHEMI	CAL	ANDMI	NERAL A	DMIX	TUR	ES		9
As				- Plasticizers - nd Granulated 1								ke Fly
T	opic - 3			PROI	OR	ΓΙΟΝΙΝΟ	G OF CON	CRET	Е МІ	X		9
ma		quired		rtioning - Prop lix Design - D								
T	opic - 4			FRESH AND	HAR	DENED	PROPER	TIES (OFCC	NCRE	Γ	9
Pro stra	Workability - Tests for workability of concrete - Segregation and Bleeding - Determination of strength Properties of Hardened concrete - Compressive strength - split tensile strength - Flexural strength - Stress-strain curve for concrete - Modulus of elasticity - durability of concrete - water absorption - permeability - corrosion test - acid resistance.											
T	opic - 5				SF	PECIAL	CONCRE	TES				9
coı	ncrete - I	Fibre re	einfor	- foam concrete - performance concrete -	- Fer	rocement	- Ready	mix co				
TE	HEORY	45		TUTORIAL	0		PRACT	ICAL	0		TOTAL	45
ВО	OK REF	EREN	CES									
1	Neville	, A.M;	"Prop	perties of Conc	ete",	Pitman P	ublishing I	Limited	, Lone	don,199:	5	
2	Gambh Publish	_	M.L; Ltd,	"Concrete New Delhi,200		hnology",	3 rd	Edition	і, Т	ata M	IcGraw Hill	
3				commended G lhi, 1998.	uideli	ines for	Concrete	Mix	Desig	n, Bure	au of Indian	
4												
5	5 Kumar P Mehta., Paulo J M Monterio., "Concrete - Microstructure, Properties and Materials", McGraw Hill Education (India) Private Limited, New Delhi,2016											
OT	HER RE	FERE	NCE	S								
1	https://i	nptel.ac	e.in/co	ourses/105/102	1051	02012/						
2	https://i	nptel.ac	c.in/co	ourses/105/106	1051	06176/						
				ourses/105/104								

https://onlinecourses.nptel.ac.in/noc19_ce20/preview

 $https://online courses.nptel.ac.in/noc19_ce20/preview$

4

5

Semester	Programme	Course Code	Course Name	L	T	P	C
IV	Common to B.E. EEE & CIVIL	20MA4T4	NUMERICAL METHODS	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)		
A	fter Successful completion of the course, the students should be able to	RBT Level	Topics Covered
CO1	Identify and apply various numerical techniques for solving non-linear equations and systems of linear equations.	К3	1
CO2	Categorize various types of interpolation with equal and unequal intervals and apply the concept of cubic spline, approximation of derivatives using interpolation polynomials.	K4	2
CO3	Analyse and apply the knowledge of interpolation and determine the integration and differentiation of the functions by using the numerical data.	K4	3
CO4	Determine the dynamic behaviour of the system through solution of ordinary differential equations by using numerical methods.	K5	4
CO5	Solve PDE models representing spatial and temporal variations in physical systems through numerical methods.	К3	5

PRE-REQUISITE Engineering Mathematics I & Engineering Mathematics II

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3				1	3	3		3		
CO2	3	3		3				1	3	3		3		
CO3	3	3		3				1	3	3		3		
CO4	3	3		3				1	3	3		3		
CO5	3	3		3				1	3	3		3		

	COURSE ASSESSMENT METHODS											
DIRECT	1	Continuous Assessment Tests										
	2	2 Assignments and Tutorials										
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

				C	OURSE CO	ONTENT				
Topic - 1		SC	DLUTION OF 1	EQU	ATIONS A	AND EIGENVAI	LUE P	ROBLEN	MS	9+3
Solution of l	Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method - Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method.									
Topic - 2			INTER	POL	ATION A	ND APPROXIM	ATIO	N		9+3
	Interpolation with unequal intervals - Lagrange's interpolation — Newton's divided difference interpolation — Cubic Splines - Interpolation with equal intervals - Newton's forward and backward difference formulae.									
Topic - 3	NUMERICAL DIFFERENTIATION AND INTEGRATION 9								9+3	
						nomials - Nume ouble integrals by				
Topic - 4	INIT	TAL V	ALUE PROBI	EM	S FOR OR	DINARY DIFFI	EREN	ΓIAL EQ	UATIONS	9+3
	d for s	olving	first order equa			thod - Modified lep methods - Mi				_
Topic - 5	ic - 5 ROUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL							9+3		
techniques for	Finite difference methods for solving second order two - point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) method.									
THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60

ВО	OK REFERENCES
1	Gerald. C. F. and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 7th Edition, New Delhi, 2006.
2	Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi, 2010
3	Stevan C Chapra, "Applied Numerical Methods with MAT LAB for Engineers and Scientist", Tata McGraw Hill Publishing Company Limited, 2nd Edition, 2007.
4	P.B Pasil, N P Varma.,"Numerical Computational Methods", Narosa Publishing House 2009
5	Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.

OT	OTHER REFERENCES						
1	https://www.sobtell.com/blog/38-real-life-applications-of-numerical-analysis						
2	https://www.scienceabc.com/eyeopeners/why-do-we-need-numerical-analysis-in-everyday-life.html						
3	https://leverageedu.com/blog/application-of-statistics/						

Semester	Programme	Course Code	Course Name	L	Т	P	C
IV	B.E. CIVIL	20CE4E1	HIGHWAY AND RAILWAY ENGINEERING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Understand the concept of road transportation and aligning of highway. K2 1								
CO2	Understand the geometric design of highways.	K2	2						
CO3	Analyzing preliminary design of flexible and rigid pavement.	K4	3						
CO4	Understand the methods of route alignment and design elements in Railway Planning and Constructions.	K2	4						
CO5	Evaluate the requirements of railway track for high speed trains, safetyaspects and maintenance.	K5	5						

PRE-REQUISITE	SURVEYING
---------------	-----------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2			2	2	3	3		3			
CO2	3	3	3	2	2		2	2	3	3		3		2	
CO3	2	2	3	2		2	2	2	3	3		3		2	
CO4	3	2	3	2	2	3	2	2	3	3		3			
CO5	3	3	3		2	2	2	2	3	3		3			

	COURSE ASSESSMENT METHODS							
DIRECT	1 Continuous Assessment Tests							
	2	Seminar						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

				COI	URSE CONTENT				
Topi	ic - 1		HIGH	WAY PI	LANNING AND ALIG	NMEN	NT		9
ofRoa	Role of Transportation - Characteristics, merits and demerits of road transportation - Historical development of Road Construction - Highway development in India - Classification of roads - Road patterns - Highway alignment - Engineering surveys for Highway location.								
Topi	ic - 2			GEO	OMETRIC DESIGN				9
					s sections of Urban and er, super elevation, wide			ght distance -	Design
Topi	ic - 3			DESIG	GN OF PAVEMENTS				9
Rigid	Flexible Pavements: materials – tests (CBR) - mix design - design factors - flexible pavement design as per IRC. Rigid Pavements: design of rigid pavements - general design considerations - stresses in rigid pavements - design of joints, dowel bar, tie bar - IRC method of design of concrete pavements.								
			,		F				
-	ic - 4		RA	ILWAY	PLANNING AND DE	SIGN			9
Railw theory aligni metho	way trac ry of co ment: l	ck (Permoning – Enginee	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra	onents and services and services and services and services are services and services are services and services are services and services are service		SIGN ge, tilti Balla	ng of rails sts – Ball Convention	last less tracl nal methods	heels and cs. Track –Modern
Railw theory aligni metho Sumn	way tracery of comment: I	ck (Permoning – Enginee	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra c design of Railway	onents and all all all all and all all all all all all all all all al	PLANNING AND DE nd their functions –Gauge p of rails – Sleepers – ment – Obligatory poin	sign ge, tilti Balla nts – Grve, su	ng of rails sts – Ball Convention per elevati	last less track nal methods ion, Transitio	heels and cs. Track –Modern
Railw theory aligni metho Summ	way tracery of comment: I ods. Geomit Cur	ck (Permoning – Enginee eometric ves.	RA nanent way) its comp Rails, Rail fastening ring surveys for tra to design of Railway RAILWAY TRA	onents and services aligns. Creek aligns. Tracks:	PLANNING AND DE nd their functions –Gauge p of rails – Sleepers – ment – Obligatory poin Gradient-Horizontal cur	SIGN ge, tilti - Balla nts – Crve, su	ng of rails sts – Ball Convention per elevati	last less trach nal methods ion, Transitio	heels and ks. Track -Modern curves,
Railw theory aligns metho Summ Topi	way tracery of comment: I ods. Gomit Cur	ck (Permoning – Enginee eometric ves.	RA nanent way) its comp Rails, Rail fastening ring surveys for tra to design of Railway RAILWAY TRA	onents and services aligns. Creek aligns. Tracks:	PLANNING AND DE nd their functions –Gauge p of rails – Sleepers – ment – Obligatory poin Gradient-Horizontal cur NSTRUCTION AND M.	SIGN ge, tilti - Balla nts – Crve, su	ng of rails sts – Ball Convention per elevati	last less trach nal methods ion, Transitio	heels and ks. Track -Modern curves,
Railw theory aligns metho Summ Topi Points maint	way tracery of coment: I ods. Gemit Curic - 5	ck (Permoning – Enginee eometric ves.	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra c design of Railway RAILWAY TRA -Signalling and inter	onents and ges, Creek align: Tracks:	PLANNING AND DE nd their functions –Gauge p of rails – Sleepers – ment – Obligatory poin Gradient-Horizontal cur NSTRUCTION AND M. Stations and Equipment	sign ge, tilti - Balla nts - C rve, su IAINT -Yards	ng of rails sts – Ball Convention per elevati	last less track nal methods ion, Transitio	heels and cs. Track Modern curves,
Railw theory alignmethor Summ Topi Points maint THEO BOOI	way tracery of coment: I ods. Gemit Curvic - 5 ts and cotenance ORY K REF	ek (Permoning – Enginee eometric ves. erossing e. 45 ERENC	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra design of Railway RAILWAY TRA -Signalling and inter TUTORIAL CES	onents at ags, Cree ck align: Tracks: CK CON clocking-	PLANNING AND DE nd their functions –Gauge p of rails – Sleepers – ment – Obligatory poin Gradient-Horizontal cur NSTRUCTION AND M. Stations and Equipment	ge, tilti- Balla nts - O ve, su IAINT -Yards	ng of rails ests — Ball Convention per elevati ENANCE and equi	last less track and methods ion, Transition because the state of the s	heels and ks. Track—Modern n curves,
Railw theory alignmethor Summ Topi Points maint THEO BOOI 1 F. H. L.	way trace ry of coment: I ods. Ge mit Cur ic - 5 ts and cotenance ORY K REF Khann a Brother Kadiyal	ek (Permoning – Enginee eometric ves. erossing e. 45 ERENCA, S.K., s, Roork i.L.R. "	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra the design of Railway RAILWAY TRA -Signalling and inter TUTORIAL CES Justo C.E.G. and Vecee, 2013. Highway Engineerin	onents and algorithms. CK CON clocking-to-decrarage with the control of the contr	PLANNING AND DE Ind their functions —Gauge Ind their fun	ge, tilti-Ballants – Crve, sujul AINT – Yards – O eering	ng of rails sts — Ball Convention per elevati ENANCE and equi	last less track nal methods ion, Transition of the control of the	heels and and heels and and and
Railw theory alignmethor Summ Topi Points maint THEO BOOI 1 FE 2 FE	way tracery of coment: I ods. Gemit Curvic - 5 ts and cottenance ORY K REF Khann a Brother Kadiyal	ek (Permoning – Enginee eometric ves. erossing e. 45 ERENCA, S.K., s, Roork i.L.R. "	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra the design of Railway RAILWAY TRA -Signalling and inter TUTORIAL CES Justo C.E.G. and Vecee, 2013. Highway Engineerin	onents and algorithms. CK CON clocking-to-decrarage with the control of the contr	pLANNING AND DE nd their functions —Gauge p of rails — Sleepers — ment — Obligatory poin Gradient-Horizontal cur NSTRUCTION AND M Stations and Equipment PRACTICAL an A., - Highway Engin	ge, tilti-Ballants – Crve, sujul AINT – Yards – O eering	ng of rails sts — Ball Convention per elevati ENANCE and equi	last less track nal methods ion, Transition of the control of the	heels and and heels and and and
Railw theory alignmethor Summ Topi Points maint THEO BOOI 1 F F S S S S	way tracery of coment: I ods. Gemit Curvice - 5 ts and cotenance ORY K REF Khann a Brother Kadiyal Saxenas 1998.	ck (Permoning – Enginee eometric ves. crossing e. 45 ERENCA, S.K., s, Roork i.L.R. " Subhash	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra the design of Railway RAILWAY TRA -Signalling and inter TUTORIAL CES Justo C.E.G. and Vecee, 2013. Highway Engineering, C.andSatyapalAro	ILWAY Jonents as ags, Cree ck align: Tracks: CK CON Flocking- eraragav g", Khan ra, A Co	PLANNING AND DE Ind their functions —Gauge Ind their fun	ge, tilti-Ballants – Orve, sujul AINT-Yards eering ns.	ng of rails asts — Ball Convention per elevati ENANCE and equi , 10th Edit	last less track nal methods ion, Transition, Transition, Transition, Transition, Track track track track nat Rai and South at Rai and South Ra	heels and ks. Track—Modern n curves, 9 45 and and
Railw theory alignmethor Summ Topi Points maint THEO BOOI 1	way tracery of coment: I ods. Gemit Curvice - 5 ts and cotenance ORY K REF Khann a Brother Kadiyal Saxenas 1998. Mundre	ck (Permoning – Enginee eometric ves. crossing e. 45 ERENCA, S.K., s, Roork i.L.R. " Subhash	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra the design of Railway RAILWAY TRA -Signalling and inter TUTORIAL CES Justo C.E.G. and Vecee, 2013. Highway Engineering, C.andSatyapalArogal	ILWAY Jonents as ags, Cree ck align: Tracks: CK CON Flocking- eraragav g", Khan ra, A Co	PLANNING AND DE Ind their functions —Gauge Independent — Sleepers — Independent — Obligatory point Independent — Obligator	ge, tilti-Ballants – Orve, sujul AINT-Yards eering ns.	ng of rails asts — Ball Convention per elevati ENANCE and equi , 10th Edit	last less track nal methods ion, Transition, Transition, Transition, Transition, Track track track track nat Rai and South at Rai and South Ra	heels and ks. Track—Modern n curves, 9 45 and and
Railw theory alignmethor Summ Topi Points maint THEO BOOI 1 F. H. S.	way tracery of coment: I ods. Gemit Curvice - 5 ts and cottenance ORY K REF Khann a Brother Kadiyal Saxenas 1998. Mundre ER RE	ck (Permoning – Enginee cometric ves. crossing c. 45 ERENO a, S.K., s, Roork i.L.R. " Subhash cy J S, H	RA nanent way) its comp Rails, Rail fastenir ring surveys for tra the design of Railway RAILWAY TRA -Signalling and inter TUTORIAL CES Justo C.E.G. and Vecee, 2013. Highway Engineering, C.andSatyapalArogal	onents and ags, Creeck align: Tracks: CK CON clocking-to-december and age of the control of the	PLANNING AND DE Ind their functions —Gauge p of rails — Sleepers — Independent — Obligatory point Gradient-Horizontal cur INSTRUCTION AND M Stations and Equipment PRACTICAL In A., - Highway Engine In Technical Publication Durse in Railway Engine McGraw Hill Education	ge, tilti-Ballants – Orve, sujul AINT-Yards eering ns.	ng of rails asts — Ball Convention per elevati ENANCE and equi , 10th Edit	last less track nal methods ion, Transition, Transition, Transition, Transition, Track track track track nat Rai and South at Rai and South Ra	heels and ks. Track—Modern n curves, 9 45 and and

https://www.youtube.com/watch?v=37WMS483T7Y

https://en.wikipedia.org/wiki/Track_(rail_transport)

https://www.youtube.com/watch?v=JGOrwgECpHg

3

5

Semester	Programme	Course Code	Course Name	L	Т	P	C
IV	B.E. CIVIL	20CE4E2	REMOTE SENSING AND GIS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Aı	After Successful completion of the course, the students should be able to								
CO1	Understand the concepts of Electro Magnetic energy, spectrum and spectralsignature curves in the practical problems. K2								
CO2	Explain the concepts of satellite and sensor parameters and characteristics of different platforms.								
CO3	<u> </u>								
CO4	4 Evaluate the concepts of DBMS in GIS. K5								
CO5	Analyze raster and vector data and modelling in GIS.	K4	5						

PRE-REQUISITE	SURVEYING
---------------	-----------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)													PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3			2		2	2	3	3		3	3		
CO2	3	3			3		2	2	3	3		3	3		
CO3	3	3			3		2	2	3	3		3	3		
CO4	3	3	2		3		2	2	3	3		3	3		
CO5	3	3			3		2	2	3	3		3	3		

		COURSE ASSESSMENT METHODS						
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2	Seminar						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	COURSE CONTENT										
Topic - 1 EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL							IATERIAL	9			
ren	Definition of remote sensing and its components - Electromagnetic spectrum - wavelength regions important to remote sensing - Wave theory, Particle theory, Stefan - Boltzman and Wein's Displacement Law - Atmospheric scattering, absorption - Atmospheric windows - spectral signature concepts - typical spectral reflective characteristics of water, vegetation and soil.								ospheric		
To	opic - 2]	PLA	TFOR	MS AND SENSORS				9
res	Types of platforms - orbit types, Sun - synchronous and Geosynchronous - Passive and Active sensors - resolution concept - Pay load description of important Earth Resources and Meteorological satellites - Airborne and space borne TIR and microwave sensors.										
To	opic - 3			IMAGE	INT	ERPRI	ETATION AND AN	ALYS	SIS		9
inte	erpretatio	n keys -	Digi		sing	- Pre-p	etation - basic elemerocessing - image en				
To	opic - 4			GEOG	RAP	HIC IN	NFORMATION SYS	STEM	[9
bas	sic compo	onents o	of GI		IS so	oftware	types of map projecti - data type - Spatis s (DBMS).				
To	opic - 5			DATA 1	ENT	RY, ST	ORAGE AND ANA	LYS	IS		9
dat							ion - data input by di GIS highway - alignm				
TH	EORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	
ВО	BOOK REFERENCES									45	
1	OIX IXLI	ERENC	ES								45
1				ntroduction to GI	S", F	Pearson	Education, Asia, 200	0.			45
2	Ian Hey Lo.C.P	wood ". and A.I	An Ir	Yeung, "Concep			Education, Asia, 200 niques of Geographi		rmation S	ystems", Pre	
	Ian Hey Lo.C.P of India Burroug	wood ". and A.I Pvt. Lt gh P.A.	An Ir K.W. d., N	Yeung, "Concep ew Delhi, 2002.	ots ar	nd Tech		c Info			ntice Hall
2	Lo.C.P of India Burroug Publica C.P.Lo	and A.I and A.I Pvt. Lt gh P.A. tion, 20	An Ir K.W. d., N and 04.	Yeung, "Concep ew Delhi, 2002. I Rachel A. M	ots ar	nd Tech	niques of Geographi	c Info	Informat	ion Systems	ntice Hall
2 3 4	Lo.C.P of India Burroug Publica C.P.Lo	and A.I. Pvt. Lt gh P.A. tion, 20 and A e Hall In	An Ir K.W. d., N and 04. Albert	Yeung, "Concep ew Delhi, 2002. I Rachel A. M K.W.Yeung, 2006.	ots ar	nd Tech	niques of Geographi	c Info	Informat	ion Systems	ntice Hall
2 3 4	Ian Hey Lo.C.P of India Burroug Publica C.P.Lo Prentice	and A.I. Pvt. Lt gh P.A. tion, 20 and A Hall In	An Ir K.W. d., N and 04. Albert dia,	Yeung, "Conceptew Delhi, 2002. Rachel A. M K.W.Yeung, 2006.	cDon	nell, Pr	niques of Geographi	c Info	Informat	ion Systems	ntice Hall

http://nitttrc.edu.in/nptel/courses/video/105103193/L20.html

https://www.digimat.in/nptel/courses/video/105103193/L01.html

 $https://www.youtube.com/watch?v=cn5CWu_zt_s$

3

5

Semester	Programme	Course Code	Course Name	L	Т	P	C
IV	B.E. CIVIL	20CE4E3	INDUSTRIAL STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Aí	After Successful completion of the course, the students should be able to								
CO1	Prepare the layout for industrial buildings.	K1	1						
CO2	Analyzing for functional requirements	K4	2						
CO3	Analyzing steel girder, bunker and silos.	K4	3						
CO4	Analyzing RC structures like chimneys and shell roofs.	K4	4						
CO5	Analyzing Prestressed precast concrete units.	K4	5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1					2	2	3	3		3	2	
CO2	3	2					2	2	3	3		3	2	
CO3	3	2					2	2	3	3		3	2	
CO4	2	1	3				2	2	3	3		3	2	
CO5	2	3	3				2	2	3	3		3	1	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
2 Seminar										
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT									
Topic - 1		PLANNING						9		
Classification of Industries and Industrial structures - General requirements for industries like cement, chemical and steel plants - Planning and layout of buildings and components.										
Topic - 2	Topic - 2 FUNCTIONAL REQUIREMENTS							9		
Lighting – V	entilatio	on – Accounts - Fire	safet	y - Guidelir	nes from factories	act.		1		
Topic - 3	oic - 3 DESIGN OF STEEL STRUCTURES					9				
Industrial ro	ofs – Cra	ane girders – Mill b	uildin	gs – Design	of Bunkers and	Silos.				
Topic - 4			DESI	GN OF R.O	C. STRUCTURI	ES		9		
Silos and bu	nkers - (Chimneys - Principl	es of f	folded plate	s and shell roofs.			•		
Topic - 5	PREFABRICATION							9		
	Principles of prefabrication - Prestressed precast roof trusses - Functional requirements for Precast concrete units.									
THEORY	45	TUTORIAI	0		PRACTICAL	0	TOTAL	45		

во	BOOK REFERENCES							
1	Ramamrutham .S. "Design of reinforced Concrete Structures", DhanpatRai Publishing Company, 2007.							
2	Varghese P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India Eastern Economy Editions, 2nd Edition, 2003.							
4	Bhavikatti S.S., "Design of Steel Structures", J.K. International Publishing House Pvt. Ltd., 2009.							

OTHE	OTHER REFERENCES								
1	https://nptel.ac.in/courses/105/106/105106113/								
2	https://nptel.ac.in/courses/112/107/112107292/								
3	https://nptel.ac.in/content/storage2/courses/105106113/2_industrial_building/12_Example_Problem.pdf								
4	https://nptel.ac.in/content/syllabus_pdf/105105162.pdf								
5	https://www.youtube.com/watch?v=mtRR-5fzKo8								

Semester	Programme	Course Code	Course Name	L	Т	P	С
IV	B.E. EEE	20CE4L1	FLUID MECHANICS AND MACHINERYLABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to								
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Fluid Mechanics and Machinery Laboratory Course	К3							
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3							
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4							
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4							
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3							
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3							

PRE-REQUISITE Fluid mechanics & Applied hydraulic e	ngineering
---	------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)									PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3			1	3
CO2	3				3			2	3		1		2	3
СОЗ	3	2		2		1				3			2	3
CO4	3									3			1	3
CO5	3									3		1	1	3
CO6	3									2		1	1	3

	COURSE ASSESSMENT METHODS							
DIRECT	1 Model Practical Examination							
	2	Record						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	LIST OF EXPERIMENTS										
1	Determination of co-efficient of discharge of orifice and mouthpiece										
2	Dete	ermina	tion o	of co-efficient of	disc	harge of n	notches				
3	Dete	ermina	tion o	of co-efficient of	disc	harge of v	enturimeter				
4	Determination of co-efficient of discharge of orifice meter										
5	Determination of friction losses in pipes										
6	Determination of minor losses in pipes										
7	Stuc	dy on p	erfori	mance character	istics	of Pelton	wheel turbine				
8	Study on performance characteristics of Francis turbine										
9	Study on performance characteristics of Centrifugal pump										
10	10 Study on performance characteristics of reciprocating pump										
THEC	THEORY 0 TUTORIAL 0 PRACTICAL				30		TOTAL	30			

во	BOOK REFERENCES							
1	Fluid Mechanics Laboratory, Al-Ameen Publications.							
2	Bansal, R.K., - Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt. Ltd., New Delhi, 2008.							

OT	OTHER REFERENCES					
1	1 https://eerc03-iiith.vlabs.ac.in/exp/venturi-meter/					
2	https://eerc03-iiith.vlabs.ac.in/exp/orifices/					
3	https://eerc03-iiith.vlabs.ac.in/exp/turbines/					
4	https://www.youtube.com/watch?v=-bKy91W-BDg					
5	https://www.youtube.com/watch?v=ILY4QMQIY5s					

Semester	Programme	Course Code	Course Name	L	Т	P	С
IV	B.E. EEE	20CE4L2	CONCRETE AND HIGHWAY ENGINEERING LABORATORY	0	0	2	1

COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to							
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Concrete and Highway Engineering Laboratory Course	К3						
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3						
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	K4						
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	K4						
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3						
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3						

PRE-REQUISITE	FLUID MECHANICS & APPLIED HYDRAULIC ENGINEERING
---------------	---

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)									PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3			1	3
CO2	3				3			2	3		1		2	3
СОЗ	3	2		2		1				3			2	3
CO4	3									3			1	3
CO5	3									3		1	1	3
CO6	3									2		1	1	3

COURSE ASSESSMENT METHODS								
DIRECT	Γ 1 Model Practical Examination							
	2	Record						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	LIST OF EXPERIMENTS								
1	Slump cone test & V-Bee test to determine the workability of concrete.								
2	Determine the compressive strength and tensile strength of concrete by conducting tests on cubes and cylinders.								
3	Determine the modulus of rupture of concrete.								
4	Design one given concrete mix (M20, M25, M30, M35, M40)								
5	Determination of impact value and elongation, flakiness indexof coarse aggregate.								
6	Specific gravity test on coarse and fine aggregate.								
7	Determination of los angels abrasion value.								
8	Specific gravity test for bitumen.								
9	Determination of penetration value of bitumen.								
10	Determination of viscosity and softening point of bituminous material.								
THE	ORY 0 TUTORIAL 0 PRACTICAL 30 TOTAL 30								

BO	OK REFERENCES								
1	Concrete and highway engineering laboratory: Al-Ameen Publication								
2	Kadiyali.L.R. "Highway Engineering", Khanna Technical Publications.								
3	2386 (Part 1 to Part 6) – 1963 – Indian Standard methods for test for aggregate for concrete								
4	Indian Standard specification for coarse and fine aggregates from natural sources for								
	concrete.								
5	Khanna, S.K., Justo C.E.G. and Veeraragavan A., —Highway Engineeringl, 10th Edition, New								
3	Chand and Brothers, Roorkee, 2013.								

OTI	OTHER REFERENCES								
1	https://www.youtube.com/watch?v=8ZbhORA08qw								
2	https://www.youtube.com/watch?v=t4RDdn6rOwU								
3	https://ts-nitk.vlabs.ac.in/transportation-engineering/								
4	https://cs-iitd.vlabs.ac.in/								
5	https://www.youtube.com/watch?v=uJgvTheBhrM								

SEMESTER V

Sl. No.	Course lifte Section Cla ESE			ESE	L	Т	P	C					
	THEORY COURSES												
1	20CE5T1	Structural Analysis-I	PC	40	60	3	1	0	4				
2	20CE5T2	Design of Reinforced Concrete Elements and Structures	PC	40	60	3	1	0	4				
3		Open Elective–II	OE	40	60	3	0	0	3				
4	4 Professional Elective–II PE 40 60						0	0	3				
	THEORY COURSE WITH LABORATORY COMPONENTS												
5	20CE5LT1	Geotechnical Engineering-I	PC	50	50	2	0	4	4				
		ENHANCEMEN'	Г COUF	RSE									
6	20CE5L1	Internship & Innovation Practices	EEC	100	0	0	0	3	1.5				
		MANDATORY	COUR	SE									
7	7 20MCCT1 Constitution of India MC 100 0							0	0				
		16	2	7	19.5								

Semester	Programme	Course Code	Course Name	L	T	P	C
V	B.E. CIVIL	20CE5T1	STRUCTURAL ANALYSIS-I	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
At	After Successful completion of the course, the students should be able to										
CO1	Analyze the member forces and deflection of determinate structures	K4	1								
CO2	Analyze the continuous beams and frame by slope deflection method.	K4	2								
CO3	Analyze the continuous beams and frame by moment distribution method.	K4	3								
CO4	Analyze the forces for continuous beams, frames and trusses using flexibility method.	K4	4								
CO5	Analyze the displacement for continuous beams, frames and trusses using stiffness method.	K4	5								

PRE-REQUISITE	MECHANICS OF SOLIDS-II
---------------	------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)												PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3			3		1	3	3		3	3	3
CO2	3	3	3			3		1	3	3		3	3	3
CO3	3	3	3			3		1	3	3		3	3	3
CO4	3	3	3			3		1	3	3		3	3	3
CO5	3	3	3			3		1	3	3		3	3	3

		COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2	Assignments							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	COURSE CONTENT										
Т	opic – 1										9+3
	Determination of Static and Kinematic Indeterminacy in Beams, plane. Deflection of statically determinate beams.										
Т	opic – 2			SLO	PE]	DEFLE	CTION METH	OD			9+
							- Analysis of operal frames with				nd
Т	opic – 3			MOMI	ENT	DISTR	IBUTION ME	ГНО	D		9+
be		and w					ryover of mome sis of single sto				
Т	opic – 4			FLE	XIB	LITY M	ATRIX METH	HOD			9+
In	determina	cy - P	rimary	y structure - C	ompa	atibility o	d Indeterminate conditions - Ana egrees of static in	ılysis	of cont		
Т	opic – 5			STI	FFN	IESS MA	ATRIX METH	OD			9+3
Ro	otation ma	trix - '	Γransf	ormations of st	iffnes	ss matrice	es, load and displayestricted to two.	Coord	linate tra ents vec	nsformations tors - Analys	s -
TH	IEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60
ВО	BOOK REFERENCES										
1	Vaidyanadhan, R and Perumal, P, —Comprehensive Structural Analysis, Vol. 1 & Vol. 2, Laxmi Publications Pvt. Ltd, New Delhi, 2016.										
2											
2											

BO	OK REFERENCES
1	Vaidyanadhan, R and Perumal, P, —Comprehensive Structural Analysis ^{II} , Vol. 1 & Vol. 2, Laxmi Publications Pvt. Ltd, New Delhi, 2016.
2	Bhavaikatti, S.S, —Structural Analysisl, Vol. 1& Vol. 2, Vikas Publishing House Pvt. Ltd., New Delhi, 2013.
3	DevadasMenon, —Structural Analysisl, Narosa Publishing House, 2014.
4	B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, —Theory of Structures, 13th Edition, Laxmi Publications Pvt. Ltd., New Delhi, 2017.
5	Pandit G.S and Gupta S.P., —Structural Analysis – A Matrix Approach Tata McGraw-Hill Publishing Ltd. New Delhi, 2008

CO	THER REFERENCES
1	http://nptel.ac.in/courses/105101085
2	http://nptel.ac.in/courses/105106050
3	http://nptel.ac.in/courses/10510519
4	https://nptel.ac.in/courses/105105108/
5	https://nptel.ac.in/courses/105105177/

Semester	Programme	Course Code	Course Name	L	Т	P	C
V	B.E. CIVIL	20CE5T2	DESIGN OF REINFORCED CONCRETE ELEMENTS AND STRUCTURES	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
Aft	After Successful completion of the course, the students should be able to										
CO1	Identify and explain the methods for the design of Reinforced concrete (RC) elements.	К2	1								
CO2	Design the beams by limit state method	K5	2								
CO3	Design the slabs under different support condition by limit state method.	K5	3								
CO4	Design the columns for axial and eccentric loadings by limit state method.	K5	4								
CO5	Design of footing by limit state method.	K5	5								

PRE-REQUISITE	STRENGTH OF MATERIALS
---------------	-----------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COa	Programme Learning Outcomes (POs)										PSOs			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3				3	1	3	3		3	3	3
CO2	3	3	3				3	1	3	3		3	3	3
СОЗ	3	3	3				3	1	3	3		3	3	3
CO4	3	3	3				3	1	3	3		3	3	3
CO5	3	3	3				3	1	3	3		3	3	3

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Assignments
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

				CO	URSE C	ONTENT				
Topic - 1			METHODS OF	DE	SIGN OF	F CONCRETE S	TRU	CTURE	S	9+3
Properties of Concrete and Reinforcing Steel - Type of Loads on Structures and Load combination Concept of Working Stress Method, Ultimate Load Design and Limit State Design Methods - Advantation of Limit State Method over other methods - Code of practices and Specifications - Analysis and Design singly, doubly and Flanged beams by working stress method										antages
Topic - 2				Ι	DESIGN (OF BEAMS				9+3
Analysis and design of singly, doubly and Flanged beams – Use of design aids for Flexure - Behaviour o RC members in Shear, Bond and Anchorage - Design of RC members for combined Bending, Shear and Torsion- Design requirements as per current code.										
Topic - 3				D	ESIGN (OF SLABS				9+3
						apported and cont IS code coefficie		s slabs -	Two way slal)-
Topic - 4				DE	SIGN O	F COLUMNS				9+3
						of Rectangular, So g SP16 - Design o				umns -
Tonic - 5							9+3			
Design of wall footing – Design of axially and eccentrically loaded Square, Rectangular and sloped footings – Design of Combined Rectangular footing for two columns.										
THEORY	45		TUTORIAL	15		PRACTICAL	0		TOTAL	60

BO	OOK REFERENCES
1	Varghese, P.C., —Limit State Design of Reinforced Concretel, PHI, Pvt. Ltd., New Delhi, 2010.
2	Punmia. B.C., Ashok Kumar Jain, Arun Kumar Jain, —Limit State Design of Reinforced Concretel, Laxmi Publication Pvt. Ltd., New Delhi, 2019.
3	UnnikrishnaPillai, S., Devdas Menon, —Reinforced Concrete Designl, Tata McGraw Hill Publishing Company Ltd., 2011
4	Gambhir. M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
5	Krishnaraju.N.,— Design of Reinforced Concrete Structures —, CBS Publishers & Distributors Pvt. Ltd., New Delhi.

CO	THER REFERENCES
1	http://nptel.ac.in/courses/105105105
2	http://nptel.ac.in/105102088
3	https://www.youtube.com/watch?v=mk71HTMBVhk
4	https://nptel.ac.in/courses/106104128
5	https://onlinecourses.nptel.ac.in/noc21_ce42/preview

Semester	Programme	Course Code	Course Name	L	Т	P	C
V	B.E. CIVIL	20CE5E1	AIR POLLUTION MANAGEMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Understand about the nature and characteristics of air pollutants.	K2	1							
CO2	Identify the basic elements of atmosphere and its stability.	K2	2							
CO3	Design stacks and particulate air pollution control devices to meet applicable standards.	K4	3							
CO4	Summarize air quality management.	K2	4							
CO5	Identify, formulate and solve noise pollution problems.	K4	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				3	2	2	3	3		3	2	2
CO2	2	2				3	2	2	3	3		3	2	2
СОЗ	2	2				3	2	2	3	3		3	2	2
CO4	2	2				3	2	2	3	3		3	2	2
CO5	2	2				3	2	2	3	3		3	2	2
CO6	2	2				3	2	2	3	3		3	2	2

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Seminar
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

COURSE CONTENT

Topic - 1 SOURCES AND EFFECTS OF AIR POLLUTANTS

9

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and analysis – Basic principles of sampling – Source and ambient sampling – Analysis of pollutants – Principles.

Topic - 2 DISPERSION OF POLLUTANTS

9

Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion models – Applications.

Topic - 3 AIR POLLUTION CONTROL

9

Concepts, Principles and design of air pollution control measures –Particulates control by gravitational-centrifugal filtration- scrubbing-electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption absorption- condensation- combustion –Pollution control for specific major industries.

Topic - 4 AIR QUALITY MANAGEMENT

9

Air quality standards – Air quality monitoring – Preventive measures - Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement –Environmental impact assessment and Air quality.

Topic - 5

NOISE POLLUTION

9

Sources of noise pollution – Effects – Assessment - Standards – Control methods – Prevention.

THEORY 45 TUTORIAL 0 PRAC	FICAL 0 TOTAL 45
---------------------------	------------------

BOOK REFERENCES

- 1 | Anjaneyulu, D., Air Pollution and Control Technologies, Allied Publishers, Mumbai, 2014
- 2 Rao, C.S.Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 2015.
- 3 | Garg, S.K., Environmental Engineering Vol. III, Khanna Publishers, New Delhi, 1998
- 4 Heumann.W.L.,"IndustrialAirPollutionControlSystems",McGrawHill,NewYark,1997
- MahajanS.P.,"Pollution Control inProcessIndustries",Tata McGraw Hill Publishing Company, New Delhi, 1991.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/105/102/105104099
- 2 https://nptel.ac.in/courses/105/104/105104099
- 3 https://www.youtube.com/watch?v=OQWmaYjyolE
- 4 https://www.youtube.com/watch?v=ldR1RcOjVp8
- 5 https://www.youtube.com/watch?v=AQ4BakagMvM

Semester	Programme	Course Code	Course Name	L	Т	P	С
V	B.E. CIVIL	20CE5E2	INDUSTRIAL SAFETY	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
	RBT Level	Topics Covered									
CO1	Understand the concept of Mechanical hazards.	K2	1								
CO2	Understand the concept of chemical hazards.	K2	2								
CO3	Understand the knowledge of noise pollution.	K2	3								
CO4	Understand the principal of Safety Analysis.	K2	4								
CO5	Understand the knowledge of Disaster management.	K2	5								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		PSOs												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1				3	2	2	3	3		3	2	
CO2	3	2				3	2	2	3	3		3	2	
СОЗ	3	2				3	2	2	3	3		3	2	
CO4	2	1	3			3	2	2	3	3		3	2	
CO5	3	2	2			3	2	2	3	3		3	1	

	COURSE ASSESSMENT METHODS										
DIRECT 1 Continuous Assessment Tests											
	2	Assignment									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT										
Topic - 1	INTRODUCTION	9									
Evolution of modern safety concepts – Fire prevention – Mechanical hazards Boilers, Pressure vessels, Electrical Exposure.											
Topic - 2 CHEMICAL HAZARDS											
Chemical exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation - Industrial Hygiene – Industrial Toxicology.											
Topic - 3	ENVIRONMEAL CONTROL	9									
	alth Hazards – Environmental Control – Industrial Noise - Noise measuring instruments, Contion, - Personal Protection.	ntrol of									
Topic - 4	HAZARD ANALYSIS	9									
	ety Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects MEA), HAZOP analysis and Risk Assessment										
Topic - 5	SAFETY REGULATIONS	9									
	Topic - 5 SAFETY REGULATIONS 9 Explosions – Disaster management – catastrophe control, hazard control, Safety education and training - Factories Act, Safety regulations Product safety – case studies.										

BC	BOOK REFERENCES									
1	John V.Grimaldi, "Safety Management", AITB SPublishers, 2003.									
2	C. Ray Asfahl, Industrial Safety and HealthManagement, 5th Ed., Pearson Prantice Hal 2003									
3	Safety Manual, "EDEL Engineering Consultancy",2000.									

07	OTHER REFERENCES									
1	https://nptel.ac.in/courses/105/106/105106113/									
2	https://nptel.ac.in/courses/112/107/112107292/									
3	https://nptel.ac.in/content/storage2/courses/105106113/2_industrial_building/12_Example_Problem.pdf									
4	https://nptel.ac.in/content/syllabus_pdf/105105162.pdf									
5	https://www.youtube.com/watch?v=mtRR-5fzKo8									

Semester	Programme	Course Code	Course Name	L	T	P	C
V	B.E. CIVIL	20CE5E3	TRAFFIC ENGINEERING AND MANAGEMENT	3	0	0	3

COURSE LEARNING OUTCOMES (COs)											
A	RBT Level	Topics Covered									
CO1	Analyze traffic problems and plan for traffic systems various uses.	K2	1								
CO2	Design Channels, Intersections, signals and parking arrangements.	K2	2								
CO3	Develop Traffic management Systems.	K4	3								
CO4	Analyze a variety of traffic facilities and evaluate capacity and level of service.	K2	4								
CO5	Evaluate traffic impacts on the environment and safety.	K4	5								

PRE-REQUISITE	HIGHWAY AND RAILWAY ENGINEERING
---------------	---------------------------------

	CO / PO MAPPING (1 - Weak, 2 - Medium, 3 - Strong)													
COs	Programme Learning Outcomes (POs)													Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			2	2	2	2	3	3		3	2	2
CO2	3	2			2	2	2	2	3	3		3	2	2
CO3	3	2			2	2	2	2	3	3		3	2	2
CO4	3	2			2	2	2	2	3	3		3	2	2
CO5	3	2			2	2	2	2	3	3		3	2	2

COURSE ASSESSMENT METHODS							
DIRECT	1 Continuous Assessment Tests						
	2	2 Seminar					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

COURSE CONTENT

Topic - 1 TRAFFIC PLANNING AND CHARACTERISTICS

9

9

Road Characteristics – Road user characteristics – PIEV theory – Vehicle – Performance characteristics – Fundamentals of Traffic Flow – Urban Traffic problems in India – Integrated planning of town ,country ,regional and all urban infrastructure – Towards Sustainable approach. – Land use & transport and modal integration.

Topic - 2 TRAFFIC SURVEYS

Traffic Surveys – Speed, journey time and delay surveys – Vehicles Volume Survey including non-motorized transports – Methods and interpretation – Origin Destination Survey – Methods and presentation – Parking Survey – Accident analyses - Methods, interpretation and presentation – Statistical applications in traffic studies and traffic forecasting – Level of service – Concept, applications and significance.

Topic - 3 TRAFFIC DESIGN AND VISUAL AIDS 9

Road accidents – Causes, effect, prevention, and cost – Street lighting – Traffic and environment hazards – Air and Noise Pollution, causes, abatement measures – Promotion and integration of public transportation – Promotion of non-motorized transport.

Topic - 4 TRAFFIC SAFETY AND ENVIRONMENT 9

Road accidents – Causes, effect, prevention, and cost – Street lighting – Traffic and environment hazards – Air and Noise Pollution, causes, abatement measures – Promotion and integration of public transportation – Promotion of non-motorized transport.

Topic - 5 TRAFFIC MANAGEMENT 9

Area Traffic Management System - Traffic System Management (TSM) with IRC standards — Traffic Regulatory Measures-Travel Demand Management (TDM) — Direct and indirect methods — Congestion and parking pricing — All segregation methods - Coordination among different agencies — Intelligent Transport System for traffic management, enforcement and education

THEORY	45	TUTORIAL	0	PRACTICAL	0		TOTAL	45
--------	----	----------	---	-----------	---	--	-------	----

BOOK REFERENCES 1 Kadiyali.L.R. "Traffic Engineering and Transport Planning", Khanna Publishers, Delhi, 2013 2 Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management. 3 Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of Highway Engineering and Traffic Analysis, Wiley India Pvt. Ltd., New Delhi, 2011 4 Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010 5 Handbook on Precast Concrete Buildings, Indian Concrete Institute, 2016.

ОТ	OTHER REFERENCES						
1	https://nptel.ac.in/courses/105101008						
2	https://www.civil.iitb.ac.in/tvm/nptel/ceTseLn.html						
3	https://nptel.ac.in/courses/105/105/105105107/						
4	https://www.youtube.com/watch?v=5zKC_aq4ypM						
5	https://www.youtube.com/watch?v=37WMS483T7Y						

Semester	Programme	Course Code	Course Name	L	T	P	C
V	B.E. CIVIL	20CE5LT1	GEOTECHNICAL ENGINEERING-I	2	0	4	4

	COURSE LEARNING OUTCOMES (COs)									
A	After Successful completion of the course, the students should be able to									
CO1	Classify the soil and assess the engineering properties, based on index properties.	K2	1							
CO2	Understand the stress concepts in soils.	K2	2							
CO3	Understand and identify the settlement in soils.	K2	3							
CO4	Describe the shear strength of soil.	K2	4							
CO5	Demonstrate stress distribution, stress transformation and consolidation of soils.	К3	5							

PRE-REQUISITE	ENGINEERING GEOLOGY
---------------	---------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COa	Programme Learning Outcomes (POs)										PS	PSOs		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3			3	3	2	3	3	3	3	3	3	
CO2	3	2			3	3	2	3	3	3	3	3	3	
CO3	3	2			3	3	2	3	3	3	3	3	3	
CO4	3	2			3	3	2	3	3	3	3	3	3	
CO5	3	2			3	3	2	3	3	3	3	3	3	

	COURSE ASSESSMENT METHODS							
DIRECT	CT 1 Continuous Assessment Tests							
	2	Mini Project &Record						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	COURSE CONTENT - THEORY	
Topic - 1	SOIL CLASSIFICATION AND COMPACTION	6

History – formation and types of soil – composition - Index properties – clay mineralogy structural arrangement of grains – description – Classification – BIS – US – phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction.

Topic - 2	EFFECTIVE STRESS AND PERMEABILITY	6
-----------	-----------------------------------	---

Soil - water - Static pressure in water - Effective stress concepts in soils - Capillary phenomena - Permeability - Darcy's law - Determination of Permeability - Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer - Factors influencing permeability of soils.

Topic - 3 STRESS DISTRIBUTION AND SETTLEMENT 6

Stress distribution in homogeneous and isotropic medium – Boussines of theory – (Point load, Line load and udl) Use of New marks influence chart –Components of settlement – Immediate and consolidation settlement – Factors influencing settlement – Terzaghi's one dimensional consolidation theory.

Topic - 4 SHEAR STRENGTH 6

Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – shear strength - Direct shear, Triaxial compression.

Topic - 5 SLOPE STABILITY 6

Infinite slopes and finite slopes – Use of stability number –Guidelines for location of critical slope surface in cohesive and c - soil – Slope protection measures.

THEORY 30 TUTORIAL 0 PRACTICAL 0 TOTAL 30

	COURSE CONTENT – LABORATORY					
Experiment -1	Specific gravity of soil solids					
Experiment -2	Grain size distribution -Sieve analysis					
Experiment -3	Grain size distribution – Hydrometer analysis					
Experiment -4	Liquid limit tests					
Experiment -5	Plastic limit tests					
Experiment -6	Shrinkage limit					
Experiment -7	Field density Test (Sand replacement method)					

Experiment -8	Tield density Test (core cutter method)					
Experiment -9	Determination of moisture – density relationship using Standard Proctor Compaction Test					
Experiment - 10	Direct shear test in cohesion less soil (Demonstration Only)					
Experiment - 11	Triaxial shear test (Demonstration only)					
Experiment - 12	Three Gang Consolidation test (Demonstration only)					
Experiment - 13	CBR Apparatus (Demonstration only)					
THEORY	0 TUTORIAL 0 PRACTICAL 60 TOTAL 60					

BOOK REFERENCES	
1	Murthy, V.N.S., "Text book of Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2014
2	Arora, K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 7th Edition, 2017(Reprint).
3	Gopal Ranjan, A S R Rao, "Basic and Applied Soil Mechanics" New Age International Publication, 3rd Edition, 2016.
4	Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 16th Edition, 2017.
5	McCarthy, D.F., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics". Prentice-Hall, 2006.
6	Geotechnical Engineering, Al-Ameen publications.

OTHER REFERENCES	
1	https://www.youtube.com/watch?v=V1m3cB-Aqy8
2	https://www.youtube.com/watch?v=UZ4OSBkJZWY
3	https://www.digimat.in/nptel/courses/video/105104147/L01.html
4	http://nitttrc.edu.in/nptel/courses/video/105101084/L34.html
5	https://smfe-iiith.vlabs.ac.in/

Semester	Programme	Course Code	Course Name	L	T	P	С
V	B.E. CIVIL	20CE5L1	INTERNSHIP & INNOVATION PRACTICES	0	0	3	1.5

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to	RBT							
CO1	The intricacies of implementation textbook knowledge into practice	K2							
CO2	The concepts of developments and implementation of new techniques	K2							
CO3	Identify the real world civil Engineering related problems.	K2							
CO4	Apply the theoretical concepts studied in the class rooms practically.	К3							
CO5	Identify the real world civil Engineering new ideas.	K2							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO				Pro	gramm	e Lear	ning O	utcome	es (POs)			PS	Os
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			2					3	2		2	3	
CO2	3			2					3	2		2	3	
CO3	3			2					3	2		2	3	
CO4	3			2					3	2		2	3	
CO5	3			2					3	2		2	3	

	COURSE ASSESSMENT METHODS									
DIRECT	1	Model Practical Examination								
	2 Record									
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

STRATEGY

The students individually undertake training in reputed civil engineering companies for the specified duration. At the end of the training, a report on the work done will be prepared and presented. The students will be evaluated through a viva-voce examination by a team of internal staff.

	THEORY	0		TUTORIAL	0		PRACTICAL	45		TOTAL	45	
--	--------	---	--	----------	---	--	-----------	----	--	-------	----	--

Semester	Programme	Course Code	Course Name	L	Т	P	C
III – B.E. 0	. CIVIL, MECH CSE, EEE, ECE & 3.Tech. IT	20MCCT1	CONSTITUTION OF INDIA	3	0	0	0

	COURSE LEARNING OUTCOMES (COs)											
	After Successful completion of the course, the students should be able to											
CO1	Understand and abide the rules of the Indian constitution.	K2	1									
CO2	Applying the functions of Central government.	K2	2									
CO3	Applying the function of state government.	K2	3									
CO4	Evaluate the various constitutional functions.	K2	4									
CO5	Explain the different culture among the people of India	K2	5									

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)															
CO				Pro	gramm	e Lear	ning O	utcome	es (POs)			PSOs			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1							2	2	3	3		3				
CO2							2	2	3	3		3				
СОЗ							2	2	3	3		3				
CO4							2	2	3	3		3				
CO5							2	2	3	3		3				

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	Seminar									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT	
Topic - 1	INTRODUCTION	9

Historical Background – Constituent Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Principles of State Policy – Fundamental Duties – Citizenship – Role of the Election Commission.

Topic - 2 STRUCTURE AND FUNCTION OF CENTRAL AND STATE GOVERNMENT 9

Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister – Cabinet – Parliament – Supreme Court of India – Judicial Review. State Government – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial System in States – High Courts and other Subordinate Courts.

Topic - 3 CONSTITUTION FUNCTIONS OF INDIA AND INDIAN SOCIETY 9

Indian Federal System – Central – State Relations – President's Rule – Constitutional Amendments – Constitutional Functionaries - Assessment of working of the Parliamentary System in India. Society: Nature, Meaning and definition; Indian Social Structure; Caste, Religion, Language in India; Constitutional Remedies for citizens – Political Parties and Pressure Groups; Right of Women, Children and Scheduled Castes and Scheduled Tribes and other Weaker Sections

Topic - 4 POLICIES AND ACTS – GENERAL 9

Insurance and Bonding – Laws Governing Sale, Purchase and use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom duties and their Influence on Construction Cost – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval.

Topic - 5 POLICIES AND ACTS ON INFRASTRUCTURE DEVELOPMENT 9

A Historical Review of the Government Policies on Infrastructure – Current Public Policies on Transportations – Power and telecom Sector – Plans for Infrastructure Development – Legal framework for Regulating Private Participation in Roads and Highways – Ports and Airport and Telecom

THEORY | 45 | TUTORIAL | 0 | PRACTICAL | 0 | TOTAL | 45

BOOK REFERENCES

- 1 Durga Das Basu, "Introduction to the Constitution of India", Prentice Hall of India, New Delhi, 2018.
- 2 R.C.Agarwal, "Indian Political System", S.Chand and Company, New Delhi, 2004
- 3 Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi, 2007
- 4 K.L.Sharma, "Social Stratification in India: Issues and Themes", Jawaharlal Nehru University, New Delhi, 2006.

- 1 https://nptel.ac.in/courses/106/105/106105034/
- 2 https://www.youtube.com/watch?v=6XTYoZymbwE
- 3 https://www.youtube.com/watch?v=MP6VlAE 7WY

SEMESTER VI

Sl. No.	Course Code	Course Title	L	Т	P	C			
THEORY COURSES									
1	20CE6T1	Structural Analysis-II	Analysis-II PC 40 60						
2	20CE6T2	Design of Steel Structures	PC	40	60	3	1	0	4
3	20CE6T3	Geotechnical Engineering- II	hnical Engineering- PC 40 60						
4		Professional Elective –III	60	3	0	0	3		
	THE	ORY COURSES WITH LABO	ORATO	RY C	OMPO	NEN'	ΓS		
5	20CE6LT1	Environmental Engineering	2	0	4	4			
6	20CE6LT2	Structural Design and Drawings	PC	50	50	2	0	4	4
		LABORATORY	COURS	SES					
7	20CE6L1	Comprehensive Course	Comprehensive Course EEC 100 0					2	2
8	20CE6L2	Design Project	50	0	0	4	2		
		Total				16	3	14	27

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6T1	STRUCTURAL ANALYSIS - II	3	1	0	4

COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to							
CO1	Plot the ILD for Simply supported and over hanging beams subjected to moving load.	K5	1					
CO2	Explain Muller Breslau principle and draw the influence lines for statically indeterminate beams.	K5	2					
CO3	Analyze indeterminate beams and rigid frames.	K5	3					
CO4	Identify the vertical reaction, horizontal thrust and bending moment for two and three hinged arches.	K5	4					
CO5	Analyze the internal forces in the Cables and Suspension bridges.	K5	5					

REQUISITE STRUCTURAL ANALYSIS - I	STRUCTURAL ANALYSIS - I	PRE-REQUISITE
-----------------------------------	-------------------------	---------------

			C	O / PO	MAPF	PING (1	l – We	ak, 2 –	Mediu	m, 3 – S	trong)			
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2		3		1	3	3		3	3	3
CO2	3	3		2		3		1	3	3		3	3	3
CO3	3	3		2		3		1	3	3		3	3	3
CO4	3	3		2		3		1	3	3		3	3	3
CO5	3	3		2		3		1	3	3		3	3	3

COURSE ASSESSMENT METHODS									
DIRECT 1 Continuous Assessment Tests									
	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT

Topic - 1 INFLUENCE LINES FOR DETERMINATE BEAMS

9 + 3

Construction of Influence Line Diagram (ILD) for shear force and bending moment - Calculation of critical stress resultants due to concentrated and distributed moving loads for simply supported and overhanging beams - absolute maximum bending moment.

Topic - 2 INFLUENCE LINES FOR INDETERMINATE BEAMS

9+3

Muller Breslau's principle—Influence line for Shearing force, Bending Moment and support reaction components of propped cantilever, continuous beams (Redundancy restricted to one).

Topic - 3

PLASTIC ANALYSIS

9 + 3

Plastic theory - Statically indeterminate structures – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – collapse load - Static and kinematic methods – Upper and lower bound theorems - Plastic analysis of indeterminate beams and rigid frames.

Topic - 4 ARCHES

9 + 3

Arches - Types of arches - Analysis of three hinged and two hinged arches - Parabolic and circular arches - Settlement and temperature effects.

Topic - 5 CABLES AND SUSPENSION BRIDGES

9 + 3

Components and their Functions - Analysis of cable under concentrated loads and UDL - Shape of cable under self-weight - Anchorage of suspension cables - Bending Moment and Shear Force in suspension bridges with three hinged stiffened girders.

THEORY | 45 | TUTORIAL | 15 | PRACTICAL | 0 | TOTAL | 60

BOOK REFERENCES

- Vaidyanadhan, R and Perumal, P, —Comprehensive Structural Analysis^{II}, Vol. 1 & Vol. 2, Laxmi Publications Pvt. Ltd,New Delhi, 2016.
- Bhavaikatti, S.S, —Structural Analysis, Vol. 1& Vol. 2, Vikas Publishing House Pvt. Ltd., New Delhi, 2013.
- 3 DevadasMenon, —Structural Analysis, Narosa Publishing House, 2014.
- B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, —Theory of Structures, 12th Edition, Laxmi Publications Pvt.Ltd., New Delhi, 2017.
- Pandit G.S and Gupta S.P., —Structural Analysis A Matrix Approach Tata McGraw-Hill Publishing Ltd. New Delhi,2008.

- 1 http://nptel.ac.in/courses/105101085
- 2 http://nptel.ac.in/courses/105106050
- 3 http://nptel.ac.in/courses/10510519
- 4 https://nptel.ac.in/courses/105105108/
- 5 https://nptel.ac.in/courses/105105177/

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6T2	DESIGN OF STEEL STRUCTURES	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)								
	RBT Level	Topics Covered							
CO1	Design of structural steel connections.	K5	1						
CO2	Design of tension members.	K5	2						
CO3	Design of compression members.	K5	3						
CO4	Design of structural steel beam and plate girder.	K5	4						
CO5	Design of industrial building components and gantry girder.	K5	5						

PRE-REQUISITE	Mechanics of Solids-II Mechanics of Solids-II
---------------	---

			C	O / PO	MAPP	PING (1	1 – We	ak, 2 –	Mediu	m, 3 – S	trong)			
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2		2		1	3	3		3	3	3
CO2	3	3	3	2		2		1	3	3		3	3	3
CO3	3	3	3	2		2		1	3	3		3	3	3
CO4	3	3	3	2		2		1	3	3		3	3	3
CO5	3	3	3	2		2		1	3	3		3	3	3

	COURSE ASSESSMENT METHODS								
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2 Other Assessments (Assignment, Quiz etc.)								
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

Topic - 1 COURSE CONTENT 9+3

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Basics of riveted connection – Connections using bolting, welding – Design of bolted and welded joints – Efficiency of joints

Topic - 2 TENSION MEMBERS 9+3

Types of tension members and sections Mode of failure – Net area – Net effective sections for plates and angles in tension – Design of plate and angle tension members – Connections in tension members – Design of tension splice.

Topic - 3 COMPRESSION MEMBERS 9+3

Types of compression members and sections – Mode of failure – Effective length – Slenderness ratio – Design of axially loaded single and compound section compression members – Design of built up laced and battened type columns.

Topic - 4 BEAMS 9 + 3

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uni axial and biaxial bending

Topic - 5 ROOF TRUSSES AND INDUSTRIAL STRUCTURES 9+3

Roof trusses – Roof and side coverings – Purlin in roof trusses – Design of channel and I section Purlins.

THEORY 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60

BO	OOK REFERENCES
1	Subramanian.N, —Design of Steel Structures, Oxford University Press, New Delhi, 2013.
2	S K Duggal., —Limit State design of steel Structures, Mc.Graw Hill Education (India) Private Limited, New
	Delhi, 2010.
3	Bhavikatti.S.S, —Design of Steel Structures By Limit State Method as per IS:800–2007, IK International
	Publishing House Pvt. Ltd., 2009
4	IS 875:2015, Design Loads (Other than Earthquake) for Buildings and Structures, Code of Practice, Bureau
4	of Indian Standards, New Delhi.
5	Jayagopal L S and Tensing.D, —Design of steel structures, 1st edition, Vikas Publishing House private Ltd.,
)	2016.

ОТ	OTHER REFERENCES						
1	https://nptel.ac.in/courses/105105162						
2	https://nptel.ac.in/courses/105106112						
3	https://onlinecourses.nptel.ac.in/noc21_ce40/preview						
4	https://nptel.ac.in/courses/105106113						
5	https://www.digimat.in/nptel/courses/video/105105162/L28.html						

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6T3	GEOTECHNICAL ENGINEERING-II	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Explain erection techniques and practice for high rise structures.	K4	1						
CO2	Apply different construction techniques in under water construction.	K3	2						
CO3	Apply grouting techniques.	K3	3						
CO4	Show the output of earth moving equipment's.	K2	4						
CO5	Explain soil stabilization techniques.	K4	5						

PRE-REQUISITE	GEOTECHNICAL ENGINEERING-I
---------------	----------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3			3	3	2	3	3	3	3	3	3	
CO2	3	2			3	3	2	3	3	3	3	3	3	
CO3	3	2			3	3	2	3	3	3	3	3	3	
CO4	3	2			3	3	2	3	3	3	3	3	3	
CO5	3	2			3	3	2	3	3	3	3	3	3	

	COURSE ASSESSMENT METHODS										
DIRECT	CT 1 Continuous Assessment Tests										
	2	Other Assessments (Assignment, Quiz etc.)									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

COURSE CONTENT

Topic - 1 | SITE INVESTIGATION AND SELECTION OF FOUNDATION

9 + 3

Scope and objectives – Methods of exploration – Auguring and boring – Wash boring and rotary drilling – Depth and spacing of bore holes – Soil samples – Representative and undisturbed – Sampling methods – Split spoon sampler, Thin wall sampler, Stationary piston sampler.

Topic - 2

SHALLOW FOUNDATION

9 + 3

Location and depth of foundation – Codal provisions – Bearing capacity of shallow foundation on homogeneous deposits – Terzaghi's formula and BIS formula – Factors affecting bearing capacity – Bearing capacity from insitu tests (SPT, SCPT and plate load)

Topic - 3

FOOTINGS AND RAFTS

9 + 3

Types of Isolated footing, Combined footing, Mat foundation – Contact pressure and settlement distribution – Proportioning of foundations for conventional rigid behaviour – Minimum thickness for rigid behaviour – Applications – Codal provision.

Topic - 4 PILE FOUNDATION

9 + 3

Types of piles and their functions – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – Static formula – Dynamic formulae (Engineering news and Hileys) – Negative skin friction – Uplift capacity-Group capacity by different methods (Feld's rule, Converse– Settlement of pile groups – Interpretation of pile load test (routine test only) - Codal provisions.

Topic - 5

RETAINING WALLS

9 + 3

Coulomb's wedge theory – Condition for critical failure plane – Earth pressure on retaining walls of simple configurations – Pressure on the wall due to line load – Stability analysis of retaining walls – Codal provisions.

THEORY

45

TUTORIAL

15

PRACTICAL

0

TOTAL

60

BOOK REFERENCES

- Murthy, V.N.S., "Text book of Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2014.
- Arora, K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 7th Edition, 2017 (Reprint).
- Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt. Ltd. New Delhi, 16th Edition 2017.
- 4 Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.

ОТ	OTHER REFERENCES						
1	https://www.youtube.com/watch?v=qeUMbBgKYGs						
2	https://www.youtube.com/watch?v=MZax55HtHNw						
3	https://nptel.ac.in/courses/105105176						
4	https://www.digimat.in/nptel/courses/video/105105039/L01.html						
5	http://www.digimat.in/nptel/courses/video/105105039/L10.html						

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6E1	PREFABRICATED STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	RBT Level	Topics Covered							
CO1	Understand the design principles and stages of loading in precast construction.	K2	1						
CO2	Understand about the panel systems, roof and floor slabs, shear walls.	K2	2						
CO3	Analyse and Solve the problems in joint flexibility, joint deformation and disuniting of structures	K4	3						
CO4	Understand the precast joint and connections, sealants.	K2	4						
CO5	Analyse the effect of abnormal loads in prefabricated structures.	K4	5						

PRE-REQUISITE CONCRETE TECHNOLOGY

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			2	3		2	2	3	3		3	2	
CO2	3			2	3		2	2	3	3		3	2	
CO3	3			2	3		2	2	3	3		3	2	
CO4	3			2	3		2	2	3	3		3	2	
CO5	3			2	3		2	2	3	3		3	2	

	COURSE ASSESSMENT METHODS									
DIRECT	1 Continuous Assessment Tests									
	2	Other Assessments (Assignment, Quiz etc.)								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

COURSE CONTENT

Topic - 1 PRINCIPLES OF PREFABRICATION

9

Need for prefabrication – Principles of prefabrication – Modular coordination – Standarization – Materials – Systems – Production – Transportation – Erection.

Topic - 2 PREFABRICATED COMPONENTS

9

Behaviour of structural components - Large panel constructions - Roof and floor slabs - Wall panels - Beams - Columns - Shear walls.

Topic - 3 DESIGN PRINCIPLES

9

Design of cross section based on efficiency of material used - Problems in design because of joint flexibility - Allowance for joint deformation - Disuniting of structures.

Topic - 4 JOINTS AND CONNECTIONS

9

Types of Joints - based on action of forces - compression joints - shear joints - tension joints - based on function - construction, contraction, expansion. Types of sealants - Types of structural connections - beam to column - column to column - beam to beam -column to foundation.

Topic - 5 ABNORMAL LOADS

9

Progressive collapse - Code provisions - Equivalent design loads for considering abnormal effects such as earthquakes, cyclones,etc., - Importance of avoidance of progressive collapse.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES

- 1 Bruggeling A.S. G and Huyghe G.F. "Prefabrication with Concrete", A.A. Balkema Publishers, USA, 1991
- Lewitt, M. " Precast Concrete- Materials, Manufacture, Properties And Usage", Applied Science Publishers, London And New Jersey, 1982.
- 3 Koncz T., —Manual of precast concrete construction, Vol. I, II and III, Bauverlag, GMBH, 1976.
- Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland BetorVerlag, 2009...
- 5 Handbook on Precast Concrete Buildings, Indian Concrete Institute, 2016.

- 1 https://www.designingbuildings.co.uk
- 2 https://www.modular.org
- 3 https://www.youtube.com/watch?v=7vJF zaLIHs
- 4 https://www.youtube.com/watch?v=FdbHC4sfqBo
- 5 https://www.youtube.com/watch?v=SllPqJEJVVo

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6E2	IRRIGATION ENGINEERING AND HYDRAULIC STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)						
	After Successful completion of the course, the students should be able to						
CO1	Understand the water requirement of crops.	K2	1				
CO2	Understand the methods and types of irrigation.	K2	2				
CO3	Analyse the different types of Impounding structures.	K4	3				
CO4	Design the canal systems.	K5	4				
CO5	Understand the irrigation system management.	K2	5				

PRE-REQUISITE	FLUID MECHANICS AND APPLIED HYDRAULIC ENGINEERING

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)										PS	Os	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			2	3	2	2	3	3		3	3	3
CO2	3	2			2	3	2	2	3	3		3	3	3
CO3	3	2			2	3	2	2	3	3		3	3	3
CO4	3	2			2	3	2	2	3	3		3	3	3
CO5	3	2			2	3	2	2	3	3		3	3	3

	COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests					
	2	Other Assessments (Assignment, Quiz etc.)					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT	
Topic - 1	CROP WATER REQUIREMENT	9

Need - Classification of irrigation - Merits and demerits of irrigation - types of crops -crop season - Duty, delta and base period - Consumptive use of crops - Estimation of evapotranspiration using experimental and theoretical methods

Topic - 2 IRRIGATION METHODS 9

Tank irrigation - Well irrigation - Irrigation methods: Surface and Sub-Surface and Micro Irrigation - Design of drip and sprinkler irrigation - Ridge and furrow irrigation - Irrigation scheduling - Water distribution system - Irrigation efficiencies.

Topic - 3 DIVERSION AND IMPOUNDING STRUCTURES 9

Types of Impounding structures - Gravity dam - Forces on a dams - Design - Earth dams, Arch dams - Diversion Head works - Weirs and Barrages.

Topic - 4 CANAL IRRIGATION 9

Canal regulations - Direct sluice - Canal drop - Cross drainage works-Canal outlets - Design of prismatic canal – canal alignments - Canal lining - Kennedy's and Lacey's Regime theory - Design of unlined canal.

Topic - 5 WATER MANAGEMENT IN IRRIGATION 9

Modernization techniques - Rehabilitation - Optimization of water use - Minimizing water losses - On form development works - Participatory irrigation management - Water resources associations - Changing paradigms in water management - Performance evaluation - Economic aspects of irrigation.

BO	BOOK REFERENCES						
1	Santosh Kumar Garg, — Irrigation Engineering and Hydraulics Structuresl, Khanna Publications Pvt.Ltd, New Delhi, 2009.						
2	Dr. B. C. Punmia, —Irrigation and Water Power Engineeringl, Lakshmi Publications, 2010.						
3	Linsley R.K. and Franzini J.B, —Water Resources Engineeringl, McGraw-Hill Inc, 2000						
4	R. K. Sharma and T. K. Sharma, —Irrigation Engineering, S. Chand & Co, 2006						
5	Dilip Kumar Majumdar, —Irrigation Water Managementl, Prentice-Hall of India, New Delhi, 2008.						

ОТ	OTHER REFERENCES					
1	http://www. https://nptel.ac.in/courses/105/105/105110					
2	http://www. https://nptel.ac.in/courses/126/105/126105010					
3	https://www.youtube.com/watch?v=r43eUxVuRC8					
4	https://www.youtube.com/watch?v=4eMn_zUbaZ8					
5	https://www.youtube.com/watch?v=UaDUhVEHPtE					

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E.CIVIL	20CE6E3	INDUSTRIAL WASTE MANAGEMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)						
	After Successful completion of the course, the students should be able to						
CO1	Summarize the basics of waste management.	K2	1				
CO2	Understand cleaner production.	K2	2				
CO3	Analyze elements of treatment technology.	К3	3				
CO4	Apply pollution from industries.	K4	4				
CO5	Apply design of hazard waste.	К3	5				

PRE-REQUISITE	NIL

			C	O / PO	MAPP	PING (1	1 – Wea	ak, 2 –	Mediu	m, 3 – Si	trong)			
COs		Programme Learning Outcomes (POs) PSOs												Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2			2	2	3	3		3		1
CO2	3	3		2			2	2	3	3		3	2	1
CO3	3	3		2			2	2	3	3		3		1
CO4	3	3	1	2	2		2	2	3	3		3		1
CO5	3	3		2			2	2	3	3		3		1

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Other Assessments (Assignment, Quiz etc.)
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

			C	OURSE C	ONTENT					
Topic - 1		INTRODUCTION								
Population plants and	Types of industries and industrial pollution — Characteristics of industrial wastes — Population equivalent — Bioassay studies — effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health — Environmental legislations related to prevention and control of industrial effluents and hazardous wastes									
Topic - 2			CI	LEANER P	RODUCTION				8	
	•	Approach — Wast le, reuse and bypro			•	n redi	uction –	Material and	process	
Topic - 3		POLL	U TIC	ON FROM	MAJOR INDUS	TRIE	ES		10	
Pharmaceut	icals, Elec	ics, waste treatme etroplating industric - Wastewater reclan	es, D	airy, Sugar						
Topic - 4		Т	REA	TMENT 1	TECHNOLOGIE	S			12	
Adsorption	- Removal	alisation – Remova of dissolved inorga ering - Disposal								
Topic - 5										
Hazardous	wastes - Ph	ysico chemical trea	tmen	t – solidifica	ation – incineration	n – Se	cured land	fills		
THEORY	45	TUTORIAL	0		PRACTICAL	0		TOTAL	45	

BO	OK REFERENCES
1	M.N.Rao & A.K.Dutta, "Wastewater Treatment", Oxford - IBH Publication, 1995.
2	W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi, 2000.
3	Cady, W. G., Piezoelectricity, Dover Publication

ОТ	HER REFERENCES
1	https://youtu.be/uANAyo_1GsM
2	https://youtu.be/mn2KSRUPGC0
3	https://youtu.be/5v4fnDP5ei0
4	https://youtu.be/_NkqwMitQ8o
5	https://youtu.be/bvFmnLmUMDo

Semeste	r Programme	Course Code	Course Name	L	Т	P	C			
VI	B.E. CIVIL	20CE6LT1	ENVIRONMENTAL ENGINEERING	2 0 4						
		COURSE LE	ARNING OUTCOMES (COs)							
,	After Successful completion of the course, the students should be able to RBT Topics Covered									
CO1	Analyze and design the	treatment units	for various sources of water	K4		1				
CO2	Design and prefer the v	arious wastewat	ter primary treatment units	K5		2				
CO3	Design and choose the various wastewater secondary treatment units. K5 3									
CO4	Understand the Plan and select the sludge disposal methods K2 4									
CO5	Understand the wastew	ater disposal me	ethods	K2		5				

PRE-REQUISITE NIL														
	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PS	Os		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3	3	2	2	3	3		3		3
CO2	3		3		3	3	2	2	3	3		3		
CO3	3		3		3	3	2	2	3	3		3		3
CO4					3		2	2	3	3		3		
CO5					3	3	2	2	3	3		3		3

	COURSE ASSESSMENT METHODS									
DIRECT	1	Continuous Assessment Tests								
	2	Laboratory Record and Model Practical Examinations (Laboratory Component)								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT						
Topic - 1	SOURCES OF WATER	6					
Public water supply system – Planning, Objectives, Design period, Population forecasting– Source Water quality – Characterization – Significance – Drinking Water quality standards.							
Topic - 2	PRIMARY WASTE WATER TREATMENT	6					
primary sedi	Characteristics of sewage, Primary treatment: Principles, functions and design of screen, grit chambers and primary sedimentation tanks-operation and maintenance aspects.						
Topic - 3 SECONDARY WASTE WATER TREATMENT 6 Trickling filter (no design); Other treatment methods - oxidation ditches, UASB - Waste Stabilisation Ponds - Anaerobic Stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recycling.							
Trickling fil	ter (no design); Other treatment methods - oxidation ditches, UASB - Waste Stabilisation						
Trickling fil	ter (no design); Other treatment methods - oxidation ditches, UASB - Waste Stabilisation	Ponds -					
Trickling fil Anaerobic S Topic - 4 Sources and	ter (no design); Other treatment methods - oxidation ditches, UASB - Waste Stabilisation tabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic	Ponds - ng.					
Trickling fil Anaerobic S Topic - 4 Sources and	ter (no design); Other treatment methods - oxidation ditches, UASB - Waste Stabilisation tabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recyclic stabilisation units - Septic tanks, Advances in sewage treatment - waste water reuse and recycli	Ponds - ng.					

THEORY 3	30	Т	TUTORIAL	0		PRACTICAL	0		TOTAL	30
				Lis	t of exper	iments		'		
Experiment- 1	1 I	Determin	nation of pH.							
Experiment - 2	riment - 2 Determination of Turbidity.									
Experiment - 3	3 Г	Determin	nation of hard	ness.						
Experiment - 4	4 E	Estimatio	on of acidity.							
Experiment - 5	5 E	Estimatio	on of alkalinit	y.						
Experiment - 6	6 I	Determin	nation of solid	s.						
Experiment - 7	7 Г	Determin	nation of resid	ual chlo	orides.					
Experiment - 8	8 I	Determin	nation of Avai	lable ch	lorine in	bleaching powder.				
Experiment - 9	9 [Determin	nation of Nitr	ate.						
Experiment - 1	.0 [Determin	nation of Sulp	hates.						
Experiment - 1	1 I	Determin	nation of Phos	phate.						
Experiment - 1	2 [Determin	nation of Cond	ductivity	/ .					
Experiment - 13 Determination of iron and fluoride.										
Experiment – 1	Experiment – 14 Determination of B.O.D.									
Experiment - 1	.5 I	Determin	nation of C.O.	D						
THEORY	0)	TUTORIAL	L 0		PRACTICAL	60		TOTAL	60

ВО	OOK REFERENCES
1	Garg, S.K., "Environmental Engineering", Vol.I and II, Khanna Publishers, New Delhi, 2005.
2	Modi, P.N. —Water Supply Engineering, Vol. I Standard Book House, New Delhi, 2010
3	Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2013
4	Government of India, —Manual on Water Supply and Treatmentl, CPHEEO, Ministry of Urban Development, New Delhi, 2003.

ОТ	OTHER REFERENCES						
1	https://nptel.ac.in/courses/103107084						
2	https://nptel.ac.in/courses/127105018						
3	https://nptel.ac.in/courses/105107176						
4	https://nptel.ac.in/courses/105106119						
5	https://nptel.ac.in/courses/120108004						

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E.CIVIL	20CE6LT2	STRUCTURAL DESIGN AND DRAWINGS	2	0	4	4

	COURSE LEARNING OUTCOMES (COs)											
	RBT Level	Topics Covered										
CO1	Design and draw the reinforced concrete cantilever Retaining wall.	K6	1									
CO2	Design and draw the reinforced concrete counter fort Retaining wall.	K6	2									
CO3	Design and draw the flat slab as per code provisions.	K6	3									
CO4	Design and draw reinforced concrete water tank.	K6	4									
CO5	Design and draw the various industrial structures.	K6	5									

PRE-REQUISITE	Design of Reinforced Concrete Elements and Structures
---------------	---

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs		Programme Learning Outcomes (POs)												Os
COS	PO1	PO2	PO3	PO4	O4 PO5 PO6		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3			1	3	3		3	3	
CO2	3	3	3	3	3			1	3	3		3	3	
CO3	3	3	3	3	3			1	3	3		3	3	
CO4	3	3	3	3	3			1	3	3		3	3	
CO5	3	3	3	3	3			1	3	3		3	3	

	COURSE ASSESSMENT METHODS											
DIRECT	T 1 Continuous Assessment Tests											
	2	Laboratory Record and Model Practical Examinations (Laboratory Component)										
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

	COURSE CONTENT												
Topic - 1			CA	NTIL	EVER R	ETAINING WAI	L			6			
Reinforced co	Reinforced concrete cantilever retaining walls – Horizontal backfill with surcharge – Design of shear key –												
Design and Drawing.													
Topic - 2		COUNTERFORT RETAINING WALL											
Reinforced concrete counter fort retaining walls – Horizontal backfill with surcharge – Design of shear key													
Design and Drawing.													
Topic - 3 FLAT SLAB													
Design of flat slabs with and without drops by direct design method of IS code – Design and drawing													
Topic - 4			LIC	QUID	STORA	GE STRUCTURE	ES .			6			
RCC Water tanks – on ground, elevated circular, underground rectangular tanks – Design and Drawing.													
Topic - 5				INDU	STRIAL	STRUCTURES				6			
Structural steel	l framin	g – Sto	eel roof trusses	– Coda	al provisi	ons – Design and I	Orawin	ıg.					
THEORY	30	7	ΓUTORIAL	0		PRACTICAL	0		TOTAL	30			
	I			COI	URSE C	ONTENT							
Experiment - 1	Des	sign ar	nd draw the Car	ntileve	r retainin	g wall							
Experiment - 2						g wall with Shear	Key						
Experiment - 3			nd draw the Co			ing wall							
Experiment - 4			nd draw the On										
Experiment - 5	Des	sign ar	nd draw the two	o way s	slab								
Experiment - 6		•	nd draw the flat		•								
Experiment - 7	Des	sign ar	nd draw the flat	t slab v	vithout dr	rop							
Experiment - 8	Des	sign ar	nd draw the Foo	ot over	Bridge (Steel)							
Experiment - 9	Des	sign ar	nd draw the und	dergrou	ınd rectaı	ngular Water tank							
Experiment - 1	0 Des	sign ar	nd draw the Cir	cular V	Water tan	k							
Experiment - 1	1 Des	sign ar	nd draw the res	ting on	ground 1	ectangular Water	tank						
Experiment - 1	2 Des	sign ar	nd draw the Ele	vated	Circular \	Water tank with top	Dom	e					
Experiment - 1	3 Des	sign ar	nd draw the He	misphe	erical bot	tomed cylindrical	Steel V	Water tar	ık				
Experiment - 1	4 Des	sign ar	nd draw the Ste	el roof	trusses								
Experiment - 1	5 Des	sign ar	nd draw the pur	lin for	a Roof tı	russ							
THEORY	0		TUTORIAL	. 0		PRACTICAL	60		TOTAL	60			

BO	OOK REFERENCES
1	Krishnamurthy N, structural design and drawing, universities press, 2009.
2	Shah V L and Veena Gore, limit state design of steel structures
3	IS800-2007, Structures publications, 2009.
4	IS 456(2000) Indian standard plain and reinforced concrete-code of practice, Bureau of Indian standards, New Delhi.

ОТ	OTHER REFERENCES									
1	https://nptel.ac.in/courses/105/105/105162/									
2	https://nptel.ac.in/courses/105/105/105105105/									
3	https://nptel.ac.in/courses/105/106/105106113/									
4	https://nptel.ac.in/courses/105/105/105105104/									
5	https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ce23/									

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6L1	COMPREHENSIVE COURSE	0	0	2	2

	COURSE LEARNING OUTCOMES (COs)											
	After Successful completion of the course, the students should be able to											
CO1	Summarize the basics of civil engineering formulation.	K2	1									
CO2	Apply the shear force and bending moment.	K4	2									
CO3	Apply structural analysis to structures.	К3	3									
CO4	Analyze geotechnical investigations and properties.	K4	4									
CO5	Understand basic civil engineering Problems.	K2	5									

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO1 PO2 PO3 PO4 PO5 PO6 P		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CO1	3	3	1	2				1	3	3		3		1
CO2	3	3	1	2				1	3	3		3	2	1
CO3	3	3	1	2	2			1	3	3		3		1
CO4	3	3	1	2				1	3	3		3		1
CO5	3	3	1	2				1	3	3		3		1

COURSE ASSESSMENT METHODS							
DIRECT	1	Continuous Assessment Tests					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT										
Topic - 1	BUILDING MATERIALS AND CONSTRUCTION PRACTICES									9	
Construction of stone masonry, brick masonry and R.C.C. and block masonry – construction equipment. Building bye - laws and Development regulations practiced in Tamil Nadu - Provisions for fire safety, lighting and ventilation- Acoustics.											
Topic - 2	Topic - 2 STRENGTH OF MATERIALS										
in beams - planes - Pri	Stresses and strains -Thermal stresses- elastic constants - Beams and bending - Bending moment and shear force in beams - Theory of simple bending - deflection of beams - torsion - Combined stresses - stresses on inclined planes - Principal stresses and principal planes - Theories of Failure - Analysis of plane trusses.										
Topic - 3 STRUCTURAL ANALYSIS 9									9		
Distribution	n metho	od - A		nsion	cables - T	s of structural a heory of columns y.					
Topic - 4			Gl	EOTI	ECHNICA	L ENGINEERI	NG			9	
						for engineering peability character			dentification (of soils -	
Topic - 5			DESI	GN (OF REINF	ORCED CONC	RETE			9	
	Design of concrete members - limit state and working stress design concepts - design of slabs - one way, two way and flat slabs - Design of singly and doubly reinforced sections and flanged sections -design of columns and footings										
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45	

ВО	OK REFERENCES
1	TNPSC Group 1 Preliminary General Studies, Aptitude, and Mental Ability, VVK Subburaj
2	General Awareness, Arihant GK, Manohar Pandey
3	TNPSC Assistant Engineer - Civil Engineering (Tamil) Sakthi Publishing House

ОТ	HER REFERENCES
1	https://youtu.be/M_rPm-UEujI
2	https://youtu.be/OvrqyFYhhxQ
3	https://youtu.be/BHqMqBOSWzs
4	https://youtu.be/8n7ANzhQhY0
5	https://youtu.be/rkRV4RokyKE

Semester	Programme	Course Code	Course Name	L	T	P	C
VI	B.E. CIVIL	20CE6L2	DESIGN PROJECT	0	0	4	2

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Prepare the plan of a civil engineering structure	K2	1							
CO2	Identify appropriate techniques to analyze civil engineering structures.	K2	1							
CO3	Design the structure as per bureau of Indian standards.	K2	1							
CO4	Prepare the detailed drawings for structural elements.	К3	1							
CO5	Prepare the consolidated project report for tender or any other purpose.	K2	1							

PRE-REQUISITE NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)									PSOs				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3						3	3	3	3
CO2	3	3	3	3	3						3	3	3	3
CO3	3	3	3	3	3						3	3	3	3
CO4	3	3	3	3	3						3	3	3	3
CO5	3	3	3	3	3						3	3	3	3

COURSE ASSESSMENT METHODS								
DIRECT	1	Model Practical Examination						
	2	Record						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

STRATEGY:

This course conceives purely a design problem in any one of the disciplines of Civil Engineering; e.g., Design of an RC & Steel structure, Design of a waste water treatment plant, Design of a foundation system, Design of traffic intersection, Design of bridges (ROB and RUB) and water tank etc. The design problem can be allotted to either an individual student or a group of students comprising of not more than four. At the end of the course the group should submit a complete report on the design problem consisting of the data given, the design calculations, specifications if any and complete set of drawings which follow the design.

THEORY 0 TUTORIAL 0 PRACTICAL 75 TOTAL 75

SEMESTER VII

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C
THEORY COURSES									
1	20CE7T1	Quantity Surveying and Estimation	PC	40	60	3	1	0	4
2	20HSCT2	Professional Ethics	HS	40	60	3	0	0	3
3		Professional Elective–IV	PE	40	60	3	0	0	3
4		Professional Elective–V	PE	40	60	3	0	0	3
5		Professional Elective- VI	PE	40	60	3	0	0	3
6		Professional Elective- VII	PE	40	60	3	0	0	3
		LABORATORY	COUR	SE					
7	20CE7L1	Computer Analysis and Design Laboratory	PC	60	40	0	0	4	2
		ENHANCEMEN'	T COUF	RSE					
8	20CE7L2	Project Work–Phase I	EEC	50	50	0	0	6	3
		Total				18	1	10	24

Semester	Programme	Course Code	Course Name	L	Т	P	C
VII	B.E. CIVIL	20CE7T1	QUANTITY SURVEYING AND ESTIMATION	3	1	0	4

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Understand the estimation of buildings	K2	1								
CO2	Apply the estimation of irrigation structures.	К3	2								
CO3	Analysis for tenders and contracts.	K4	3								
CO4	Analysis the valuation of building.	K4	4								
CO5	Design of report for civil structures.	K5	5								

PRE-REQUISITE	Surveying
---------------	-----------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO	Programme Learning Outcomes (POs)													Os
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			1		3	2	3	3	3	3	3	2	2
CO2	3			1		3	2	3	3	3	3	3	2	2
CO3	3	3	3	1		3	2	3	3	3	3	3	2	2
CO4	3			1		3	2	3	3	3	3	3	2	2
CO5	3			1		3	2	3	3	3	3	3	2	2

COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests								
	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

			COURSE CONTENT								
	Topic - 1		ESTIMATIONS OF BUILDINGS								
Load bearing and framed structures – Calculation of quantities of brick work, RCC, PCC, Plastering, who washing, colour washing and painting / varnishing for shops, rooms, residential building with flat and pitch roof – Estimate of joineries for paneled and glazed doors											
	Topic - 2		ESTIMATE OF OTHER ST	RUCTURES	9+3						
Estimating of sanitary installations – estimate of bituminous and cement concrete roads – estimate of retain walls – culverts.											
	Topic - 3		SPECIFICATION AND T	TENDERS	9+3						
			ates – Analysis of rates – Specifications – source Types of contracts – Arbitration and legal require		ons –						
	Topic - 4		VALUATION		9+3						
			of approximate estimation values in engineerin building – Calculation of Standard rent.	g – Capitalized value – Depreciat	ion –						
	Topic - 5		REPORT PREPARA	TION	9+3						
	nciples for itary install		reparation – report on estimate of residential build	ling – Culvert – Roads – Water suppl	y and						
Tl	HEORY	45	TUTORIAL 15	PRACTICAL 0 TOTAL	60						
ВО	OK REFE	CREN	ES								
1	Dutta, B.1 Pvt. Ltd.,		stimating and Costing in Civil Engineeringl, UBS elhi, 2013	Publishers & Distributors							
2	Kohli, D.I		ohli, R.C., —A Text Book of Estimating and Cos	ting (Civil) , S.Chand &							
3	PWD Dat	a Boo	2015								
4	CMDA H	and B	ok								
ОТ	HER REF	ERE	CES								
1	https://wv	vw.yo	ube.com/watch?v=b3cG_gSO6gM								
2	https://wv	ww.yo	ube.com/watch?v=GDMblsR0Zes								
3	https://wv	ww.yo	ube.com/watch?v=r0aDjTLxy5c								
4	https://wv	vw.yo	ube.com/watch?v=xsFHiAVdmwU								
5	https://wv	vw.yo	ube.com/watch?v=H-z3CldkHB4								

Semester	Programme	Course Code	Course Name	L	Т	P	С
VII	B.E. CIVIL	20CE7E1	BASICS OF DYNAMICS AND ASEISMIC DESIGN	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)											
Af	RBT Level	Topics Covered										
CO1	Construct the basics principles and vibration effects on structures	К3	1									
CO2	Analyze the dynamic forces caused by earthquakes and structures	K4	2									
CO3	Solve the phenomena, measurements and the factors that affect the design of structures in seismic areas	К3	3									
CO4	Design of Earthquake resistant structures	K4	4									
CO5	Summarize the codal provisions as well as the aseismic design methodology	K2	5									

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
	Programme Learning Outcomes (POs)]	PSOs			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2		1	3		3	3	2	2
CO2	3	2	2	2	2			1	3		3	3	2	2
CO3	3	2	2	2	2			1	3		3	3	2	2
CO4	3	2	-	2	2			1	3		3	3	2	2
CO5	3	3	3	2	2			1	3		3	3	2	2

	COURSE ASSESSMENT METHODS								
DIRECT 1 Continuous Assessment Tests									
	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT Topic – 1 THEORY OF VIBRATIONS 9 Theory of vibrations and harmonic motion -Dynamic Loads-D'Alembert's Principle and inertia forces- Degree of freedom- Equation of motion for SDOF - Damped and Undamped free vibrations - Undamped forced vibration Natural frequencies. Topic – 2 MULTIPLE DEGREE OF FREEDOM SYSTEM 9 Two degree of freedom system - Normal modes of vibration - Natural frequencies - Mode shapes - Introduction to MDOF systems -Decoupling of equations of motion - Concept of mode superposition (No derivations). Topic – 3 **ELEMENTS OF EARTHQUAKE ORIGIN** 9 Elements of Seismology - Causes of Earthquakes -Seismic waves - Magnitude - Intensity of earthquake-Seismogram-Information on some disastrous earthquakes - Seismic zone map of India - Strong motion characteristics. 9 Topic - 4 EARTHQUAKE RESISTANT DESIGN Principles of Earthquake Resistant Design - Response spectrum theory and Design spectra-Time Acceleration method, Effect of soil properties and damping -liquefaction, Types, effects and controlling factors. Topic – 5 **DESIGN METHODOLOGY** 9 IS1893-Codal provisions - Design horizontal seismic coefficient - Design base shear distribution, IS13920 and IS 4326 - Codal provisions - Base isolation techniques - Vibration control measures - Important points in mitigating effects of earth quake on structures. TUTORIAL THEORY 45 **PRACTICAL TOTAL** 45 **BOOK REFERENCES** A K. Chopra, —Dynamics of Structures – Theory and Applications to Earthquake Engineeringl, Printice-Hall India Pvt Ltd, Fourth Edition, 2003. Pankaj Agarwal and Manish Shrikhande, —Earthquake Resistant Design of Structures, Prentice Hall of India, 2006. Mario Paz, —Structural Dynamics – Theory and Computation", CBS Publications, Second Edition, 2004. 3 4 IS 1893 – 2002, Criteria for Earthquake Resistant Design of Structures. IS 4326 – 1993, Earthquake Resistant Design and Construction of Buildings – Code of Practice.

OT	HER REFERENCES					
1	http://nptel.ac.in/courses/105111085					
2	http://nptel.ac.in/courses/105116050					
3	http://nptel.ac.in/courses/10511519					
4	https://www.youtube.com/watch?v=PxFojWYsvVU					
5	https://www.youtube.com/watch?v=-oN1dkTiIm0					

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E.	20CE7E2	DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Understand the design principles and stages of retaining walls.	K2	1						
CO2	Understand about the water tanks.	K2	2						
CO3	Analyse and Solve the problems in flat slabs and staircases.	K4	3						
CO4	Understand the yield line theory	K2	4						
CO5	Analyse the brick masonry structures.	K4	5						

PRE-REQUISITE	DESIGN OF REINFORCED CONCRETE ELEMENTS AND STRUCTURES

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO		Programme Learning Outcomes (POs)										PS	PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3		3	3		1	3		3	3	2	3
CO2	3	3	3		3	3		1	3		3	3	2	2
СОЗ	3	3	3		3	3	3	1	3		3	3		3
CO4	2	3			3			1	3		3	3	2	2
CO5	2	3			3	3		1	3		3	3	2	3

	COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests							
	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	COURSE CONTENT										
Topic - 1				RETAINING WALLS				9			
Design of Ca	Design of Cantilever and Counterfort Retaining walls										
Topic - 2		WATER TANKS 9									
Design of rec	tangular and ci	ircular water ta	ınks b	oth below and above groun-	d lev	el – Des	ign of circular slab.				
Topic - 3				SELECTED TOPICS				9			
_	ircases (ordinar nd road bridges		ged) –	Design of flat slabs – Princ	iples	of desig	gn of mat foundation,				
Topic - 4				YIELD LINE THEORY				9			
		•		termination of collapse load lar and triangular slabs – De	•		* *				
Topic - 5				BRICK MASONRY				9			
effective leng	Introduction, Classification of walls, Lateral supports and stability, effective height of wall and columns, effective length of walls, design loads, load dispersion, permissible stresses, design of axially and eccentrically loaded brick walls										
THEORY	45	ΓUTORIAL	0	PRACTICAL	0		TOTAL	45			

ВО	BOOK REFERENCES							
1	Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.							
2	Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House,1997							
3	Varghese.P.C., "Advanced Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd., New Delhi, 2012							
4	Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company,1997							
5	Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt.Ltd., 1998							

OT	OTHER REFERENCES							
1	Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House, 2004.							
2	Subramanian. N., "Design of Reinforced Concrete Structures", Oxford University, New Delhi 2013							
3	https://www.youtube.com/watch?v=qmuM-8tWtxM							
4	https://www.youtube.com/watch?v=ba3mZhOpsTM							
5	https://www.digimat.in/nptel/courses/video/105106197/L01.html							

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CE7E3	GROUND IMPROVEMENT TECHNIQUES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Understand the dewatering techniques.	K2	1						
CO2	Apply the compaction and consolidation techniques to increase the density of soil.	K3	2						
CO3	Analysis the carrying capacity of stone columns, lime piles and nailing.	K4	3						
CO4	Analysis earth reinforcement through geosynthetics and application.	K4	4						
CO5	Design of basic requirements of grouting techniques.	K5	5						

PRE-REQUISITE	FOUNDATION ENGINEERING
---------------	------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs		Programme Learning Outcomes (POs)											PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	1	2		1	1	3		3	3	2	2	
CO2	3	2	2	1	2		1	1	3		3	3	2	2	
CO3	3	3	3	1			1	1	3		3	3	2	2	
CO4	3	2	2	1	2		1	1	3		3	3	2	2	
CO5	3	2	2	1	2		1	1	3		3	3	2	2	

	COURSE ASSESSMENT METHODS								
	1	Continuous Assessment Tests							
DIRECT	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

COURSE CONTENT Topic - 1 DEWATERING Introduction - Scope and necessity of ground Improvement in Geotechnical Engineering - Ground Water lowering by well points, deep wells, vacuum and electro- osmotic methods. Stabilization by thermal and freezing techniques - Applications. 9 Topic - 2 **COMPACTION AND SAND DRAINS** In-situ compaction of granular and cohesive soils - Shallow and Deep compaction methods - Sand piles - factors influencing compaction. Blasting and dynamic consolidation - Preloading with sand grains - Theories of sand drain - relative merits of various methods. 9 Topic - 3 STONE COLUMN, LIME PILES AND SOIL NAILING Stone column, lime piles - Functions - methods of installation - design, estimation of load carrying capacity and settlement - Root piles and soil nailing - methods of installation - Design and applications - Soil liquefaction mitigation methods. Topic - 4 9 EARTH REINFORCEMENT Earth reinforcement - Principles and basic mechanism of reinforced earth, simple design: Synthetic and natural fiber based geotextiles and their applications - Filtration, drainage, separation, erosion control - Electro-Chemical stabilization -Stabilization with cement, lime. 9 Topic - 5 **GROUTING** Grouting - Types of grout - Suspension and solution grouts - Basic requirements of grout. Grouting equipment injection methods - Jet grouting - grout monitoring. TUTORIAL **THEORY** PRACTICAL TOTAL 45 45

J												
	BO	SOOK REFERENCES										
Ì	1	1 Dr. P. Purushothama Raj, —Ground Improvement Techniques (PB) , Laksmi Publications (P) Ltd, 200										005.
ı	2	Jewell.	R.A	–Soil F	Reinforcement	with (ieotextiles.	CIRIA, London,	1996.			

- Pappala, A.J., Huang, J., Han, J., and Hoyos, L.R., —Ground Improvement and Geo synthetics, Geotechnical special publication No.207, Geo Institute, ASCE, 2010.
- 4 | Koerner, R.M., —Designing with Geosynthetics, Third Edition, Prentice Hall 1997.
- 5 Das, B.M., —Principles of Foundation Engineering, Fourth Edition, PWS Publishing, 1999.

- http://nptel.ac.in/courses/105108075, —Ground Improvement Techniques||, Dr. G.L. SivakumarBabu, Civil Engineering, IISc Bangalore.
- 2 http://nptel.ac.in/courses/105104034, —Ground Improvement Techniques||, Dr. NiharRanjanPatra, Civil Engineering,IIT Kanpur.
- 3 https://www.digimat.in/nptel/courses/video/105108075/L25.html
- 4 https://www.digimat.in/nptel/courses/video/105108075/L03.html
- 5 https://www.digimat.in/nptel/courses/video/105108075/L02.html

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CE7E4	URBAN PLANNING AND DEVELOPMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
	RBT Level	Topics Covered								
CO1	Understand the Architecture that can enhance the building in terms of appearance and utility.	K2	1							
CO2	Apply the interior planning and use of building materials.	K3	2							
CO3	Analysis of suitable water supply and drainage patterns for different types of building.	K4	3							
CO4	Analysis problem that is coming in Town Planning level.	K4	4							
CO5	Design of Housing policy and its impact on housing development in Indian context.	K5	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO			PSOs											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		1		1	2	2	3	3		3	2	2
CO2	3	2		1		1	2	2	3	3		3	2	2
CO3	3	3	3	1		1	3	3	3	3		3	2	2
CO4	3	2		1		1	2	2	3	3		3	2	2
CO5	3	2		1		1	2	2	3	3		3	2	2

COURSE ASSESSMENT METHODS								
DIRECT	T Continuous Assessment Tests							
	2	Other Assessments (Assignment, Quiz etc.)						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

	COURSE CONTENT							
COURSE CONTENT								
Topic - 1	INTRODUCTION TO ARCHITECTURE	9						
	ls concepts of architecture – Principles of planning – Qualities, Strength, Refinement, Repose Colour, Solids and Voids and Symmetry.	, Scale,						

Topic - 2 INTERIOR DECORATIONS 9

Interior Planning and treatment - Use of natural and synthetic building materials - Thermal and Acoustical materials - Lighting & illumination

Topic - 3 PLANNING AND CONCEPTS OF TOWN PLANNING 9

Planning Surveys - Importance of Climate topography, drainage and water supply in the selection of site for the development - Residential - Commercial - Industrial - Public - Transportation, Basic amenities and services.

Topic - 4 FUNCTIONAL PLANNING OF BUILDINGS 9

Occupancy classification of buildings-general requirements of site and building – building codes and rules – licensing of building works. Functional planning of building such as residential, institutional, public, commercial, industrial buildings – the process of identifying activity areas and linkages.

Topic - 5 COUNTRY PLANNING AND HOUSING 9

Plan implementation: Town planning legislation and municipal acts – Planning control development schemes – Urban financing – Land acquisitions – Slum clearance schemes. Examples of planned cities and housing in India – Applications of Remote Sensing & GIS in town planning.

BOOK REFERENCES

- 1 Pramar. V.S. —Design fundamental in Architecture, Somiya Publications Pvt. Ltd., New Delhi, 1997.
- Biswas Hiranmay, —Principles Of Town Planning And Architecture VAYU Education of India, New Delhi., 1st edition .,2012
- 3 G.K. Hiraskar, —Fundamentals of Town Planning, Dhanpat Rai Publications Pvt.Ltd., New Delhi.,2012
- Arthur Gallion., Simon Eisner., —The Urban Pattern: City Planning and Designl, Charotar Publishing House Pvt. Ltd., Gujarat, 5th Edition, 1986.
- 5 S.C.Rangwala, K.S.Rangwala and P.S.Rangwala, _Town Planning|, Charotar Publishing House, 18th Edition, 2003.

OTHER REFERENCES

- 1 https://www.digimat.in/nptel/courses/video/105103205/L40.html
- 2 https://www.youtube.com/watch?v=cjIacnNRLHE
- 3 https://nptel.ac.in/courses/124107158
- 4 https://www.digimat.in/nptel/courses/video/124107158/L37.html
- 5 http://www.nitttrc.edu.in/nptel/courses/video/124107007/L01.html

Semester	Programme	Course Code	Course Name	L	Т	P	C
VII	B.E.	20CE7E5	MUNICIPAL WASTE AND MANAGEMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to									
CO1	Understand the sources, types and characteristics of municipal solid waste management.	K2	1							
CO2	Apply the waste minimization techniques of municipal solid waste.	K3	2							
CO3	Analysis the suitable method of collection and conveyance of municipal solid waste.	K4	3							
CO4	Analysis the offsite processing techniques and equipment of solid waste.	K4	4							
CO5	Design of proper disposal method of solid waste.	K5	5							

PRE-REQUISITE	ENVIRONMENTAL ENGINEERING
---------------	---------------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO		PSOs												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			1			2	2	3	3		3	2	2
CO2	3			1			2	2	3	3		3	2	2
CO3	3	3	3	1			3	3	3	3		3	2	2
CO4	3			1			2	2	3	3		3	2	2
CO5	3			1			2	2	3	3		3	2	2

COURSE ASSESSMENT METHODS								
DIRECT	1 Continuous Assessment Tests							
	2	Other Assessments (Assignment, Quiz etc.)						
	3	End Semester Examinations						
INDIRECT	1	Course Exit Survey						

COURSE CONTENT										
Topic - 1	SOURCES AND TYPES OF SOLID WASTE									
Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characterized Methods of sampling and characterization-Effects of improper disposal of solid wastes -Public health environmental effects. Elements of solid waste management -Social and financial aspects - Municipal solid waste management -Integrated management-Public awareness; Role of NGO's.										
Topic - 2	ON-SITE STORAGE AND PROCESSING	9								
On-site storage methods - Effect of storage- Materials used for containers - Segregation of solid wastes - Pu health and economic aspects of open storage - Waste segregation and storage - Source reduction of waste - Reduction, Reuse and Recycling.										
Topic - 3	COLLECTION AND TRANSFER	9								

Methods of residential and commercial waste collection system - Collection vehicles - Manpower requirement-Collection routes-Analysis of collection systems-Transfer stations - Selection of location, operation and maintenance; options under Indian conditions.

Topic - 4 OFF-SITE PROCESSING 9

Objectives of waste processing - Physical processing techniques and Equipment -Resource recovery from solid waste -

Composting-Methods-Factors affecting and Biomethanation-Thermal processing techniques.

Topic - 5 DISPOSAL 9

Land disposal of solid waste- Sanitary landfills - Site selection, design and operation of sanitary landfills - Landfill liners -Management of leachate and landfill gas - Landfill bioreactor- Dumpsite rehabilitation.

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES 1 T.V.Ramachandra, —Management of Municipal Solid Wastell, Capital Publishing Company, New Delhi,2017. 2 Tchobanoglous, G., Theisen, H. M., and Eliassen, R. —Solid. Wastes: Engineering Principles and Management Issuesl.McGraw Hill, New York, 2016. 3 Government of India, —Manual on Municipal Solid Waste Managementll, CPHEEO, Ministry of Urban Development,New Delhi, 2000. 4 Bhide A.D. and Sundaresan, B.B. —Solid Waste Management Collectionll, Processing and Disposal, 2001.

OT	THER REFERENCES
1	http://nptel.ac.in/courses/105106056/, —Solid and Hazardous Waste Management , Dr. Indumathi Nambi, IIT Madras.
2	http://nptel.ac.in/courses/120108005, —Municipal Solid Waste Managementl, Prof. T.V. Ramachandra, IISc Bangalore.
3	https://www.digimat.in/nptel/courses/video/105103205/L01.html
4	https://www.digimat.in/nptel/courses/video/105103205/L40.html
5	https://www.youtube.com/watch?v=cjIacnNRLHE

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CE7E6	HOUSING, PLANNING AND MANAGEMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)											
	RBT Level	Topics Covered										
CO1	Identify and explain the basics of housing and policies.	K2	1									
CO2	Describe the housing programmes and their improvements.	К3	2									
CO3	Plan and design the housing projects.	K2	3									
CO4	Explain the new construction techniques and construction materials.	К3	4									
CO5	Evaluate the housing finance strategies and project appraisal	К3	5									

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
CO				Pro	gramm	e Lear	ning O	utcom	es (POs	s)			PS	Os	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3				2	2	3	3		3	3	2	
CO2	2	2	2		2		2	2	3	3		3	3	2	
CO3	2	2	2	3			3	3	3	3		3	3	2	
CO4	3	2	2	_		2	2	2	3	3		3	2	2	
CO5	3	2	2				2	2	3	3		3	2	2	

	COURSE ASSESSMENT METHODS											
DIRECT 1 Continuous Assessment Tests												
	2 Other Assessments (Assignment, Quiz etc.)											
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

	COURSE CONTENT	
Topic - 1	INTRODUCTION TO HOUSING	9

Definition of Basic Terms – House, Home, Household, Apartments, Multi storied Buildings, Special Buildings, Objectives and Strategies of National Housing Policies including Slum Housing Policy, Principle of Sustainable Housing – Integrated approach on arriving holding capacity and density norms - All basic infrastructure consideration - Institutions for Housing at National, State and Local levels.

Topic - 2 HOUSING PROGRAMMES 9

Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighborhoods- Plotted land development programs, Open Development Plots, Apartments, Gated communities, Townships, Rental Housing, Cooperative Housing, Slum Housing Programmes – Slum improvement – Slum redevelopment and Relocation – Use of GIS and MIS in Slum Housing Projects,, Role of Public housing agencies, and Private sector in supply, quality, infrastructure and pricing – Role of Non-Government Organizations in slum housing

Topic - 3 PLANNING AND DESIGN OF HOUSING PROJECTS 9

Formulation of Housing Projects – Land Use and Soil suitability analysis -Building Byelaws and Rules and Development Control Regulations - Site Analysis, Layout Design, Design of Housing Units (Design Problems) – Housing Project Formulation.

Topic - 4 CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS 9

New Constructions Techniques – Cost Effective Modern Materials and methods of Construction- Green building concept- Building Centers – Concept, Functions and Performance Evaluation.

Topic - 5 HOUSING FINANCE AND PROJECT APPRAISAL 9

Evaluation of Housing Projects for sustainable principles – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy- Public Private Partnership Projects – Viability Gap Funding - Pricing of Housing Units (Problems).

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

BOOK REFERENCES

- 1 Wiley- Blackwell, "Neufert Architects" Data, 4th Edition, Blackwell Publishing Ltd, 2012.
- Donald Watson and Michael J.Crosbie, "Time Saver Standards for Architectural Design", 8th Edition, Tata McGraw Hill Edition, 2011.
- 3 Walter Martin Hosack, "Land Development Calculations", McGraw Hill 2nd Edition, USA 2010.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/124107001/Housing Policy & Planning, Dr. Uttam K. Roy, IIT Roorkee
- 2 https://nptel.ac.in/courses/105106188/ Infrastructure Planning and Managements, Dr. AshwinMahalingam, IIT Madras.
- 3 https://www.youtube.com/watch?v=VVuP27QGyuk
- 4 https://www.digimat.in/nptel/courses/video/105106149/L01.html
- 5 https://www.youtube.com/watch?v=EIDXE28 8eQ

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CE7E7	DESIGN OF BRIDGE ENGINEERING	3	0	0	3

COURSE LEARNING OUTCOMES (COs)											
	After Successful completion of the course, the students should be able to										
CO1	Develop the for	K3	1								
CO2	Design short sp	K5	2								
CO3	Design long sp	an bridges.	K5	3							
CO4	Analysis and cl	heck the stability requirements of piers and abutments.	K4	4							
CO5	Understand the	K2	5								
PRE-	REQUISITE	STRUCTURAL DESIGN AND DRAWING									

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COa	Programme Learning Outcomes (POs)													PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3		3	3	2	2	3	3		3	2	3	
CO2	3	3	3		3	3	2	2	3	3		3	2	2	
CO3	3	3	3		3	3	3	3	3	3		3		3	
CO4	2	3			3		2	2	3	3		3	2	2	
CO5	2	3			3	3	2	2	3	3		3	2	3	

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Other Assessments (Assignment, Quiz etc.)
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

	COURSE CONTENT									
Topic - 1				GEN	NERAL IN	TRODUCTION	J			9
Types of bridges and IRC loading—I.R.C specifications for road bridges - Investigation and preliminary survers structural arrangement for various bridge deck - standard live loads, other forces acting on bridges - permissistress - scour depth- depth of foundation.							-			
Topic - 2 SHORT SPAN BRIDGES AND CULVERT								9		
Load distrib	Load distribution theory - General design principles for bridge deck and slab culverts - T beam and slab bridges.									
Topic - 3				I	LONG SPA	N BRIDGES				9
General desi Analysis of a		•	or deck slab, gi	rder,	wing wall, 1	return wall – De	tailing	of slab and	d girder bridge	es -
Topic - 4				I	BEARING .	AND PIERS				9
	Reaction at support - Types of bearings- Design procedure for pedestal and pier caps - Jacking effect on pier cap - Layout of bearings - Expansion joints - Detailing of curved bridges - Analysis of Piers.					oier cap -				
Topic - 5 BALANCED CANTILEVER BRIDGES						9				
Types of Superstructure –proportioning of members - Design procedure of rigid frame and balanced cantilever bridges: General-Method of analysis and design considerations –temperature effect- effect of shrinkage, wind and water current.										
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45

BO	OK REFERENCES
1	Krishna Raju N., —Design of Bridgesl, 4th Edition, Oxford and IBH Publishing Company, New Delhi, 2009.
2	Ponnuswamy S., —Bridge Engineering , 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., 2008.
3	Jagadeesh T.R., —Design of Bridge Structures I, 2nd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2009.
4	Alagia J.S., —Elements of Bridge Engineering, 5th Edition, Charotar Publishing House, Mumbai, 2004.

OT	THER REFERENCES						
1	https://www.digimat.in/nptel/courses/video/105105165/L01.html						
2	http://nptel.ac.in/courses/105105165/1 —Reinforced concrete road bridges , Prof.Nirjhar Dhang, IIT						
	Kharagpur.						
2	https://www.udemy.com/course/fundamentals-of-bridge-designyour-way-to-be-bridge-designer/						
3	—Fundamental of bridge design by Ayman Kandeel.						
4	https://www.onlinecivil.net/2015/01/design-of-highway-bridges.html —Design of highway Bridges by						
4	Richard M. Barker and Jay A. Puckett.						
5	http://www.digimat.in/nptel/courses/video/105105165/L19.html						

Semest	er Programme	Course Code	Course Name	L	Т	P	C
VII	B.E. CIVIL	20CE7E8	DESIGN OF TALL BUILDINGS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)							
	After Successful completion of the course, the students should be able to RBT T Level Co							
CO1	Understand the Selection of materials and criteria.	K2	1					
CO2	Apply the loading of tall structures.	К3	2					
CO3	Analysis of loading and various structural systems.	K4	3					
CO4	Analysis and design of tall buildings.	K4	4					
CO5	Design of various high rise buildings.	K5	5					

PRE-REQUISITE	NIL
PRE-REQUISITE	NIL

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)							PSOs						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		1	2		2	2	3	3		3	2	2
CO2	3	2		1	2		2	2	3	3		3	2	2
CO3	3	3	3	1			3	3	3	3		3	2	2
CO4	3	2		1	2		2	2	3	3		3	2	2
CO5	3	2		1	2		2	2	3	3		3	2	2

	COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests					
	2	Other Assessments (Assignment, Quiz etc.)					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT						
Topic - 1	DESIGN CRITERIA AND MATERIALS	9					
Development of High Rise Structures – General Planning Considerations – Design philosophies – Materials used for Construction – High Strength Concrete – High Performance Concrete – Self Compacting Concrete – Glass - High Strength Steel							
Topic - 2	LOADING	9					
	ding – Dead Load – Live Load – Live load reduction technique – Impact Load – Construction oading. Lateral Loading – Wind load – Earthquake Load. Combination of Loads.	ı Load –					
Topic - 3	3 BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS						
frames, brac	Factors affecting growth, Height and Structural form. High rise behaviour of Various structural systems – Rigid frames, braced frames, Infilled frames, shear walls, coupled shear walls, wallframes, tubular structures, cores, outrigger – braced and hybrid mega systems.						
Topic - 4	APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDINGS	9					
Frame Struc Approximate	e Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Structure - The Vierendeel Structure - The Hollow Tube Structure.	oading -					
Topic - 5	- 5 OTHER HIGH-RISE BUILDING STRUCTURE 9						
Deep - Bean	Systems -High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame	Applied					

BO	OK REFERENCES
1	Bryan Stafford Smith, Alex coull, "Tall Building Structures, Analysis and Design", John Wiley and Sons, Inc., 1991.
2	Taranath B.S., "Structural Analysis and Design of Tall Buildings", McGraw Hill, 2011.
3	Lin.T.Y, Stotes Burry.D, "Structural Concepts and systems for Architects and Engineers", John Wiley, 1988.
4	Lynn S.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 1986.
5	Wolfgang Schueller "High Rise Building Structures", John Wiley and Sons, New York 1977.

PRACTICAL

TO	OTHER REFERENCES					
1	1 https://nptel.ac.in/courses/105105162					
2	https://www.youtube.com/watch?v=XCun_ewg-I8					
3	https://www.youtube.com/watch?v=-syqppgcoVE					
4	https://www.youtube.com/watch?v=EIDXE28_8eQ					
5	https://www.digimat.in/nptel/courses/video/124105015/L39.html					

to High - Rise Buildings - Capsule Architecture.

45

TUTORIAL

THEORY

TOTAL

45

Semester	Programme	Course Code	Course Name	L	Т	P	C
VII	B.E. CIVIL	20CE7E9	PRESTRESSED CONCRETE STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)											
	RBT Level	Topics Covered										
CO1	Understand the Selection of various methods of prestressing	K2	1									
CO2	Apply the applicable industry design codes relevant to the design Prestressed concrete structures.	К3	2									
CO3	Analysis for deflection and crack control of prestressed concrete structures.	K4	3									
CO4	Analysis and design of composite beam construction	K4	4									
CO5	Design of various prestressed concrete members	K5	5									

PRE-REQUISITE	DESIGN OF REINFORCED CONCRETE ELEMENTS AND STRUCTURES

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
GO	Programme Learning Outcomes (POs)											PSOs		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			1			2	2	3	3		3	2	2
CO2	3			1			2	2	3	3		3	2	2
CO3	3	3	3	1			3	3	3	3		3	2	2
CO4	3			1			2	2	3	3		3	2	2
CO5	3			1			2	2	3	3		3	2	2

	COURSE ASSESSMENT METHODS											
DIRECT	1	Continuous Assessment Tests										
	2 Other Assessments (Assignment, Quiz etc.)											
	3	End Semester Examinations										
INDIRECT	1	Course Exit Survey										

COURSE CONTENT												
Topic - 1				THE	EORY AN	D BEHAVIOUR				9		
Basic Principles of prestressing – Classification and types – Advantages over ordinary reinforced concre Materials – High strength concrete and high tensile steel – Methods of prestressing – Freyssinet, Magnel Bla Lee Mac Call anchorage systems- Analysis of sections for stresses by stress concept, Loss of Prestress.												
Topic - 2			DES	IGN	FOR FLE	XURE AND SH	EAR			9		
Basic assumptions for calculating flexural stresses – Permissible stresses in steel and concrete as per IS1343 – Design of sections of Type I post-tensioned and pre-tensioned beams – Check for strength limit based 1343 Code – Layout of cables in post-tensioned beams – Location of wires in pre-tensioned beams –Design based on IS 1343 Code, Layout of Cables.										ed on IS		
Topic - 3			DEFLECTION	ON A	ND DESIG	GN OF ANCHOL	RAGE	ZONE		9		
state of def	lection.	Deter	mination of and	chora	ge zone st	of uncracked men resses in post-ten one reinforcemen	nsione					
Topic - 4			COMPOSI	TE E	BEAMS AN	ND CONTINUO	US BE	EAMS		9		
						chieving continuit rmation – Calcula						
Topic - 5 THEORY OF MISCELLANEOUS STRUCTURES										9		
Pipes- Partial prestressing – Definition, methods of achieving partial prestressing, Merits and demerits of p prestressing.												
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45		

BO	OK REFERENCES
1	Krishna Raju N., "Prestressed Concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012
2	Pandit G.S. and Gupta S.P. "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, New Delhi, 2012.
3	Dayaratnam.P., "Prestressed Concrete Structures", Oxford and IBH, Bangalore, 2013.
4	Lin T.Y. and Ned.H.Burns, "Design of Prestressed Concrete Structures", Third Edition, Wiley India Pvt.Ltd. New Delhi, 2013.
5	IS 1343:2012, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi.

OT	OTHER REFERENCES									
1	https://www.designinpresressed concrete.co.uk									
2	https://www.psc.org									
3	https://www.digimat.in/nptel/courses/video/105106118/L05.html									
4	https://www.digimat.in/nptel/courses/video/105106118/L12.html									
5	https://www.digimat.in/nptel/courses/video/105106118/L11.html									

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CE7E10	MAINTENANCE AND REHABILITATION OF STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Understanding the importance of maintenance and assessment method of distressed structures.	K2	1								
CO2	Apply the strength and durability properties, their effects due to climate and temperature	K2	2								
CO3	Apply the Recent development in concrete	K4	3								
CO4	Apply the techniques for repair rand protection methods	K2	4								
CO5	Analyse the Repair, rehabilitation and retrofitting of structures and demolition methods.	K4	5								

PRE-REQUISITE	CONCRETE TECHNOLOGY
---------------	---------------------

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)												PSOs		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	1	3	1	2	2	2	3	3		3	1	3	
CO2	2	3	2	3	2		2	2	3	3		3	1	3	
CO3	2	2	2	3	2		3	3	3	3		3	1	3	
CO4	3	3	1	3	2	2	2	2	3	3		3	1	3	
CO5	3	1	3	3	2		2	2	3	3		3	1	3	

	COURSE ASSESSMENT METHODS								
DIRECT	1	Continuous Assessment Tests							
	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course Exit Survey							

	COURSE CONTENT										
Topic - 1	IMAINTENANCE AND REPAIR STRATEGIES	9									
	Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects o Inspection, Assessment procedure for evaluating damaged structure, causes of deterioration.										
Topic - 2	STRENGTH AND DURABILITY OF CONCRETE	9									
	Quality assurance for concrete-Strength, Durability- Cracks, different types, causes-Effects due to climate, temperature, Sustained elevated temperature, Corrosion										
Topic - 3	Topic - 3 SPECIAL CONCRETES										
Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength concrete, High performance concrete, Vacuum concrete, Self compacting concrete, Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes.											
Topic - 4	Topic - 4 TECHNIQUES FOR REPAIR AND PROTECTION METHODS 9										

Topic - 5 REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES 9

Non-destructive Testing Techniques, Load Test for Stability-Epoxy injection, Shoring, Underpinning, Corrosion protection techniques-Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic

Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, leakage, earthquake-Transportation of Structures from one place to other –Structural Health Monitoring- demolition techniques-Engineered demolition methods-Case studies

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
THEORI	73	TOTOMINE	U	IMACITOIL	U	IOIME	73

ВО	OOK REFERENCES				
1 Shetty.M.S.ConcreteTechnology-Theory and Practice,S.Chandand Company, 2008.					
2	Vidivelli.B Rehabilitation of Concrete Structures Standard Publishes Distribution.1st edition 2009.				

ОТ	OTHER REFERENCES						
1	https://www.designingbuildings.co.uk						
2	https://www.modular.org						
3	https://www.digimat.in/nptel/courses/video/105106202/L01.html						
4	https://www.youtube.com/watch?v=q7sQd7NQ03s						
5	https://www.youtube.com/watch?v=cIp0b13mD_g						

protection.

Semester	Programme	Course Code	Course Name	L	T	P	С
VII	B.E. CIVIL	20CE7E11	CONSTRUCTION SAFETY PRACTICES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)									
	After Successful completion of the course, the students should be able to RBT To Cov									
CO1	Identify legal obligations in workplace health & safety, K2									
CO2	Understand the Permit-to-Work system	K4	2							
CO3	Practice safety precautions when working with different hazards,	К3	3							
CO4	Competent in wearing Personal Protective equipment	К3	4							
CO5	Knowing the rights and responsibilities of workers.	K4	5							

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
CO		Programme Learning Outcomes (POs)											PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			1			2	2	3	3		3	2	2
CO2	3			1			2	2	3	3		3	2	2
CO3	3	3	3	1			3	3	3	3		3	2	2
CO4	3			1			2	2	3	3		3	2	2
CO5	3			1			2	2	3	3		3	2	2

	COURSE ASSESSMENT METHODS						
DIRECT	1	Continuous Assessment Tests					
	2	Other Assessments (Assignment, Quiz etc.)					
	3	End Semester Examinations					
INDIRECT	1	Course Exit Survey					

	COURSE CONTENT					
Topic - 1	SAFETY, HEALTH AND ENVIRONMENT IN CONSTRUCTION	9				
Interduction and stores in construction at the of majort construction. Coffee during majoring unleading						

Introduction and stages in construction – stages of project construction – Safety during receiving, unloading, shifting and storage – guidelines for storage – General safety facilities in construction sites – Interface between civil & erection works - Construction Safety - Contractors Safety

Topic - 2 CONSTRUCTION HAZARDS & SAFETY MEASURES - 1 9

Asbestos - Cement Manufacture - Confined Spaces - Demolition and Explosives - Electrical Safety - Excavation Safety - Eye Safety - Falls - Fall Protection - Head Protection - Hearing Conservation - Heat Stress - Heavy Equipment Safety

Topic - 3 CONSTRUCTION HAZARDS & SAFETY MEASURES - 2 9

Ladder Safety - Lockout/Tag out - Outdoor Safety - Painting Safety - Personal Protective Equipment Personnel Lift Safety - Respiratory Protection - Road Construction Safety - Scaffolding Safety - Subcontractor-Safety - Tools - Safety - Trenching and Shoring - Welding Safety

Topic - 4 MECHANICAL HANDLING OF MATERIAL & EQUIPMENT 9

Hoisting equipment – tools & tackles – crabs & winches – conveyors – ropes – chains – sheaves – hooks – safe rigging methods – banks man – lifting plan – guidelines for safe lifting

Topic - 5 STORAGE AND HANDLING	OF HAZARDOUS MATERIALS 9
--------------------------------	--------------------------

Storage & handling of compressed gases - Acetylene - Oxygen - LPG - Hydrogen - COSHH

THEORY	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

BO	OK REFERENCES
1	Bruggeling A.S. G and Huyghe G.F. "Prefabrication with Concrete", A.A. Balkema Publishers, USA, 1991
2	Lewitt, M. " Precast Concrete- Materials, Manufacture, Properties And Usage", Applied Science Publishers,
	London And New Jersey, 1982.
3	Koncz T., —Manual of precast concrete construction, Vol. I, II and III, Bauverlag, GMBH, 1976.
4	Structural design manual, Precast concrete connection details, Society for the studies in the use of precast
4	concrete, Netherland Betor Verlag, 2009
5	Handbook on Precast Concrete Buildings, Indian Concrete Institute, 2016.

OT	THER REFERENCES							
1	https://www.designingbuildings.co.uk							
2	https://www.modular.org							
3	https://www.digimat.in/nptel/courses/video/105102206/L01.html							
4	https://www.youtube.com/watch?v=dj5W6yL3NG8							
5	https://www.youtube.com/watch?v=ZzBkLIJWBEk							

Semester	Programme	Course Code	Course Name	L	Т	P	C
VII	B.E. CIVIL	20CE7E12	SMART MATERIALS AND SMART STRUCTURES	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Summarize the basics of vibrations formulation.	K2	1						
CO2	Understand multi degree of freedom system Problems.	K2	2						
CO3	Apply response of structures to earthquake Problems.	К3	3						
CO4	Analyze elements of seismology problems.	K4	4						
CO5	Apply design methodology and Problems.	К3	5						

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
	Programme Learning Outcomes (POs)												PSOs	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2			2	2	3	3		3		1
CO2	3	3		2			2	2	3	3		3	2	1
CO3	3	3	1	2	2		3	3	3	3		3		1
CO4	3	3		2			2	2	3	3		3		1
CO5	3	3		2			2	2	3	3		3		1

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Other Assessments (Assignment, Quiz etc.)
	3	End Semester Examinations
INDIRECT	1	Course Exit Survey

					C	OURSE C	ONTENT					
Topic - 1	Topic - 1 INTRODUCTION								9			
Introduction to Smart Materials and Structures – Instrumented structures functions and response Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.								ponse –				
Topic - 2					ME	ASURING	TECHNIQ	QUES				9
	Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.											
Topic - 3						SEN	SORS					9
Inductively	Rea d Bio-0	ad Chemic	Transo al sens	lucers ing in s	– structu	The ral Assessr	LVOT nent – Abso	_	F	iber	Strain measu optic Te ors – Spectro	chniques.
Topic - 4						ACTU	ATORS					9
	cture M	I aterial	- Shaj	e Men							ostrictive M o magnetic ac	
Topic - 5	Topic - 5 SIGNAL PROCESSING AND CONTROL SYSTEMS 9											
	Pata Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical rocessors – Signal Processing – Control System – Linear and Non-Linear.											
THEORY	45		THT)RIAL	0		PRACTIC	AI.	0		TOTAL	45

ВО	OK REFERENCES					
1	Brian Culshaw, Smart Structures and Materials, Artech House, 2000					
2	Gauenzi, P., Smart Structures, Wiley, 2009					
3	Cady, W. G., Piezoelectricity, Dover Publication					
4	J. W. Dally & W. F. Riley – Experimental Stress Analysis – Tata McGraw-Hill, 1998.					
5	L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998.					

Semester	Programme	Course Code	Course Name	L	Т	P	C
VII - B.E.	CIVIL, EEE	20HSCT2	PROFESSIONAL ETHICS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
	After Successful completion of the course, the students should be able to								
CO1	Discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.	K2	1						
CO2	The student should be able to apply ethics in society.	К3	2						
CO3	Discuss the ethical issues related to Engineering.	К3	3						
CO4	Discuss the ethical issues related to Safety.	K2	4						
CO5	Analyze the human safety, responsibility and rights in hazardous environments and explain about ethics in the global context.	К3	5						

PRE-REQUISITE	NIL
---------------	-----

				CO	/ PO M	IAPPIN	NG (1 - V	Weak, 2 –	Medium,	3 – Strong)			
CO	Programme Learning Outcomes (POs)										PSOs			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			2			1	3	3		3		
CO2	3		2	2	2			1	3	3		3		
CO3	3	2	2					1	3	3		3		
CO4	3							1	3	3		3		
CO5	3	2						1	3	3		3		

	COURSE ASSESSMENT METHODS										
DIRECT	1	Continuous Assessment Tests									
	2	Other Assessments (Assignment, Quiz etc.)									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

	COURSE CONTENT	
Topic - 1	HUMAN VALUES	9
Morals, value	es and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for	others –

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self-confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

Topic - 2 ENGINEERING ETHICS 9

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

Topic - 3 ENGINEERING AS SOCIAL EXPERIMENTATION 9

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

Topic - 4 SAFETY, RESPONSIBILITIES AND RIGHTS 9

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

Topic - 5 GLOBAL ISSUES 9

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility.

	THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
--	--------	----	--	----------	---	--	-----------	---	--	-------	----

BOOK REFERENCES

- 1 Mike W. Martin and Roland Schinzinger, —Ethics in Engineeringl, McGraw Hill Education, New Delhi, 2016.
- Govindarajan M, Natarajan S and Senthil Kumar V. S, —Engineering Ethicsl, PHI Learning Pvt. Ltd, New Delhi, 2017.
- Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, —Engineering Ethics Concepts and Casesl, Cengage Learning, 2017.

OTHER REFERENCES

- 1 https://nptel.ac.in/courses/109/106/109106117/
- 2 https://nptel.ac.in/courses/110/105/110105097/
- 3 https://www.digimat.in/nptel/courses/video/110105097/L33.html
- 4 https://www.youtube.com/watch?v=ag1fHF7aL0A
- 5 https://nptel.ac.in/courses/110105079

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CE7L1	COMPUTER ANALYSIS AND DESIGN LABORATORY	0	0	4	2

	COURSE LEARNING OUTCOMES (COs)									
After Successful completion of the course, the students should be able to										
CO1	State the aim and develop the procedure to conduct the experiment / exercise in the Computer Analysis and Design Laboratory.	K1								
CO2	Demonstrate skills at the level of precision (reliably, quickly, smoothly, and accurately with negligible guidance) in performing the experiment / exercise	К3								
CO3	Draw inferences from the experiment / exercise conducted and present it professionally	К3								
CO4	Demonstrate professionally the results obtained through the experiment / exercise and present conclusions	К3								
CO5	Demonstrate an understanding of the concepts, procedures, and applications through verbal and written communication	К3								
CO6	Demonstrating an attitude at the level of valuing (attaching values and expressing personal opinions by showing some definite involvement and commitment)	К3								

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)										PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								3	3			1	3
CO2	3				3			2	3		1		2	3
CO3	3	2		2		1				3			2	3
CO4	3									3			1	3
CO5	3									3		1	1	3
C06	3									2		1	1	3

	COURSE ASSESSMENT METHODS									
DIRECT	1	Model Practical Examination								
	2	Record								
	3	End Semester Examinations								
INDIRECT	1	Course Exit Survey								

	COURSE CONTENT									
Experiment - 1	Г	esign	esign and analysis of multi-storey framed structure (Beam, Column and Slab)							
Experiment - 2	Г	esign	and drawing of Ro	CC ca	antilever	type retaining walls	s with	reinford	cement details	
Experiment - 3	Γ	esign	and drawing of R	CC co	ounterfor	t type retaining wal	lls wit	h reinfo	rcement details	S
Experiment - 4	Г	esign	of solid slab bridg	es fo	r IRC loa	ding and reinforce	ment o	letails		
Experiment - 5	Γ	esign	and drafting of cir	cular	RCC wa	nter tanks				
Experiment - 6	Г	esign	and drafting of re	ctang	ular RCC	water tanks				
Experiment - 7	Γ	esign	and drafting of El	evate	d Water	Tank				
Experiment - 8	Γ	esign	of T-beam bridge	s for l	IRC load	ing and reinforceme	ent de	tails		
Experiment - 9	Г	esign	and drafting of fla	ıt slat	with dro	op				
Experiment - 10	Experiment - 10 Design and drafting of flat slab without drop									
THEORY	0	0 TUTORIAL 0 PRACTICAL 30 TOTAL 30								

BO	BOOK REFERENCES								
1	Computer Analysis and Design Laboratory:- Al-Ameen Publication								
2	Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, —Comprehensive Design of Steel Structures, Laxmi Publications Pvt. Ltd., 2015.								
3	Krishnamurthy, D., —Structural Design & Drawing – Vol. II and III, CBS Publishers, 2010.								

ОТ	OTHER REFERENCES								
1	https://nptel.ac.in/courses/105105105								
2	https://www.youtube.com/watch?v=6LZiPNApaB8								
3	https://www.youtube.com/watch?v=mUWCnANvJdE								
4	https://www.youtube.com/watch?v=4_UJ1PrbvTw								
5	https://www.youtube.com/watch?v=mk71HTMBVhk								

ОТ	OTHER REFERENCES								
1	https://youtu.be/7wMu6Yl4lgM								
2	https://youtu.be/HC06-Zf0JpU								
3	https://www.youtube.com/watch?v=b5IPJeCDEPw								
4	https://www.youtube.com/watch?v=OfYdDEwe_mw								
5	https://www.digimat.in/nptel/courses/video/112104251/L01.html								

SEMESTER VIII

Sl. No.	Course Code	Course Title	Categ ory	CIA	ESE	L	Т	P	C
LABORATORY COURSES									
1	20CE8L1	Project Work-Phase II	EEC	60	40	0	0	16	8
2	20CE8L2	Industrial Training	EEC	100	0	0	0	4	2
		0	0	20	10				

Semester	Programme	Course Code	Course Name	L	T	P	C
VIII	B.E. CIVIL	20CE8L2	INDUSTRIAL TRAINING	0	0	4	2

	COURSE LEARNING OUTCOMES (COs)										
	After Successful completion of the course, the students should be able to										
CO1	Identify the real world civil Engineering related problems.	K2	1								
CO2	Apply the theoretical concepts studied in the class rooms practically.	К3	1								
CO3	The intricacies of implementation textbook knowledge into practice	K2	1								
CO4	The concepts of developments and implementation of new techniques	K2	1								
CO5	Identify the real world civil Engineering new ideas.	K2	1								

PRE-REQUISITE	NIL
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)								PSOs					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2			2					3	2		2	3	
CO2	2			2					3	2		2	3	
CO3	2			2					3	2		2	3	
CO4	2			2					3	2		2	3	
CO5	2			2					3	2		2	3	

	COURSE ASSESSMENT METHODS										
DIRECT 1 Model Practical Examination											
	2	Record									
	3	End Semester Examinations									
INDIRECT	1	Course Exit Survey									

STR	AT]	EGY

1

Students have to undergo two-week practical training before the commencement of Eighth semester in Civil Engineering related organisations of their choice but with the approval of the department for the entire course. At the end of the training student will submit a report as per the prescribed format to the department. The student shall make a power point presentation before a committee constituted by the department which will assess the student based on the report submitted and the presentation made.

THEORY	0		TUTORIAL	0		PRACTICAL	45		TOTAL	45
--------	---	--	----------	---	--	-----------	----	--	-------	----

Semester	Programme	Course Code	Course Name	L	Т	Р	С
	B.E. CIVIL	20CEO01	DISASTER MANAGEMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	RBT Level	Topics Covered									
CO1	To understand the basic conceptual of disasters and its relationship with development.	K2	1								
CO2	To understand the approaches of disaster risk reduction.	K2	2								
CO3	Assess disaster vulnerability of a location.	K4	3								
CO4	Apply the remote sensing and GIS techniques for predicting the natural disasters.	К3	4								
CO5	To understand recovery and rehabilitation due to disasters.	K2	5								

PRE-REQUISITE	Nil
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
CO			PS	PSOs											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1			3			3	2	2	3	3		3		2	
CO2			3			3	2	2	3	3		3		2	
СОЗ			3			2	2	2	3	3		3		2	
CO4			3	2	3	2	2	2	3	3		3		2	
CO5			3			3	2	2	3	3		3		2	

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
,	2 Other Assessments (Assignment, Quiz etc.)									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

COURSE CONTENT

Topic - 1 INTRODUCTION TO DISASTERS

9

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc – Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability – Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change-Dos and Don'ts during various types of Disasters.

Topic - 2 APPROACHES TO DISASTER RISK REDUCTION (DRR)

9

Disaster cycle – Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

Topic - 3 INTER RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

9

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India – Relevance of indigenous knowledge, appropriate technology and local resources.

Topic - 4 DISASTER RISK MANAGEMENT IN INDIA 9

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, and Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy – Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment

Topic - 5 DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES

9

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

THE	ORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45
-----	-----	----	--	----------	---	--	-----------	---	--	-------	----

]	BOOK REFERENCES						
	1	Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005					
	2	Government of India, National Disaster Management Policy,2009.					

ОТ	THER REFERENCES
1	https://www.youtube.com/watch?v=TB97oX7ANGo
2	https://www.youtube.com/watch?v=Eh8dAmiJ-fo
3	https://www.digimat.in/nptel/courses/video/124107010/L01.html
4	https://www.tcyonline.com/video-tutorials-disaster-management/94374/course
5	https://www.digimat.in/nptel/courses/video/124107007/L35.html

Semester	Programme	Course Code	Course Name	L	T	P	C
	B.E. CIVIL	20CEO02	ENVIROMENTAL AND AGRICULTURE ENGINEERING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)										
A	After Successful completion of the course, the students should be able to										
CO1	Students will appreciate the role of environment in the current practice of agriculture and concerns of sustainability, especially in the context of climate change and emerging global issues.	K1	1								
CO2	Ecological context of agriculture and its concerns will be understood	K4	2								
CO3	Students must be able to identify climate changes.	K4	3								
CO4	Students must be able to identify ecological diversity.	K4	4								
CO5	Students must be able to identify emerging issues	K4	5								

PRE-REQUISITE	Nil
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs			PS	Os											
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1					2	2	3	3		3	2		
CO2	3	2					2	2	3	3		3	2		
СОЗ	3	2					2	2	3	3		3	2		
CO4	2	1	3				2	2	3	3		3	2		
CO5	3	2	2				2	2	3	3		3	1		

	COURSE ASSESSMENT METHODS									
DIRECT	DIRECT 1 Continuous Assessment Tests									
	2 Other Assessments (Assignment, Quiz etc.)									
	3	End Semester Examinations								
INDIRECT	1	Course End Survey								

COURSE CONTENT											
Topic - 1	ENVIRONMENTAL CONCERNS	9									
Environmental basis for agriculture and food – Land use and landscape changes – Water quality issue Changing social structure and economic focus – Globalization and its impacts – Agro ecosystems.											
Topic - 2	opic - 2 ENVIRONMENTAL IMPACTS										
Irrigation development and watersheds – mechanized agriculture and soil cover impacts – Erosion and problems of deposition in irrigation systems – Agricultural drainage and downstream impacts – Agriculture versus urban impacts.											
Topic - 3	CLIMATE CHANGE	9									
	conment – Ecosystem changes – Changing blue-green-grey water cycles – Water scarcity ar Desertification. warming and changing	nd water									
Topic - 4	ECOLOGICAL DIVERSITY AND AGRICULTURE	9									
agriculture	liversity, wild life and agriculture – GM crops and their impacts on the environment– In – Pollination crisis – Ecological farming principles – Forest fragmentation and agriculture biotechnology concerns.										
Topic - 5	EMERGING ISSUES	9									
	ronmental governance – alternate culture systems – Mega farms and vertical farms –Virtus impacts on local environment – Agricultural environment policies and its impacts – Sus										
THEORY	45 TUTORIAL 0 PRACTICAL 0 TOTAL	45									

BC	OOK REFERENCES
1	M.Lakshmi Narasaiah, Environment and Agriculture, Discovery Pub. House, 2006.
2	Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005.

Semester	Programme	Course Code	Course Name	L	T	P	C
	B.E. CIVIL	20CEO03	CORROSION FOR CIVIL ENGINEERING	3	0	0	3

COURSE LEARNING OUTCOMES (COs)								
After Successful completion of the course, the students should be able to RBT Topic Cover								
CO1	Understand the basics of corrosion in civil engineering.	K2	1					
CO2	Understand the concepts of corrosion control.	K2	2					
CO3	Understand the different types of coatings.	K2	3					
CO4	Understand the concepts of corrosion effects.	K2	4					
CO5	Understand the concepts of prevention in corrosion.	K2	5					

PRE-REQUISITE	Nil
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)															
COs				Prog	ramm	e Lear	ning O	utcom	es (PO	s)			PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	1					2	2	3	3		3	2			
CO2	3	2					2	2	3	3		3	2			
СОЗ	3	2					2	2	3	3		3	2			
CO4	2	1	3				2	2	3	3		3	2			
CO5	3	2	2				2	2	3	3		3	1			

	COURSE ASSESSMENT METHODS							
DIRECT 1 Continuous Assessment Tests								
	2	Other Assessments (Assignment, Quiz etc.)						
	3	End Semester Examinations						
INDIRECT	1	Course End Survey						

	COURSE CONTENT									
Topic - 1					INTROD	OUCTION				9
Introduction	- chemi	cal and	l electrochemica	al cor	rosions- me	chanism of electr	ochen	nical and g	galvanic corro	sions
Topic - 2			C	ORR	OSION AN	ND ITS CONTRO	OL			9
	galvanic series- factors influencing corrosion -measurement of corrosion rate. Corrosion control – material selection and design – electrochemical protection – sacrificial anodic protection and impressed current cathodic protection.									
Topic - 3				N	IETALLIC	COATINGS				9
electroless p	lating.	Variou		coat	ings – disp	 galvanizing, tir lacement plating- 				
Topic - 4				RE	ACTION A	AND EFFECTS				9
Copper Corn	osion-	Silver [Гarnishing- Cor	rosio	n of Iron (R	usting)- Effects				
Topic - 5	opic - 5 PREVENTION OF CORROSION 9						9			
Electroplatin	Electroplating- Galvanization- Anodization- Passivation- Biofilm Coating- Anti-Corrosion Protective Coatings							itings		
THEORY	45		TUTORIAL	0		PRACTICAL	0		TOTAL	45

BC	OOK REFERENCES
1	Balasubramaniam. R, "Environmental Degradation of Materials", Cengage International, 2010.
2	Denny A. Jones," Principles and Prevention of Corrosion", 2nd Edition, Prentice Hall, 1995.

ОТ	OTHER REFERENCES						
1	1 https://www.digimat.in/nptel/courses/video/113104082/L01.html						
2	erna.digimat.in/nptel/courses/video/105104030/L26.html						
3	https://www.digimat.in/nptel/courses/video/113105086/L01.html						
4	https://www.youtube.com/watch?v=0XIGC5WwW-4						
5	http://www.digimat.in/nptel/courses/video/113101098/L01.html						

Semester	Programme	Course Code	Course Name	L	T	P	C
	B.E. CIVIL	20CEO04	GLOBAL WARMING AND CLIMATE CHANGES	3	0	0	3

COURSE LEARNING OUTCOMES (COs)									
After Successful completion of the course, the students should be able to RBT Topics Covered									
CO1	Understand the basics, importance of global warming	K2	1						
CO2	Understand the components of Atmosphere	K2	2						
CO3	Understand the impact of Climate Change	K2	3						
CO4	Understand the causes of Climate Change	K2	4						
CO5	Understand the concept of mitigation measures against global warming	K2	5						

PRE-REQUISITE Nil

CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)										PSOs			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3					2	2	3	3		3	3	3
CO2	3	3					2	2	3	3		3	3	3
CO3	3	3					2	2	3	3		3	3	3
CO4	3	3					2	2	3	3		3	3	3
CO5	3	3					2	2	3	3		3	3	3

		COURSE ASSESSMENT METHODS
DIRECT	1	Continuous Assessment Tests
	2	Other Assessments (Assignment, Quiz etc.)
	3	End Semester Examinations
INDIRECT	1	Course End Survey

COURSE CONTENT								
Topic - 1	EARTH'S CLIMATE SYSTEM	9						
Introduction to environment-Ozone, ozone layer and its functions-Ozone depletion and ozone hole Global warming and its impacts-Green house gases and green house effect								
Topic - 2 ATMOSPHERE & ITS COMPONENTS								
Atmosphere and its layers-Characteristics of Atmosphere-Structure of Atmosphere-Composition of Atmosphere-Temperature profile of the atmosphere								
Topic - 3	IMPACTS OF CLIMATE CHANGE	9						
Causes of C	IMPACTS OF CLIMATE CHANGE limate change-Change of Temperature in the environment-Melting of ice and set of Climate Change on various sectors							
Causes of C	limate change-Change of Temperature in the environment-Melting of ice and sea							
Causes of Crise-Impacts Topic - 4 Climate cha	limate change-Change of Temperature in the environment-Melting of ice and see of Climate Change on various sectors	a level						
Causes of Crise-Impacts Topic - 4 Climate cha	limate change-Change of Temperature in the environment-Melting of ice and set of Climate Change on various sectors OBSERVED CHANGES AND ITS CAUSES ange and Carbon credits-Climate Sensitivity-Montreal Protocol-Global char	a level						

CDM and Carbon Trading-Clean Technology, biodiesel, compost, biodegradable plastics-Renewable energy usage as an alternative-Mitigation Technologies and Practices within India and around the world

EORY 45 TUTORIAL 0 PRACTICAL 0 TOT	L 45
--	------

BC	BOOK REFERENCES							
1	Dash Sushil Kumar, "Climate Change – An Indian Perspective", Cambridge University Press India Private limited 2007							
2	Adaptation and mitigation of climate change-Scientific Technical Analysis. Cambridge University Press ,Cambridge,2006							
3	Atmospheric Science, J.M. Wallace and P.V. Hobbs, Elsevier / Academic Press 2006.							
4	Jan C. van Dam, Impacts of "Climate Change and Climate Variability on Hydrological Regimes", Cambridge university press ,2003.							

ГО	OTHER REFERENCES					
1	https://onlinecourses.swayam2.ac.in/nou21_ge37/preview					
2	https://www.youtube.com/watch?v=zQi3C_eZkLs					
3	https://www.youtube.com/watch?v=8ZtA9TbZT5U					
4	https://www.youtube.com/watch?v=VYAUiA5xogg					
5	https://nptel.ac.in/courses/119106008					

Semeste	er Programme	Course Code	Course Name	L	T	P	C
	B.E. CIVIL	20CEO05	WATER POLLUTION AND ITS MANAGEMENT	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
Ai	RBT Level	Topics Covered							
CO1	Identify the chemical compositions of natural waters,	K2	1						
CO2	Identify the main sources of water pollution, the main types of pollutant and how each type may be controlled.	K2	2						
CO3	Outline the extent of water pollution in the selected global location.	K2	3						
CO4	Identify the criteria for drinking water acceptability in the EU, and outline the processes used to treat water for a public water supply	К3	4						
CO5	Outline how sewage may be treated before discharge to the environment	K2	5						

	PRE-REQUISITE	Nil
--	---------------	-----

CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)														
COs	Programme Learning Outcomes (POs)									PS	Os			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3					2	2	3	3	2	3	1	
CO2	2	3		2			2	2	3	3	3	3	1	2
CO3	1	1					2	2	3	3	2	3	1	
CO4	3	3	1		3		2	2	3	3	2	3	1	
CO5	1	1					2	2	3	3	3	3	1	

	COURSE ASSESSMENT METHODS								
DIRECT	1	1 Continuous Assessment Tests							
	2	Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations							
INDIRECT	1	Course End Survey							

	COURSE CONTENT							
Topic - 1	FUNDAMENTALS OF ENVIRONMENTAL SCIENCES-I	9						
of ecosyste	Concept of Ecosystem, Structure of ecosystem, development and evaluation of ecosystem components of ecosystem, Processes within the ecosystem, standing state of biotic components. Ecosystem functions, energy exchange between plant communities and their environment, tropic levels and energy flow.							
Topic - 2	FUNDAMENTALS OF ENVIRONMENTAL SCIENCES-II	9						
momentum-	Fluid, velocity, acceleration, streamlines, One dimensional flow of fluids. Conservation of menergy equation Laminar and turbulent flow Resistance to flow in one dimensional systems, I fanning and Hazen-William equations							
Topic - 3	ENVIRONMENT AND ITS POLLUTIONS-I	9						
Causes of e	Components-Atmosphere, hydrosphere, lithosphere, their compositions and interenvironmental pollution, population, resource consumption, deforestation, industrial urbanization and transport.							

Topic - 4 ENVIRONMENT AND ITS POLLUTIONS-II

Definition:- Air Quality standards, emission standard, sources and classification of air pollutants. Cliteria Pollutants: Carbon monoxide, Oxides of nitrogen and sulphur, particulate matter, hydrocarbons, photochemical smog and ozone. Effects of air pollution on human health, plants, materials, visibility and Climatic changes including global warming, green house effect

Topic - 5 WATER RESOURCE MANAGEMENT 9

Drinking Water, water used as raw material, cooling water, irrigation water, fishing water, industrial water, recreation water, cultural water

THEORY 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

BOOK REFERENCES 1 Water quality facts and statistics. By UNEP, UNWATER AND UNHANITAT. Iinformation obtained on May 16, 2012

2 Vié, J.-C., Hilton-Taylor, C. and Stuart, S.N. (eds.) (2009)

ОТ	OTHER REFERENCES					
1	https://www.youtube.com/watch?v=71IBbTyn4					
2	https://www.youtube.com/watch?v=MEb7nnMLcaA					
3	https://www.epa.gov/nutrientpollution/sources-and-solutions-wastewater					
4	https://www.epa.gov/nutrientpollution/sources-and-solutions-agriculture					
5	https://www.unep.org/news-and-stories/story/how-sierra-leone-taking-water-pollution					

9

Semester	Programme	Course Code	Course Name	L	T	P	C
	B.E. CIVIL	20CEO06	BASIC OF CIVIL ENGINEERING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)		
Ai	ter Successful completion of the course, the students should be able to	RBT Level	Topics Covered
CO1	Extend the knowledge about the characteristics, sources and defects in various materials.	K2	1
CO2	Test the materials either in the laboratory or in the field before their actual use at the site.	K2	2
CO3	Attain the knowledge of different components of building, their classification, materials and methods of construction and causes of their failures	K2	3
CO4	Know the various services to be provided and the defects in the buildings along with the remedial measures for proper maintenance of the buildings.	К3	4
CO5	Understand the properties and role of various constituent materials used in concrete making.	K2	5

PRE-REQUISITE

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs				Prog	ramm	e Lear	ning O	utcom	es (PO	s)			PS	Os
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3					2	2	3	3	2	3	1	
CO2	2	3		2			2	2	3	3	3	3	1	
CO3		2					2	2	3	3		3	1	
CO4	3	3	1		2		2	2	3	3		3		
CO5	1	2					2	2	3	3	3	3	1	

	COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2 Other Assessments (Assignment, Quiz etc.)							
	3	End Semester Examinations						
INDIRECT	1	Course End Survey						

			C	OURSE CO	ONTENT				
Topic - 1			SC	OPE OF	CIVIL ENGIN	EERI	NG		9
disciplines i	Overview of Civil Engineering - Civil Engineering contributions to the welfare of Society - Specialized sub- lisciplines in Civil Engineering - Structural, Construction, Geotechnical, Environmental, Transportation and Vater Resources Engineering								
Topic - 2	Topic - 2 SURVEYING					9			
Surveying: (areas— conto		sification- princip	oles -	measureme	ents of distances-	angle	s — leveli	ing - determir	nation of
Topic - 3		CIVI	LE	NGINEEF	RING MATER	IALS			9
Civil Engine	ering Materi	als: Bricks- stone	s - sa	ınd –cement	t concrete - stee	l –timl	oer- modei	rn materials	
Topic - 4			BU	ILDING C	OMPONENTS				9
	• •	oundations - Bear lity of water - Rai	_			•	_		swater
Topic - 5	Topic - 5 STRUCTURES 9								
	Eivil Engineering Structures: Brick masonry -stonemasonry - beams - columns -lintels - roofing - flooring-lastering - floor area, carpet area and floor space index -Types of Bridges and Dams								
THEORY	45	TUTORIAL	0		PRACTICAL	0		TOTAL	45

BOC	BOOK REFERENCES					
1	1 "Basics of Civil Engineering" by S S Bhavikatti					
2 Basic Civil Engineering" by B C Punmia and Ashok Kumar Jain						

OTH	OTHER REFERENCES				
1	https://thecivilengineerings.com/practical-and-basic-knowledge-of-civil-engineering-civil-engineering-basics/				
2	https://www.youtube.com/watch?v=vcXQc0E_6TQ				
3	https://www.youtube.com/c/CIVILENGINEERINGBASICS				
4	https://www.youtube.com/watch?v=HId6ABURydI				
5	https://thecivilengineerings.com/basic-civil-engineering-knowledge-for-freshers-101-civil-engg-tips/				

Semester	Programme	Course Code	Course Name	L	T	P	C
VII	B.E. CIVIL	20CEO07	CIVIL ENGINEERING MATERIALS	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Understand the physical and mechanical properties of various construction materials	K2	1						
CO2	Understand the properties of various miscellaneous materials	K2	2						
CO3	Understand the construction technique to be followed in brick masonry	K2	3						
CO4	Understand the construction technique to be followed in stone masonry	K2	4						
CO5	Understand the various types of foundations.	K2	5						

PRE-REQUISITE	Nil
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs Programme Learning Outcomes (POs)						PS	Os							
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3					2	2	3	3		3	3	3
CO2	3	3					2	2	3	3		3	3	3
CO3	3	3					2	2	3	3		3	3	3
CO4	3	3					2	2	3	3		3	3	3
CO5	3	3					2	2	3	3		3	3	3

	COURSE ASSESSMENT METHODS							
DIRECT 1 Continuous Assessment Tests								
	2	Other Assessments (Assignment, Quiz etc.)						
	3	nd Semester Examinations						
INDIRECT	1	Course End Survey						

COURSE CONTENT										
Topic - 1	PROPERTIES & TESTING OF MATERIALS	9								
Physical and Mechanical properties of construction materials – stones, brick, cement, aggregate, timber, tiles. Testing of said materials as per BIS specifications.										
Topic - 2	c - 2 PROPERTIES OF MISCELLANEOUS MATERIALS 9									
and light wei flooring, dec	Structural Steel and Aluminium, Roofing Material, Physical descriptions of asbestos sheets, GI sheets, tubes and light weight roofing materials, Timber and its Products, Modern materials, Neoprene, thermocol, vinyl flooring, decorative panels and laminates, anodised aluminium, architectural glass and ceramics, Ferrocement, PVC, polymer base materials and Fibre Reinforced Polymer (FRP).									
Topic - 3	BRICK MASONRY	9								
	Brick masonry construction- Principles of construction, types of bonds, introduction to reinforced brick work, lintels and arches.									
Topic - 4 STONE MASONRY 9										
Stone masonr	Stone masonry – Types of stone masonry & method of its construction, lintels and arches.									
Topic - 5	FOUNDATIONS 9									

BC	BOOK REFERENCES					
1	Rangwala, Engineering Materials, Charotar Publishing House Pvt. Ltd.					
2	P.C.Varghese, Engineering Materials, 1st edition, PHI Learning.					
3	S.K.Duggal, Building Materials, 3rd Edition, New Age International Publishers.					
4	Sushil Kumar, Building Construction, Standard Publishers Distributors.					
5	M.L.Gambhir, Concrete Technology, Tata McGraw Hill Education.					

PRACTICAL

0

Function of foundation, Types of foundation- Shallow and deep, there methods of construction.

TUTORIAL

THEORY

45

CO	OTHER REFERENCES				
1	https://www.digimat.in/nptel/courses/video/105106053/L01.html				
2	https://nptel.ac.in/courses/105106206				
3	https://nptel.ac.in/courses/105105108				
4	https://www.digimat.in/nptel/courses/video/105102088/L01.html				
5	https://www.digimat.in/nptel/courses/video/105102088/L09.html				

45

TOTAL

Semester	Programme	Course Code	Course Name	L	T	P	C
	B.E. CIVIL	20CEO08	GREEN BUILDING	3	0	0	3

	COURSE LEARNING OUTCOMES (COs)								
A	After Successful completion of the course, the students should be able to								
CO1	Understand the principles of building planning its bylaws	K2	1						
CO2	Understand the concepts of green buildings	K2	2						
CO3	Understand the principles of provide facilities for rainwater harvesting	K2	3						
CO4	Understand the concepts of energy efficiency	K2	4						
CO5	Understand the concepts of green buildings materials K2 5								

PRE-REQUISITE	Nil
---------------	-----

	CO / PO MAPPING (1 – Weak, 2 – Medium, 3 – Strong)													
COs	Programme Learning Outcomes (POs)											PS	PSOs	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3					2	2	3	3		3	3	3
CO2	3	3					2	2	3	3		3	3	3
CO3	3	3					2	2	3	3		3	3	3
CO4	3	3					2	2	3	3		3	3	3
CO5	3	3					2	2	3	3		3	3	3

	COURSE ASSESSMENT METHODS							
DIRECT	DIRECT 1 Continuous Assessment Tests							
	2	2 Other Assessments (Assignment, Quiz etc.)						
	3	End Semester Examinations						
INDIRECT	1	Course End Survey						

	COURSE CONTENT								
Topic - 1	PLANNING OF BUILDING	9							
_	Principles of planning, Relevant building bylaws, site selection for buildings, orientation of buildings, common errors in planning								
Topic - 2	GREEN BUILDING TECHNOLOGIES								
Introduction-	Introduction- Necessity - Concept of Green building. Principles of green building								
Topic - 3	RAIN WATER HARVESTING	9							
Introduction-	Necessity - Provision of rain water harvesting								
Topic - 4	ENERGY EFFICIENCY	9							
	Environmental impact of building constructions, Concepts of embodied energy, operational energy and life cycle energy. Methods to reduce operational energy								
Topic - 5	c - 5 BUILDING MATERIALS								
	Methods to reduce embodied energy in building materials: Use of natural and renewable materials like bamboo, timber, rammed earth, stabilized mud blocks.								
THEORY	45 TUTORIAL 0 PRACTICAL 0 TOTAL	45							

BO	BOOK REFERENCES					
1	IGBC Green Homes Rating System, Version 2.0., Abridged reference guide, 2013, Indian Green Building Council Publishers.					
2	Mike Montoya, Green Building Fundamentals, Pearson, USA, 2010.					
3	Alternative building materials and technologies by K.S. Jagadish, B.V. Venkatarama Reddy and K.S. Nanjunda Rao.					
4	Non-Conventional Energy Resources by G. D. Rai, Khanna Publishers.					
5	Sustainable Building Design Manual, Vol.1 and 2, TERI, New Delhi 2004.					
ГО	HER REFERENCES					
1	https://www.digimat.in/nptel/courses/video/105102195/L43.html					
2	https://www.youtube.com/watch?v=VE2tpwGCN0U					
3	https://www.youtube.com/watch?v=nFBvLIfFFqI					
4	http://www.nitttrc.edu.in/nptel/courses/video/105102195/L35.html					
5	http://52.32.140.135/nptel/courses/video/124107011/L10.html					